COMP 633 - Parallel Computing

Lecture 22
November 29, 2018

Datacenters and
Large Scale Data Processing
Topics

• Parallel memory hierarchy
 – extend to include disk storage

• Google web search
 – Large parallel application
 – Distributed over a large clusters

• Programming models for large data collections
 – MapReduce
 – Spark
Extending the parallel memory hierarchy

• Incorporate disk storage
 – Parallel transfers to disks
 – Global access to all data
Google data processing

• **Search and other services require parallel processing**
 – processing and/or request volume are too large for a single machine

• **Data storage requires replication**
 – to tolerate and recover from storage errors
 – for parallel throughput
 – to reduce latency

• **multiple datacenters around the world**
 – to reduce latency and long-haul traffic
 – to tolerate network or power failures or bigger disasters
Google web search – 2002

- **web statistics (2002)**
 - 3+ Billion static web pages
 - doubles every 8 months (2012: 1 Trillion pages)
 - 30% duplication

- **Google usage statistics (2002)**
 - 260 million users
 - 80% do searches
 - 150 million searches/day (2017: 3.5 *billion* searches/day)
 - ~2000 queries/sec average
 - ~1000 queries/sec minimum
 - query response time
 - less than 0.25 secs typical
 - target 0.5 secs max
 - uptime
 - target 100%

Sources:
Google Linux Cluster (2002)

• Overview
 – 15,000+ PC cluster
 » 5 PB disk storage
 • 5×10^{15} bytes = $50,000 \times 100$GB disks
 – node
 » 100 Mb Ethernet
 » 1-4 100 GB disks
 » mid-range processor (P III)
 » 256 MB - 2GB memory
 » runs Linux
 – rack
 » 100 to 200 nodes
 » Ethernet switch
 – router/switch
 » serves ~100 racks
 » distributes search requests
Google Web Search: 2010 vs. 1999*

- **# docs:** tens of millions to tens of billions
 ~1,000 x

- **queries processed/day:**
 ~1,000 x

- **per doc info in index:**
 ~3 x

- **update latency:** months to tens of secs
 ~50,000 x

- **avg. query latency:** <1s to <0.2s
 ~5 x

- **more machines * faster machines**
 ~1,000 x

* Jeff Dean - Building Software Systems at Google and Lessons Learned

COMP 633 Big Data
Google data centers (recent)
The Joys of Real Hardware*

Typical first year for a new cluster:

- ~1 network rewiring (rolling ~5% of machines down over 2-day span)
- ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
- ~5 racks go wonky (40-80 machines see 50% packet loss)
- ~8 network maintenances (4 might cause ~30-minute random connectivity loss)
- ~12 router reloads (takes out DNS and external vips for a couple minutes)
- ~3 router failures (have to immediately pull traffic for an hour)
- ~dozens of minor 30-second blips for dns
- ~1000 individual machine failures
- ~thousands of hard drive failures slow disks, bad memory, misconfigured machines, flaky machines, etc.
- Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

* Jeff Dean - Building Software Systems at Google and Lessons Learned
Google query processing steps (simplified)

1. secret sauce to map query to search terms
 – detect query language + fix spelling errors

2. locate search terms in dictionary
 – over 100 M words in dictionary per language

3. for each search term in dictionary
 – use inverted index to locate web pages containing term
 – ordered by page number

4. compute and order pages satisfying full query
 – explicit rules
 » conjunction, disjunction, etc. of terms
 » document language
 – implicit rules
 » search term proximity in documents
 » location of search terms in document structure
 » quality of page – PAGE RANK

5. Construct synopsis reports from documents in order
 – extract page from cache and highlight search terms in context
 – 10 results returned per query
Challenges

• Query processing
 – how to distribute data structures?
 » dictionary
 » inverted index
 » web pages
 – how to implement query processing algorithms?

• Fault tolerance
 – component count is very large
 » 10,000 servers with 3 year MTBF, expect to lose ten a day
 » 50,000 disks with 10% failing per year is a disk failure every couple of hours
 » 10^{-15} undetected bit error rate on I/O is ~50 incorrect bits in 5PB copy

• Scaling
 – how can the system be designed to scale with
 » increasing number of queries
 » increasing size of web (number of pages and total text size)
 » increasing component failures (as a consequence of scaling up)
Google server architecture

Misc. servers
- Spell checker
- Ad Server

Google Web Server

query

Many corpora
- News
- Books
- ...

