Processing Large Datasets
Topics

• Parallel memory hierarchy
 – extend to include disk storage

• Google web search
 – Large parallel application
 – Distributed over a large cluster

• Programming models for large data collections
 – MapReduce
 – Spark
A. Extending the parallel memory hierarchy

- Incorporating disk storage
 - Parallel transfers to disks
 - Global access to all data
B. Google web search – 15 years ago

- **web statistics (2002)**
 - 3+ Billion static web pages
 » doubles every 8 months (2012: 1 Trillion pages)
 - 30% duplication

- **Google usage statistics (2002)**
 - 260 million users
 » 80% do searches
 - 150 million searches/day (2017: 3.5 billion searches/day)
 » ~2000 queries/sec average
 » ~1000 queries/sec minimum
 - query response time
 » less than 0.25 secs typical
 » target 0.5 secs max
 - uptime
 » target 100%

Sources:
Google Linux Cluster (2002)

- **Overview**
 - 15,000+ PC cluster
 - 5 PB disk storage
 - 5×10^{15} bytes = $50,000 \times 100$GB disks
 - node
 - 100 Mb Ethernet
 - 1-4 100 GB disks
 - mid-range processor (P III)
 - 256 MB - 2GB memory
 - runs Linux
 - rack
 - 100 to 200 nodes
 - Ethernet switch
 - router/switch
 - serves ~100 racks
 - distributes search requests
Google query processing steps (simplified)

1. secret sauce to map query to search terms
 - detect query language + fix spelling errors

2. locate search terms in dictionary
 - over 100 M words in dictionary per language

3. for each search term in dictionary
 - use inverted index to locate web pages containing term
 - ordered by page number

4. compute and order pages satisfying full query
 - explicit rules
 » conjunction, disjunction, etc. of terms
 » document language
 - implicit rules
 » search term proximity in documents
 » location of search terms in document structure
 » quality of page – PAGE RANK

5. Construct synopsis reports from documents in order
 - extract page from cache and highlight search terms in context
 - 10 results returned per query
Challenges

• **Query processing**
 – how to distribute data structures?
 » dictionary
 » inverted index
 » web pages
 – how to implement query processing algorithms?

• **Fault tolerance**
 – component count is very large
 » 10,000 servers with 3 year MTBF, expect to lose ten a day
 » 50,000 disks with 10% failing per year is a disk failure every couple of hours
 » \(10^{-15}\) undetected bit error rate on I/O is ~50 incorrect bits in 5PB copy

• **Scaling**
 – how can the system be designed to scale with
 » increasing number of queries
 » increasing size of web (number of pages and total text size)
 » increasing component failures (as a consequence of scaling up)
C. Processing large data sets

- **Process data distributed across thousands of disks**
 - Large datasets pose an I/O bottleneck
 - Attach disks to all nodes
 - Stripe data across disks
 - How to manage this?

- **MapReduce provides**
 - Parallel disk bandwidth
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates
Map/Reduce

- Map/Reduce
 - parallel programming schema
 - name inspired by functional language view of the schema

- Many problems can be phrased this way

- Easy to distribute across nodes

- Simple failure/retry semantics
Map in Lisp (Scheme)

- \((\text{map } f \ list \ [list_2 \ list_3 \ …]) \)

- \((\text{map square ‘(1 2 3 4))} \)
 \(\text{(1 4 9 16)} \)

- \((\text{reduce + ‘(1 4 9 16))} \)
 \((+ 16 (+ 9 (+ 4 1))) \)
 \(= 30 \)
Map/Reduce a la Google

- **An input file contains a large list of items**
 - Each item is a (key, val) pair
 - The file is distributed across disks on p nodes

- **map(key, val) is run on each item in the list**
 - emits new-key / new-val pairs
 - map: \((k_1, v_1) \rightarrow \text{list}(k_2, v_2)\)

- **reduce(key, vals) is run for each unique key emitted by map()**
 - reduce: \((k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)\)
 - the result is written to a file distributed across disks attached to the nodes
Example 1: count words in docs

- Input consists of (url, contents) pairs

- map(key=url, val=contents):
 » For each word w in contents, emit (w, “1”)

- reduce(key=word, values=uniq_counts):
 » Sum all “1”s in values list
 » Emit result “(word, sum)”
map(key=url, val=contents):
 For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
 Sum all “1”s in values list
 Emit result “(word, sum)"

see bob throw
see spot run

<table>
<thead>
<tr>
<th>word</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>see</td>
<td>1</td>
</tr>
<tr>
<td>bob</td>
<td>1</td>
</tr>
<tr>
<td>run</td>
<td>1</td>
</tr>
<tr>
<td>see</td>
<td>1</td>
</tr>
<tr>
<td>spot</td>
<td>1</td>
</tr>
<tr>
<td>throw</td>
<td>1</td>
</tr>
</tbody>
</table>

bob 1
run 1
see 2
spot 1
throw 1
Execution

Input

Intermediate

Group by Key

Grouped

Output
Parallel Execution
Experience (10-15 years ago)

- **Rewrote Google's production indexing system using MapReduce**
 - Set of 10, 14, 17, 21, 24 MapReduce operations
 - New code is simpler, easier to understand
 - 3800 lines C++ → 700
 - MapReduce handles failures, slow machines
 - Easy to make indexing faster
 - add more machines

- **Redux**
 - MapReduce proved to be useful abstraction
 - MapReduce has an open-source implementation
 - Hadoop
 - Extensively used with large datasets
 - E.g. bioinformatics
 - focus on problem
 - let library deal w/ messy details
Improving MapReduce

• **Problem:** All computation is disk to disk
 – No notion of locality

• **Solution:** Spark
 – System for expressing computations on objects distributed on disks
 – Computations are moved to data instead of vice-versa
 » In-memory data flow model
 » Decreases number of map/reduce steps
Wrap-up

• Final exam
 – Saturday at noon, in this room
 – You may use a computer to access your own notes and all class materials
 – No communication, search or access of other materials

• Graded homeworks
 – All completed grading will be available before the exam
 – The final exam and any outstanding assignments will be available in my office Thu Dec 14 10-11:45 am and 2 – 4 pm

• Closing thoughts