COMP 633 - Parallel Computing

Lecture 21
November 9, 2021

Collective Communication Operations

• Reading
 – Kumar et al., Basic Communication Operations
Updates

1. PA2 project
 • I need to know your choice by Friday
 • you can work in teams of two, if you wish
 • project selection
 1. parallel quicksort using OpenMP or MPI* *requires access to dogwood cluster
 2. parallel k-means on GPU
 ▪ check “Cuda C best practices” on class website
 ▪ review n-body implementation
 ▪ use float values
 3. your choice
 ▪ needs to be discussed and agreed
Updates

2. Half-pairs force computation on N bodies on a ring of p processors
 • at each proc
 • N/p body descriptions
 • d words (locn, mass, force)
 • home, traveling bodies
Objectives

• Examine network-specific implementations of collective communication operations
 – derive analytic costs for three representative networks
 » Ring
 » Torus
 » Hypercube
 – and two routing models
 » Store-and-Forward
 » Cut-through

• Implications for the BSP model
Networks considered

- **Ring**
 - diameter $p/2$
 - bisection width 2

- **2-D torus**
 - diameter $2(p^{1/2} / 2 - 1) \approx p^{1/2}$
 - bisection width $2p^{1/2} \approx p^{1/2}$

- **Hypercube**
 - diameter $(\lg p)$
 - bisection width $p/2 \approx p$
Network assumptions

• Communication cost model
 – Message size m bits
 – Number of hops (links) to travel h
 – Channel width W in bits and channel cycle time t_c
 » per-bit transfer time $t_w = t_c / W$
 » transit time for message to cross channel $t_w m$
 – Startup time t_s
 – Node latency or per-hop time t_h
 » time taken by message header to cross one link and be switched to the next link

• Network model
 – Bi-directional communication links
 – Single-port communication model for source and destination
 » each processor can perform at most one send and one receive simultaneously
 – Multiport switches
 » each switch can permute inputs to outputs
 » contention for outputs causes serialization
Flow control strategy: SF and CT

- **Store and Forward (SF)**
 - packet buffered at each node
 \[t_{SF} = t_S + (t_Wm)h \]

- **Cut-through (CT)**
 - packet spread through network
 \[t_{CT} = t_S + t_Wm + t_hh \]
Simple message transfer

- Single sender, single receiver, single message size m, worst case time
 - diameter d of network provides upper bound

- SF: $t_{SF} = t_S + (t_WM)d$
 - ring: $t_{SF} = t_S + (t_WM)(p/2)$
 - 2-D torus: $t_{SF} = t_S + (t_WM)p^{1/2}$
 - Hypercube: $t_{SF} = t_S + (t_WM)(\lg p)$

- CT: $t_{CT} = t_S + t_WM + t_hd$
 - ring: $t_{CT} = t_S + t_WM + t_h(p/2)$
 - 2-D torus: $t_{CT} = t_S + t_WM + t_hp^{1/2}$
 - Hypercube: $t_{CT} = t_S + t_WM + t_h\lg p$

with CT and m large, all networks achieve approximately same performance

$$t_{CT} = t_S + t_WM + t_hd \approx t_WM$$
One-to-all broadcast (m)

\[R_i = A_i \oplus B_i \oplus C_i \oplus D_i \]
One-to-all broadcast: (Ring, SF)

- Single sender, one common message, multiple receivers

\[(t_s + t_w m) \frac{p}{2}\]
One-to-all broadcast: (Torus, SF)

- Extend (Ring, SF) solution to each dimension in turn
- For 2-dimensional torus:
 (a) One-to-all broadcast from source along row, then
 (b) One-to-all broadcast in each column simultaneously

\[2(t_s + t_w m) \frac{\sqrt{p}}{2} \]
One-to-all broadcast (Hypercube, SF)

- Hypercube is extreme case of k-ary d-cube, with $d = \log_2 P$ dimensions of $k = 2$ processors each
 - broadcast in each dimension requires a single step

\[(t_s + t_w m)(\log p)\]
A lower bound for one-to-all bcast

- Claim: With single-port communication model, no topology can do better than (Hypercube, SF) for one-to-all broadcast
 - At each step, each processor with data sends to a processor that needs data
 - Communication happens between neighboring processors

- This argument ignores
 - Dependence of t_w and t_s on wire length
 - (Multiport communication)
One-to-all broadcast (Ring, CT)