Index servers
- Index shards

Doc servers
- Doc shards

Replicas
- I₀, I₁, I₂, ..., Iₙ
- D₀, D₁, D₂, ..., Dₘ

Index servers and Doc servers are replicated for redundancy.
When designing large distributed applications

- “Numbers Everyone Should Know” - Jeff Dean

L1 cache reference: 0.5 ns
Branch mispredict: 5 ns
L2 cache reference: 7 ns
Mutex lock/unlock: 100 ns
Main memory reference: 100 ns
Compress 1K bytes with Zippy: 10,000 ns
Send 2K bytes over 1 Gbps network: 20,000 ns
Read 1 MB sequentially from memory: 250,000 ns
Round trip within same datacenter: 500,000 ns
Disk seek: 10,000,000 ns
Read 1 MB sequentially from network: 10,000,000 ns
Read 1 MB sequentially from disk: 30,000,000 ns
Send packet CA->Netherlands->CA: 150,000,000 ns
Processing large data sets

• **Process data distributed across thousands of disks**
 – Large datasets pose an I/O bottleneck
 » Attach disks to all nodes
 » Stripe data across disks
 » How to manage this?

• **MapReduce provides**
 – Parallel disk bandwidth
 – Automatic parallelization & distribution
 – Fault tolerance
 – I/O scheduling
 – Monitoring & status updates
Map/Reduce

• Map/Reduce
 – parallel programming schema
 – name inspired by functional language view of the schema

• Many problems can be approached this way

• Easy to distribute across nodes

• Simple failure/retry semantics
Map in Lisp (Scheme)

- \(\text{(map } f \text{ list [list}_2 \text{ list}_3 \ldots]) \)

- \(\text{(map square '(1 2 3 4))} \)
 \((1 4 9 16) \)

- \(\text{(reduce + '(1 4 9 16))} \)
 \((+ 16 (+ 9 (+ 4 1))) \)
 \(= 30 \)
Map/Reduce a la Google

- An input file contains a large list of items
 - Each item is a (key,val) pair
 - The file is distributed across disks on p nodes

- map(key, val) is run on each item in the list
 - emits new-key / new-val pairs
 - map: (k₁,v₁) -> list(k₂,v₂)

- reduce(key, vals) is run for each unique key emitted by map()
 - reduce: (k₂, list(v₂)) -> list(v₂)
 - the result is written to a file distributed across disks attached to the nodes
Example 1: count words in docs

- Input consists of (url, contents) pairs

- map(key=url, val=contents):
 » For each word w in contents, emit (w, “1”)

- reduce(key=word, values=uniq_counts):
 » Sum all “1”s in values list
 » Emit result “(word, sum)”
Count words - example

map(key=url, val=contents):
 For each word \(w \) in contents, emit \((w, "1")\)

reduce(key=word, values=uniq_counts):
 Sum all "1"s in values list
 Emit result "(word, sum)"

see bob throw
see spot run

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>see</td>
<td>1</td>
</tr>
<tr>
<td>bob</td>
<td>1</td>
</tr>
<tr>
<td>run</td>
<td>1</td>
</tr>
<tr>
<td>see</td>
<td>1</td>
</tr>
<tr>
<td>spot</td>
<td>1</td>
</tr>
<tr>
<td>throw</td>
<td>1</td>
</tr>
</tbody>
</table>

bob 1
run 1
see 2
spot 1
throw 1
Execution

Input

Intermediate

Group by Key

Grouped

Output
Parallel Execution

Map Task 1

Map Task 2

Map Task 3

Sort and Group

Sort and Group

Reduce Task 1

Reduce Task 2

Partitioning Function

Partitioning Function

Partitioning Function

k1:v k1:v k2:v

k3:v k4:v

k4:v k5:v

k3:v

k1:v k3:v

k2:v

k4:v

k5:v

R

R

R

R
Experience (10-15 years ago)

• Rewrote Google's production indexing system using MapReduce
 – Set of 10, 14, 17, 21, 24 MapReduce operations
 – New code is simpler, easier to understand
 » 3800 lines C++ → 700
 – MapReduce handles failures, slow machines
 – Easy to make indexing faster
 » add more machines

• Redux
 – MapReduce proved to be useful abstraction
 – MapReduce has an open-source implementation
 » Hadoop
 – Extensively used with large datasets
 » E.g. bioinformatics
 » focus on problem
 » let library deal w/ messy details
Improving MapReduce

• **Problem: All computation is disk to disk**
 – No notion of locality

• **Solution: Spark**
 – System for expressing computations on objects distributed on disks
 – Computations are moved to data instead of vice-versa
 » In-memory data flow model
 » Decreases number of map/reduce steps