

• Reading

- Kumar et al., Basic Communication Operations

### **Updates**

### 1. PA2 project

- I need to know your choice by Friday
- you can work in teams of two, if you wish
- project selection
  - 1. parallel quicksort using OpenMP or MPI\* \*requires access to dogwood cluster
  - 2. parallel k-means on GPU
    - check "Cuda C best practices" on class website
    - review n-body implementation
    - use float values
  - 3. your choice
    - needs to be discussed and agreed



Nvidia V100 organization

### **Updates**

#### 2. Half-pairs force computation on N bodies on a ring of p processors

- at each proc
  - N/p body descriptions
    - d words (locn, mass, force)
  - home, traveling bodies



### **Objectives**

- Examine network-specific implementations of collective communication operations
  - derive analytic costs for three representative networks
    - » Ring
    - » Torus
    - » Hypercube
  - and two routing models
    - » Store-and-Forward
    - » Cut-through
- Implications for the BSP model

### **Networks considered**

- Ring
  - diameter p/2
  - bisection width 2



- 2-D torus
  - diameter  $2(p^{1/2} / 2 1) \approx p^{1/2}$
  - bisection width  $2p^{1/2} \approx p^{1/2}$



- Hypercube
  - diameter (lg p)
  - bisection width  $p/2 \approx p$





### **Network assumptions**

#### Communication cost model

- Message size *m* bits
- Number of hops (links) to travel h
- Channel width W in bits and channel cycle time  $t_c$ 
  - » per-bit transfer time  $t_w = t_c / W$
  - » transit time for message to cross channel  $t_w m$
- Startup time *t*<sub>s</sub>
- Node latency or per-hop time  $t_h$ 
  - » time taken by message header to cross one link and be switched to the next link

#### Network model

- Bi-directional communication links
- Single-port communication model for source and destination
  - » each processor can perform at most one send and one receive simultaneously
- Multiport switches
  - » each switch can permute inputs to outputs
  - » contention for outputs causes serialization

# Flow control strategy: SF and CT

- Store and Forward (SF)
  - packet buffered at each node
    - $t_{\rm SF} = t_{\rm S} + (t_{\rm W}m)h$

- Cut-through (CT)
  - packet spread through network

$$t_{\rm CT} = t_{\rm S} + t_{\rm W}m + t_{\rm h}h$$





### Simple message transfer

- Single sender, single receiver, single message size m, worst case time
  - diameter d of network provides upper bound

- SF: 
$$t_{SF} = t_S + (t_W m)d$$
  
» ring:  $t_{SF} = t_S + (t_W m)(p/2)$   
» 2-D torus:  $t_{SF} = t_S + (t_W m)p^{1/2}$   
» Hypercube:  $t_{SF} = t_S + (t_W m)(\lg p)$ 

 $- \text{ CT: } t_{\text{CT}} = t_{\text{S}} + t_{\text{W}}m + t_{\text{h}}d$ 

- » ring:  $t_{CT} = t_{S} + t_{W}m + t_{h}(p/2)$
- » 2-D torus:  $t_{CT} = t_{S} + t_{W}m + t_{h}p^{1/2}$
- » Hypercube:  $t_{CT} = t_{S} + t_{W}m + t_{h} \lg p$

with CT and *m* large, all networks achieve approximately same performance

 $t_{\rm CT} = t_{\rm S} + t_{\rm W}m + t_{\rm h}d \approx t_{\rm W}m$ 







### **One-to-all broadcast (m)**



### **One-to-all broadcast: (Ring, SF)**

• Single sender, one common message, multiple receivers  $(t_s+t_wm)[p/2]$ 



## **One-to-all broadcast: (Torus, SF)**

- Extend (Ring, SF) solution to each dimension in turn •
- For 2-dimensional torus: •
  - (a) One-to-all broadcast from source along row, then
  - (b) One-to-all broadcast in each column simultaneously

$$2(t_s + t_w m) \frac{\sqrt{p}}{2}$$









## One-to-all broadcast (Hypercube, SF)

- Hypercube is extreme case of k-ary d-cube, with d = Ig P dimensions of k = 2 processors each
  - broadcast in each dimension requires a single step