- Observation: Distance term is relatively insignificant with CT
- Key idea: Adapt (HC, SF) algorithm
 - At step $i \in 1 : \lg P$, send to processor at (anticlockwise) distance $P/2^i$

$$t_s \lg p + t_h (p - 1) + t_w m(\lg p)$$
One-to-all broadcast (Torus + HC, CT)

- **Torus**
 - one-to-all broadcasts using CT in each successive dimension

- **Hypercube**
 - no advantage for CT, since all communications are single-step.

\[t_s \lg p + 2t_h(\sqrt{p} - 1) + t_w m \lg p \]
SUMMARY: One-to-all broadcast

- **communication size**

<table>
<thead>
<tr>
<th>source</th>
<th>network</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
</tbody>
</table>

- **communication time**

<table>
<thead>
<tr>
<th></th>
<th>SF</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
<td>((t_s + t_w m)\left\lceil \frac{p}{2} \right\rceil)</td>
<td>(t_s \lg p + t_h (p-1) + t_w m(\lg p))</td>
</tr>
<tr>
<td>2-D Torus</td>
<td>(2(t_s + t_w m)\left\lceil \frac{\sqrt{p}}{2} \right\rceil)</td>
<td>(t_s \lg p + 2t_h (\sqrt{p} - 1) + t_w m(\lg p))</td>
</tr>
<tr>
<td>Hypercube</td>
<td>((t_s + t_w m)\lg p)</td>
<td>((t_s + t_w m)\lg p)</td>
</tr>
</tbody>
</table>
All-to-all broadcast

all-to-all broadcast (m)

\[R_i = A_i \oplus B_i \oplus C_i \oplus D_i \]

all-to-all sum (m)

\[R_i = A_i \oplus B_i \oplus C_i \oplus D_i \]
All-to-all broadcast

• Each processor has information that it sends to all other processors
 – p senders
 – p messages
 – $p-1$ receivers of each message

• Example
 – distribution of vector in BSP Matrix * Vector Algorithm

• Naive solution: perform p independent one-to-all broadcasts
 – Costs p times more than single one-to-all broadcast

• Better solution: pipeline the broadcasts
All-to-all broadcast (Ring, SF)

\[
t_{\text{SF}} = \sum_{i=1}^{p-1} (t_s + t_w m) = (p - 1)t_s + (p - 1)t_w m
\]

Ex: \(p = 6 \)
All-to-all broadcast (2-D Torus, SF)

- Use ring algorithm once in each dimension
- In the second dimension, the size of the message to be broadcast increases by a factor of $p^{1/2}$

$$t_{SF}^{torus} = (\sqrt{p} - 1) t_s + (\sqrt{p} - 1) t_w m + (\sqrt{p} - 1) t_s + (\sqrt{p} - 1) t_w (m \sqrt{p})$$

$$= 2(\sqrt{p} - 1) t_s + (p - 1) t_w m$$
All-to-all broadcast (Hypercube, SF)

- Use ring algorithm consecutively in each dimension. The size of the message doubles with each consecutive dimension.

\[t_{\text{hypc}}^{\text{SF}} = \sum_{i=1}^{\lg p} t_s + t_w 2^{i-1} m = (\lg p) t_s + (p - 1) t_w m \]
All-to-all broadcast (CT)

• CT doesn’t help
 – Hypercube
 » all communication is distance 1
 – Ring & Torus
 » mapping HC algorithm to ring causes link congestion
 » can’t do much better anyway: \((p-1)mt_w\) is a lower bound, since each processor must receive \((p-1)m\) data
SUMMARY: All-to-all broadcast

- **communication size**

<table>
<thead>
<tr>
<th>source</th>
<th>network</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>pm</td>
<td>pm</td>
</tr>
</tbody>
</table>

- **communication time**

<table>
<thead>
<tr>
<th>Network</th>
<th>SF</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
<td>$(t_s + t_w m)(p - 1)$</td>
<td>(same)</td>
</tr>
<tr>
<td>2-D Torus</td>
<td>$2t_s \sqrt{p - 1} + t_w m(p - 1)$</td>
<td>(same)</td>
</tr>
<tr>
<td>Hypercube</td>
<td>$t_s \log p + t_w m(p - 1)$</td>
<td>(same)</td>
</tr>
</tbody>
</table>
One-to-all personalized communication

- One-to-all personalized communication (m)
 - a.k.a. single-node scatter

- All-to-one personalized communication (m)
 - a.k.a. single-node gather
One-to-all personalized communication (Scatter, Ring, SF)

\[t_{\text{SF}} = \sum_{i=1}^{p-1} (t_s + t_{\text{wm}}) = (p-1)t_s + (p-1)t_{\text{wm}} \]
One-to-all personalized communication (Torus, SF)

