
COMP 633 - Parallel Computing

Lecture 22
November 17, 2021

Partitioned Global Address Spaces
Parallel languages for distributed memory machines

PGAS (1)COMP 633 - Prins

2PGAS (1)COMP 633 - Prins

Topics

• MPI-2 and MPI-3 specifications for clusters
– add single-sided communication via remote direct memory access

(RDMA)

• High-level parallel programming languages for clusters using RDMA
– High Performance Fortran (HPF)
– Unified Parallel C (UPC)

3PGAS (1)COMP 633 - Prins

Parallel programming models (thus far)
• Address-space

– single (shared memory)
– multiple (distributed memory)

• Source of parallelism
– SPMD (processor-centric)
– data parallelism (data-centric)
– task parallelism (problem-centric)

• Type of synchronization
– statement-level (SIMD)
– barrier (SPMD)
– fork-join (taskwait)
– mutual exclusion (locks)
– conditions (signal/wait)

• Inter-processor communication
– shared memory
– message passing

• matching send & receive
– collective communication

• broadcasts, reductions
• gather, scatter and total-

exchange

• Memory models
– distributed memory

• BSP
• C + MPI

– shared memory
• WT, PRAM
• Cilk
• C + OpenMP
• Java, C + Pthreads

4

Diagrammatic view of parallel programming models

PGAS (1)COMP 633 - Prins

5

Remote Direct Memory Access (RDMA)

• Hardware-supported feature of modern cluster interconnects
– processes can directly read and write memory in other processors
– in principle, can emulate a global shared memory

• but remote memory references are slow (mostly communication latency)
• and have non-uniform access cost (depends on network)

• MPI-2 (sort of) and MPI-3 (more so) introduce one-sided communication
operations using RDMA
– communication (put/get)
– atomic operations (e.g. atomic add)
– synchronization

• recall memory consistency models

• Look at two parallel programming level languages that use RDMA
– High Performance Fortran (HPF), Unified Parallel C (UPC)

PGAS (1)COMP 633 - Prins

6PGAS (1)COMP 633 - Prins

Programming Model: High-performance Fortran
• HPF = Fortran 95 + directives

– conceptually a single address space
• distributed across nodes

– source of parallelism
• data parallelism

– forall statements
– rectangular arrays
– loop-level parallelism

– type of synchronization
• barrier

– statement level
– loop level

– all communication is generated
by the compiler

• single-side communication
• supported in hardware

integer A(8), B(8), C(8)

! data-parallelism
forall (i=1,8) do

A(i) = B(i) + C(i)
end do

! implicit data-parallelism
A = B + C

! loop-level parallelism
!HPF$ INDEPENDENT

do i = 1,8
A(i) = B(i) + C(i)

end do

7PGAS (1)COMP 633 - Prins

HPF data distribution
• Conceptual processor grid

– topological view of processors
!HPF$ processors S(4)
!HPF$ processors M(2,2)

• Distribution of arrays over processor grid
– block, cyclic, or local distribution of elements
– each dimension can be distributed independently

REAL A(20), B(6,8), C(6,8)
!HPF$ distribute A(BLOCK) onto M
!HPF$ distribute B(BLOCK,CYCLIC) onto P
!HPF$ distribute B(*,BLOCK) onto M

– aligned to other arrays
!HPF$ align C(i,j) with B(i+1,j)

• Owner-computes rule
– an expression that yields a result in processor j is computed by processor j

A(2:19) = (A(1:18) + A(2:19) + A(3:20)) / 3

arrays arrays or
templates

abstract
processors

parallel
computer

ALIGN DISTRIBUTE implementation
specific

8PGAS (1)COMP 633 - Prins

HPF optimization is hard

• Simple all-pairs n-body force accumulation (n = 1000, p = 10)
– how many communication and synchronization operations?

!HPF$ processors procs(10)
program hpf_pairwise_interactions

!HPF$ align Force(:,:) with Bodies(:,:)
!HPF$ align TravB(:,:) with Bodies(:,:)
!HPF$ distribute Bodies(*,BLOCK) onto procs
real Bodies(2,1000), Force(2,1000), TravB(2,1000)

Force = 0.0
TravB = Bodies
do i = 1, 999

TravB = CSHIFT(TravB,1)
Force = Force + force_eval(Bodies, TravB)

enddo
end

9PGAS (1)COMP 633 - Prins

Whither HPF?
• Performance model difficult for users to understand

– programming model (Fortran 95 semantics) quite simple
– performance tuning requires detailed knowledge of compilation and

optimization strategies

• Data distribution model too complex for compilers to optimize
– performance requires

• aggregation of communication
• relaxation of barrier synchronizations
• inferring distribution of intermediate values

• Data distribution model too restrictive
– distribute rectangular arrays over rectangular processor grids

• many algorithms simplified on hypercube topology
– what about irregular applications?