 $(t_s + t_w m)(\lg p)$ 











### A lower bound for one-to-all bcast

- Claim: With single-port communication model, no topology can do better than (Hypercube, SF) for one-to-all broadcast
  - At each step, each processor with data sends to a processor that needs data
  - Communication happens between neighboring processors
- This argument ignores
  - Dependence of  $t_w$  and  $t_s$  on wire length
  - (Multiport communication)



### One-to-all broadcast (Ring, CT)

- Observation: Distance term is relatively insignificant with CT
- Key idea: Adapt (HC, SF) algorithm
  - At step  $i \in 1$ : lg P, send to processor at (anticlockwise) distance  $P/2^i$



### **One-to-all broadcast (Torus + HC, CT)**

- Torus
  - one-to-all broadcasts using CT in each successive dimension



$$t_s \lg p + 2t_h \left(\sqrt{p} - 1\right) + t_w m \lg p$$

- Hypercube
  - no advantage for CT, since all communications are single-step.



#### communication size

| source | network | destination |
|--------|---------|-------------|
| m      | m       | m           |

communication time

SFCTRing $(t_s + t_w m) \left\lceil \frac{p}{2} \right\rceil$  $t_s \lg p + t_h (p-1) + t_w m (\lg p)$ 2 - D Torus $2(t_s + t_w m) \left\lceil \frac{\sqrt{p}}{2} \right\rceil$  $t_s \lg p + 2t_h (\sqrt{p} - 1) + t_w m (\lg p)$ Hypercube $(t_s + t_w m) \lg p$  $(t_s + t_w m) \lg p$ 



### All-to-all broadcast



### All-to-all broadcast

- Each processor has information that it sends to all other processors
  - p senders
  - p messages
  - p–1 receivers of each message
- Example
  - distribution of vector in BSP Matrix \* Vector Algorithm
- Naive solution: perform p independent one-to-all broadcasts
  - Costs p times more than single one-to-all broadcast
- Better solution: pipeline the broadcasts

# All-to-all broadcast (Ring, SF)

Ex: p = 6



## All-to-all broadcast (2-D Torus, SF)

- Use ring algorithm once in each dimension
- In the second dimension, the size of the message to be broadcast increases by a factor of  $p^{1/2}$



$$t_{SF}^{\text{torus}} = (\sqrt{p} - 1)t_s + (\sqrt{p} - 1)t_w m + (\sqrt{p} - 1)t_s + (\sqrt{p} - 1)t_w (m\sqrt{p})$$
$$= 2(\sqrt{p} - 1)t_s + (p - 1)t_w m$$

# All-to-all broadcast (Hypercube, SF)

 Use ring algorithm consecutively in each dimension. The size of the message doubles with each consecutive dimension



### All-to-all broadcast (CT)

### • CT doesn't help

- Hypercube
  - » all communication is distance 1
- Ring & Torus
  - » mapping HC algorithm to ring causes link congestion
  - » can't do much better anyway:  $(p-1)mt_w$  is a lower bound, since each processor must receive (p-1)m data



#### communication size

| source | network | destination |
|--------|---------|-------------|
| m      | рт      | рт          |

#### communication time

|             | SF                            | СТ     |
|-------------|-------------------------------|--------|
| Ring        | $(t_s + t_w m)(p-1)$          | (same) |
| 2 - D Torus | $2t_s(\sqrt{p}-1)+t_w m(p-1)$ | (same) |
| Hypercube   | $t_{s} \lg p + t_{w} m(p-1)$  | (same) |