• Stage 1
 – one-to-all personalized communication in single row, data size \(mp^{1/2} \)

• Stage 2
 – one-to-all personalized communication in all columns, data size \(m \)

\[
t_{\text{SF}}^{\text{torus}} = (\sqrt{p-1}(t_s + t_w \sqrt{p}) + (\sqrt{p-1})(t_s + t_w m) = 2(\sqrt{p-1})t_s + (p-1)t_w m
\]
One-to-all personalized communication (HC, SF)

\[t_{SF}^{hypc} = \sum_{i=1}^{\log_2 p} t_s + t_w m \frac{p}{2^i} = (\log p) t_s + (p - 1) t_w m \]
One-to-all personalized communication (Ring, CT)

- Adapt (HC, SF) algorithm
 - At step $i \in 1 : \lg P$, send to processor at (anticlockwise) distance $P/2^i$
SUMMARY: One-to-all personalized communication

- **CT is not much help**
 - source must send $m(p - 1)$ data, and SF implementations already at $m(p - 1)t_w$ bandwidth bound
 - possibly decrease in latency using SF Hypercube algorithm in ring with CT
 » improvement only if $t_s >> t_h$

- **communication size**

<table>
<thead>
<tr>
<th>source</th>
<th>network</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>pm</td>
<td>pm</td>
<td>m</td>
</tr>
</tbody>
</table>

- **communication time**

<table>
<thead>
<tr>
<th></th>
<th>SF</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
<td>$t_s(p-1) + t_wm(p-1)$</td>
<td>$t_s \lg p + t_h(p-1) + t_wm(p-1)$</td>
</tr>
<tr>
<td>2-D Torus</td>
<td>$2t_s(\sqrt{p-1}) + t_wm(p-1)$</td>
<td>$t_s \lg p + 2t_h(\sqrt{p-1}) + t_wm(p-1)$</td>
</tr>
<tr>
<td>Hypercube</td>
<td>$t_s \lg p + t_wm(p-1)$</td>
<td>(same)</td>
</tr>
</tbody>
</table>
All-to-all personalized communication

- **all-to-all exchange (m)**
 - a.k.a. total exchange (m)
All-to-all personalized communication (Ring, SF)

\[
t_{\text{ring}} = \sum_{i=1}^{p-1} (t_s + t_w m(p - i)) = (p - 1)t_s + (p - 1)\frac{p}{2} t_w m
\]
All-to-all personalized communication (HC, SF)

- Full exchange in each dimension
 - ex: successive elements at processor 0 on left, values in destination proc on right

\[
t_{SF}^{hyc} = \sum_{i=1}^{\lg p} \left(t_s + t_w m \frac{p}{2} \right) = (\lg p) t_s + (\lg p) \frac{p}{2} t_w m
\]
All-to-all personalized communication (HC, CT)

- **CT can improve performance**
 - eliminate \((\lg p)\) intermediate destinations for each personalized message
 - replace with \(p-1\) communication phases
 - phase \(0 \leq i < p\)
 - pairwise direct exchange of personalized message of size \(m\)
 - proc \(j\) communicates with proc \((j \oplus i)\)
 - each phase of pairwise communications is contention-free
 - bandwidth term is optimal

\[
t_{CT}^{\text{hypo}} \leq \sum_{i=1}^{p-1} (t_s + t_h \lg p + t_w m) = (p-1)t_s + (p-1)(\lg p)t_h + pt_w m
\]
SUMMARY: All-to-all personalized communication

- communication size

<table>
<thead>
<tr>
<th>source</th>
<th>network</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>pm</td>
<td>p^2m</td>
<td>pm</td>
</tr>
</tbody>
</table>

- communication time

<table>
<thead>
<tr>
<th></th>
<th>SF</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring</td>
<td>$t_s(p - 1) + t_w m \frac{p}{2} (p - 1)$</td>
<td>(same)</td>
</tr>
<tr>
<td>2-D Torus</td>
<td>$2t_s(\sqrt{p} - 1) + 2t_w m \frac{p}{2} (\sqrt{p} - 1)$</td>
<td>(same)</td>
</tr>
<tr>
<td>Hypercube</td>
<td>$t_s \lg p + t_w m \frac{p}{2} (\lg p)$</td>
<td>$t_s(p - 1) + t_h \frac{p}{2} (\lg p) + t_w m(p - 1)$</td>
</tr>
</tbody>
</table>

- Low bisection-width networks (tori) really cannot match BSP costs in this case