• “irregular” distribution of rectangular arrays is offered
• but regular distribution of irregular data (e.g. trees) is what’s needed

10PGAS (1)COMP 633 - Prins

Unified Parallel C
• UPC = C + explicit notion of locality

– address space
• partitioned global address space

– every location in address space
has affinity to some processor

• a regular C pointer may reference
– private memory
– shared memory

» (dereference may have high cost)

– source of parallelism
• SPMD (processor centric)

– type of synchronization
• barriers
• locks
• memory consistency control – sequential or relaxed

– most communication is implicit
• distribution of shared arrays is much simpler than HPF

– conceptuallly 1-D array of processors, with cyclic, block-cyclic, or block distribution
• message passing / one sided communication generated by UPC compiler

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

11PGAS (1)COMP 633 - Prins

UPC extensions to C

• Processor count and processor id
– compile-time symbolic values

• THREADS - number of processors
• MYTHREAD - thread id (0 ≤ MYTHREAD < THREADS)

– compilation environment
• static – number of processors fixed at compile time (not really used)
• dynamic – number of processors supplied at run time (always used)

• shared qualifier for type declarations
– elements of a shared array distributed across processors

• forall construct
upc_forall (i = 0; i < N; i++; <affinity>) {…}

12PGAS (1)COMP 633 - Prins

UPC declarations

• Shared array declarations
– shared [blocksize] <decl> [count]

• blocksize defaults to 1
– specifies block cyclic distribution of <decl> in shared memory

• Examples
shared int a

– Single shared memory location (with affinity to thread 0)
int b

– private memory location at each thread
shared int x[THREADS]

– One element per thread
shared [3] int x[N]

– N/p elements per thread, cyclic(3) dist
shared int y[10][THREADS]

– single array of 10 elements per thread (block distribution)

13PGAS (1)COMP 633 - Prins

UPC Hello world

• Any legal C program is also a legal UPC program
– When run as a UPC program with p threads, it will run p copies of the

program

#include <upc.h> /* needed for UPC extensions */

#include <stdio.h>

main() {

printf("Thread %d of %d: hello UPC world\n",

MYTHREAD, THREADS);

}

14PGAS (1)COMP 633 - Prins

Simple UPC example

• Vector addition using upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], vr[N];

void main(){

int i;

upc_forall (i=0; i<N; i++; i)

vr[i] = v1[i] + v2[i];

}

15

• The cyclic distribution of an array is typically stored in one of two ways
– Distributed memory: each processor has a chunk of memory

• Thread 0 would have elements: 0,THREADS, THREADS*2,… in a chunk
– Shared memory: array elements appear consecutively in memory

• Thread 0 would reference successive elements with stride THREADS
– What performance problem is there with the latter?
– What if this code was instead doing nearest neighbor averaging?

• Vector addition example can be rewritten using block distribution

PGAS (1)COMP 633 - Prins

Effect of Array Distributions in UPC

#define N 100*THREADS

shared int [*] v1[N], v2[N], sum[N]; // blocked distribution

void main() {

int i;

upc_forall(i=0; i<N; i++; &v1[i])

sum[i]=v1[i]+v2[i];

}

16PGAS (1)COMP 633 - Prins

Example: Unbalanced Tree Search (UTS)

• Problem description
– count number of nodes in a tree

• tree is implicitly defined
– parallel depth-first search implementation

• traverse subtrees in parallel counting size
and combine on completion

– unbalanced trees
• subtrees have large variation in size

17PGAS (1)COMP 633 - Prins

Unbalanced tree search
n = 3200, q = 0.124999, m = 8

1

10

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

subtree

si
ze

0

1000000

2000000

3000000

4000000

5000000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

si
ze

distribution of
3200 (q,m) tree
sizes

18

Search strategy
• P processors explores a (q,m) tree

– starting configuration
• proc 0 has root node descriptor
• other procs have no tree nodes

– tree is implicitly generated
• Binomial tree (q,m)

– if 𝑞𝑞𝑞𝑞 < 1 generates a finite tree with expected size 1
1−𝑞𝑞𝑞𝑞

– each node has a 20 byte descriptor
• given a tree node t, generate m children with probability q

– use node descriptor as seed in random number generator
– children descriptors are determined using SHA-1 hash of parent

• perform depth-first search of each child
– uses a stack

• when the stack is empty
– steal work from another processor’s stack
– ideal for Cilk execution model

PGAS (1)COMP 633 - Prins

20PGAS (1)COMP 633 - Prins

UTS: basic operation

• Basic operation of a thread is shown in the state diagram below:

21PGAS (1)COMP 633 - Prins

local
access

only

StealStack

• Efficient shared and local access to a stack
– stack of nodes

• local access only at top of stack
• shared area at bottom of stack

– shared area
• protected by lock in thread i
• manipulated in chunks

– thread i release a chunk from local
portion into shared portion

– thread i acquire a chunk from shared
portion into local portion

– thread j steals a chunk from bottom of
shared portion of stack in thread i

– shared variable workAvailable
• current size of shared portion

top

bottom

shared

access

chunksize

wo
rk

A
va

ila
bl

e

22PGAS (1)COMP 633 - Prins

UPC implementation

/* StealStack data type */
struct stealStack_t
{
int workAvail;
int sharedStart;
int local;
int top;
upc_lock_t *stackLock;
Node stack[MAXSTACKDEPTH];

};
typedef struct stealStack_t StealStack;

/* StealStack for each thread */
shared StealStack stealStack[THREADS];

/* direct access to stack with affinity */
myStack = (StealStack *) stealStack[MYTHREAD];

Representation of shared stack

local
access

only

top

sharedStart

shared

access
chunksize

wo
rk

A
va

ila
bl

e

local

23PGAS (1)COMP 633 - Prins

UPC implementation

/* local push */

void push(StealStack *s, Node *c) {

if (s->top >= MAXSTACKDEPTH)

error("StealStack::push overflow");

memcpy(&s->stack[s->top], c, sizeof(Node));

s->top++;

s->maxDepth = max(s->top, s->maxDepth);

}

Local push/pop
• no locking
• shared stack accessed through local pointer

– no UPC overhead

24PGAS (1)COMP 633 - Prins

UPC implementation

/* steal k values from thread i onto this thread's stack

* return false if k vals are not avail in thread i

*/

int steal(StealStack *s, int i, int k) {

int victimLocal, victimShared, victimWorkAvail, ok;

/* lock stack in thread i and try to reserve k elts */

upc_lock(stealStack[i].stackLock);

victimLocal = stealStack[i].local;

victimShared = stealStack[i].sharedStart;

victimWorkAvail = stealStack[i].workAvail;

ok = victimWorkAvail >= k;

if (ok) {

/* reserve k values */

stealStack[i].sharedStart = victimShared + k;

stealStack[i].workAvail = victimWorkAvail - k;

}

upc_unlock(stealStack[i].stackLock);

Steal from thread i

25PGAS (1)COMP 633 - Prins

UPC implementation

/* if k elts reserved, move them to local portion of this stack */

if (ok) {

upc_memcpy(&stealStack[MYTHREAD].stack[s->top],

&stealStack[i].stack[victimShared],

k * sizeof(Node)

);

s->top += k;

s->nSteal++;

}

else

s->nFail++;

return (ok);

}

Steal from stack i (contd.)
• data movement does not hold lock

26PGAS (1)COMP 633 - Prins

What is the optimal choice for chunksize?

• Small chunks
– may not yield much work

• hence may not amortize time to move
– have higher manipulation overheads

• locking and unlocking

• Large chunks
– are available less frequently

• hence may not balance load
– Depth first stack length l satisfies

TnE
nETl 1

)(1
)()Pr(2

2
⋅










−
<≥

27PGAS (1)COMP 633 - Prins

UTS: Granularity of Work Stealing

Overhead Costs
Dominate
Overhead Costs
Dominate

Load Imbalance
Dominates
Load Imbalance
Dominates

chunk size > tree sizechunk size > tree size

28PGAS (1)COMP 633 - Prins

Chunk size vs. performance

1

10

100

1000

10000

100000

1 10 100 1000 10000
steal chunk size

nu
m

be
r o

f s
te

al
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

(M

no
de

s
pe

r s
ec

on
d)

Steals
Performance

• Intrepid UPC compiler on Origin 2000
– 8 threads
– single group, 32×100 trees, 9.5M nodes total

29PGAS (1)COMP 633 - Prins

Chunk size dependence on communication costs

• Compaq UPC compiler V1.7 on ORNL AlphaServer SC
– 8 threads
– same tree and parameters

0

0.5

1

1.5

2

2.5

3

1 10 100 1000
steal chunk size

Pe
rf

or
m

an
ce

(M
no

de
s

pe
r s

ec
on

d)

30PGAS (1)COMP 633 - Prins

Shared-memory implementation scaling

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

threads

Pe
rf

or
m

an
ce

 (M
N

od
es

/s
ec

)

• Origin 2000
– 1 - 32 processors
– chunksize = 20

31PGAS (1)COMP 633 - Prins

Distributed memory implementation scaling

• ORNL AlphaServer SC Distributed memory
– 1,2,4,8,16,32 processors
– chunksize = 100