### **One-to-all personalized communication**

- One-to-all personalized communication (m)
  - a.k.a. single-node scatter
- All-to-one personalized communication (m)
  - a.k.a. single-node gather



### **One-to-all personalized communication (Scatter, Ring, SF)**



### **One-to-all personalized communication** (Torus, SF)

### Stage 1

- one-to-all personalized communication in single row, data size  $(mp^{1/2})$ 

- Stage 2
  - one-to-all personalized communication in all columns, data size (m)

$$t_{SF}^{\text{torus}} = (\sqrt{p} - 1)(t_s + t_w m \sqrt{p}) + (\sqrt{p} - 1)(t_s + t_w m) = 2(\sqrt{p} - 1)t_s + (p - 1)t_w m$$





### **One-to-all personalized communication (HC, SF)**



### **One-to-all personalized communication** (Ring, CT)

#### • Adapt (HC, SF) algorithm

- At step  $i \in 1$ : lg P, send to processor at (anticlockwise) distance  $P/2^i$ 



### SUMMARY: One-to-all personalized communication

### • CT is not much help

- source must send m(p 1) data, and SF implementations already at  $m(p 1)t_w$  bandwidth bound
- possibly decrease in latency using SF Hypercube algorithm in ring with CT
  - » improvement only if  $t_s >> t_h$
- communication size

| source | network | destination |
|--------|---------|-------------|
| рт     | рт      | m           |

communication time

|             | SF                            | СТ                                                          |
|-------------|-------------------------------|-------------------------------------------------------------|
| Ring        | $t_s(p-1) + t_w m(p-1)$       | $t_s \lg p + t_h(p-1) + t_w m(p-1)$                         |
| 2 - D Torus | $2t_s(\sqrt{p}-1)+t_w m(p-1)$ | $t_s \lg p + 2t_h \left(\sqrt{p} - 1\right) + t_w m(p - 1)$ |
| Hypercube   | $t_s \lg p + t_w m(p-1)$      | (same)                                                      |

### All-to-all personalized communication

- all-to-all exchange (m)
  - a.k.a. total exchange (m)



### All-to-all personalized communication (Ring, SF)



 $t_{SF}^{\text{ring}} = \sum_{i=1}^{p-1} (t_s + t_w m(p-i)) = (p-1)t_s + (p-1)\frac{p}{2}t_w m$ 

### All-to-all personalized communication (HC, SF)

#### Full exchange in each dimension

- ex: successive elements at processor 0 on left, values in destination proc on right



**Collective Communication** 

## All-to-all personalized communication (нс, ст)

### CT can improve performance

- eliminate (lg p) intermediate destinations for each personalized message
- replace with p-1 communication phases
  - » phase  $0 \le i \le p$ 
    - pairwise direct exchange of personalized message of size m
    - proc j communicates with proc (j XOR i)
  - » each phase of pairwise communications is contention-free
- bandwidth term is optimal

$$t_{CT}^{\mathsf{hypc}} \le \sum_{i=1}^{p-1} (t_s + t_h \lg p + t_w m) = (p-1)t_s + (p-1)(\lg p)t_h + pt_w m$$

### SUMMARY: All-to-all personalized communication

#### communication size

| source | network | destination |
|--------|---------|-------------|
| рт     | p²m     | рт          |

#### communication time

|             | SF                                              | СТ                                                   |
|-------------|-------------------------------------------------|------------------------------------------------------|
| Ring        | $t_s(p-1) + t_w m \frac{p}{2}(p-1)$             | (same)                                               |
| 2 - D Torus | $2t_s(\sqrt{p}-1)+2t_wm\frac{p}{2}(\sqrt{p}-1)$ | (same)                                               |
| Hypercube   | $t_s \lg p + t_w m \frac{p}{2} (\lg p)$         | $t_{s}(p-1) + t_{h}\frac{p}{2}(\lg p) + t_{w}m(p-1)$ |

# Low bisection-width networks (tori) really cannot match BSP costs in this case