• Remote locking on distributed memory is expensive
– Even though lock is local to “victim thread,” victim is delayed during

slow remote accesses by other threads

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35
threads

Pe
rf

or
m

an
ce

 (M
N

od
es

/s
ec

)

32PGAS (1)COMP 633 - Prins

Scalable Distributed Memory UPC Implementation

• Request and response protocol uses asynchronous remote reads &
writes to shared variables
– Response returns a pointer to the work reservation (if work available)
– Working threads never wait on locks

• One-sided communication to transfer work

33PGAS (1)COMP 633 - Prins

Scalable UPC Implementation: Stealing Protocol

Protocol Phase Victim (Working Thread) Memory Thief (Idle Thread) Memory

Thief probes for work Thief reads WK_AVAILABLE

Thief attempts request
(test-and-set)

Thief sets REQ_LOCK

Thief reads REQ_ID

Thief writes REQ_ID

Thief releases REQ_LOCK

Victim detects request (poll) Victim reads REQ_ID

Victim resets REQ_ID

Victim reserves work for thief Victim writes WK_PTR

Thief detects response (spin) Thief reads WK_PTR

Thief transfers work Thief reads nodes at WK_PTR

Thief resets WK_PTR

Protocol Phase Victim (Working Thread) Memory Thief (Idle Thread) Memory

Thief probes for work Thief reads WK_AVAILABLE

Thief attempts request
(test-and-set)

Thief sets REQ_LOCK

Thief reads REQ_ID

Thief writes REQ_ID

Thief releases REQ_LOCK

Victim detects request (poll) Victim reads REQ_ID

Victim resets REQ_ID

Victim reserves work for thief Victim writes WK_PTR

Thief detects response (spin) Thief reads WK_PTR

Thief transfers work Thief reads nodes at WK_PTR

Thief resets WK_PTR

34PGAS (1)COMP 633 - Prins

Scaling

– 157 billion node tree, 1024 processors
– 85,000 work stealing operations per second

35PGAS (1)COMP 633 - Prins

Where Does the Time Go?

Tree
Exploration

84.7%

Overhead
1.7%

Stealing
2.2%

Probing
7.2%

Idle
4.1%

Tree
Exploration

90.9%

Stealing
2.1%

Overhead
1.7%

Idle
1.0%

Probing
4.4%

Cluster 1 (2.66Ghz Xeon)
256 Threads
10.6B Node Tree

Cluster 2 (2.4 Ghz Xeon)
1024 Threads
157B Node Tree

Cluster 1 (2.66Ghz Xeon)
256 Threads
10.6B Node Tree

Cluster 2 (2.4 Ghz Xeon)
1024 Threads
157B Node Tree

604K steals
115 steals / thread / sec
94.5% of steal attempts succeed
Node evaluation time: 0.393 μs

8.14M steals
86 steals / thread / sec
94% of steal attempts succeed
Node evaluation time: 0.459 μs

604K steals
115 steals / thread / sec
94.5% of steal attempts succeed
Node evaluation time: 0.393 μs

8.14M steals
86 steals / thread / sec
94% of steal attempts succeed
Node evaluation time: 0.459 μs

36PGAS (1)COMP 633 - Prins

Summary: high-level PPLs for distributed memory

• Emerging model
– Partitioned global address space model

• Explicit notion of locality
– Control over data distribution

• One-sided communication

– Current examples
• Global Arrays (C Library)
• UPC (C)
• Co-Array Fortran (Fortran)
• Titanium (Java)

– Future “High Productivity” parallel programming languages
• X10 (Java + tasks + PGAS)

	COMP 633 - Parallel Computing��Lecture 22 �November 17, 2021�� Partitioned Global Address Spaces�Parallel languages for distributed memory machines
	Topics
	Parallel programming models (thus far)
	Diagrammatic view of parallel programming models
	Remote Direct Memory Access (RDMA)
	Programming Model: High-performance Fortran
	HPF data distribution
	HPF optimization is hard
	Whither HPF?
	Unified Parallel C
	UPC extensions to C
	UPC declarations
	UPC Hello world
	Simple UPC example
	Effect of Array Distributions in UPC
	Example: Unbalanced Tree Search (UTS)
	Unbalanced tree search
	Search strategy
	UTS: basic operation
	StealStack
	UPC implementation
	UPC implementation
	UPC implementation
	UPC implementation
	What is the optimal choice for chunksize?
	UTS: Granularity of Work Stealing
	Chunk size vs. performance
	Chunk size dependence on communication costs
	Shared-memory implementation scaling
	Distributed memory implementation scaling
	Scalable Distributed Memory UPC Implementation
	Scalable UPC Implementation: Stealing Protocol
	Scaling
	Where Does the Time Go?
	Summary: high-level PPLs for distributed memory

