
COMP 633 - Parallel Computing

Lecture 23
November 18, 2021

Datacenters and
Large Scale Data Processing

2

Announcements
• Written assignment 2

– due Tue Nov 23 at the start of class

• Programming assignment 2
– due Tue Nov 30 (last day of class)

• Final exam
– Saturday Dec 6, 4pm – 7pm in SN011

Big Data COMP 633

3Big Data COMP 633

Topics
• Parallel memory hierarchy

– extend to include disk storage

• Google web search
– Large parallel application
– Distributed over a large cluster

• Programming models for large data collections
– MapReduce
– Spark

4Big Data COMP 633

Extending the parallel memory hierarchy
• Incorporate disk storage

– Parallel transfers to disks
– Global access to all data

distributed
Memory

Disk

distributed
Storage

Disk

Local
Memory

Cache

Local
Memory

Cache

5

Google data processing
• Search and other services require parallel processing

– search processing and/or query rate are too large for a single machine

• Data storage requires replication
– to tolerate and recover from storage errors
– for parallel throughput
– to reduce latency

• multiple datacenters around the world
– to reduce latency and long-haul traffic
– to tolerate network or power failures or bigger disasters

Big Data COMP 633

6Big Data COMP 633

Google web search – 2002
• web statistics (2002)1

– 3+ Billion static web pages
» doubles every 8 months (2012: 1 Trillion pages)

– 30% duplication

• Google usage statistics (2002)1,2

– 260 million users
» 80% do searches

– 150 million searches/day (2020: 5.8 billion searches/day, 70,000 searches/sec)
» ~2000 queries/sec average
» ~1000 queries/sec minimum

– query response time
» less than 0.25 secs typical
» target 0.5 secs max

– uptime
» target 100%

Sources: [1] Monika Henzinger, “Indexing the Web: A challenge for supercomputing”, invited talk, ISC 2002 Heidelberg, June 2002.
[2] Urs Hoelzle, “Google Linux Cluster”, Univ Washington Colloquium, November 2002.

7Big Data COMP 633

Google Linux Cluster (2002)
• Overview

– 15,000+ PC cluster
» 5 PB disk storage

• 5×1015 bytes = 50,000 × 100GB disks

– node
» 100 Mb Ethernet
» 1-4 100 GB disks
» mid-range processor (P III)
» 256 MB - 2GB memory
» runs Linux

– rack
» 100 to 200 nodes
» Ethernet switch

– router/switch
» serves ~100 racks
» distributes search requests

256 GB/s
switch / router

Internet

Rack
switch

• • •

node node⋅⋅⋅ node node⋅⋅⋅

2 × GigE

100Mb

Rack
switch

100Mb 100Mb 100Mb

2 × GigE

100-200

~100

8

Google Web Search: 2010 vs. 1999*

 # docs: tens of millions to tens of billions ~1,000 x

 queries processed/day: ~1,000 x

 per doc info in index: ~3 x

 update latency: months to tens of secs ~50,000 x

 avg. query latency: <1s to <0.2s ~5 x

 more machines * faster machines ~1,000 x

Big Data COMP 633

* Jeff Dean - Building Software Systems at Google and Lessons Learned

9

Google data centers

Big Data COMP 633

11

The Joys of Real Hardware*
Typical first year for a new cluster:
• ~1 network rewiring (rolling: ~5% of machines down over 2-day span)

• ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

• ~5 racks go wonky (40-80 machines see 50% packet loss)

• ~8 network maintenances (4 might cause ~30-minute random connectivity loss)

• ~12 router reloads (takes out DNS and external vips for a couple minutes)

• ~3 router failures (have to immediately pull traffic for an hour)

• ~dozens of minor 30-second blips for dns

• ~1000 individual machine failures

• ~thousands of hard drive failures slow disks, bad memory, misconfigured
machines, flaky machines, etc.

• Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

Big Data COMP 633

* Jeff Dean - Building Software Systems at Google and Lessons Learned

12Big Data COMP 633

Google query processing steps (simplified)
1. secret sauce to map query to search terms

– detect query language + fix spelling errors

2. locate search terms in dictionary
– over 100 M words in dictionary per language

3. for each search term in dictionary
– use inverted index to locate web pages containing term
– ordered by page number

4. compute and order pages satisfying the query
– explicit rules

» conjunction, disjunction, etc. of terms
» document language

– implicit rules
» search term proximity in documents
» location of search terms in document structure
» quality of page – PAGE RANK

5. Construct synopsis reports from documents in order
– extract page from cache and highlight search terms in context
– 10 results returned per query

13Big Data COMP 633

Challenges
• Query processing

– how to distribute data structures?
» dictionary
» inverted index
» web pages

– how to implement query processing algorithms?

• Fault tolerance
– component count is very large

» 10,000 servers with 3 year MTBF, expect to lose ten a day
» 50,000 disks with 10% failing per year is a disk failure every couple of hours
» 10-15 undetected bit error rate on I/O is ~50 incorrect bits in 5PB copy

• Scaling
– how can the system be designed to scale with

» increasing number of queries
» increasing size of web (number of pages and total text size)
» increasing component failures (as a consequence of scaling up)

14Big Data COMP 633

Google server architecture

15

When designing large distributed applications
• “Numbers Everyone Should Know” - Jeff Dean
L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns

Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

Big Data COMP 633

16Big Data COMP 633

Processing large data sets
• Process data distributed across thousands of disks

– Large datasets pose an I/O bottleneck
» Attach disks to all nodes
» Stripe data across disks
» How to manage this?

• MapReduce provides
– Parallel disk bandwidth
– Automatic parallelization & distribution
– Fault tolerance
– I/O scheduling
– Monitoring & status updates

17Big Data COMP 633

MapReduce

• MapReduce
– parallel programming schema
– name inspired by functional language view of the schema

• Many problems can be approached this way

• Easy to distribute across nodes

• Simple failure/retry semantics

18Big Data COMP 633

Map in Lisp (Scheme)
• (map f list [list2 list3 …])

• (map square ‘(1 2 3 4))
(1 4 9 16)

• (reduce + ‘(1 4 9 16))
(+ 16 (+ 9 (+ 4 1)))
= 30

19Big Data COMP 633

Map/Reduce a la Google

• An input file contains a large list of items
– Each item is a (key,val) pair
– The file is distributed across disks on p nodes

• map(key, val) is run on each item in the list
– emits new-key / new-val pairs
– map: (k1,v1) -> list(k2,v2)

• reduce(key, vals) is run for each unique key emitted by map()
– reduce: (k2, list(v2)) -> list(v2)
– the result is written to a file distributed across disks attached to the nodes

20Big Data COMP 633

Example 1: count words in docs
– Input consists of (url, contents) pairs

– map(key=url, val=contents):
» For each word w in contents, emit (w, “1”)

– reduce(key=word, values=uniq_counts):
» Sum all “1”s in values list
» Emit result “(word, sum)”

21Big Data COMP 633

map(key=url, val=contents):
For each word w in contents, emit (w, “1”)

reduce(key=word, values=uniq_counts):
Sum all “1”s in values list
Emit result “(word, sum)”

see bob throw

see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

Count words - example

22Big Data COMP 633

Execution
• How is this distributed?

1. Partition input key/value pairs into chunks, run map() tasks in parallel
2. After all map()s are complete, consolidate all emitted values for each

unique emitted key
3. Now partition space of output map keys, and run reduce() in parallel

• If map() or reduce() fails, re-execute!

23Big Data COMP 633

Execution

24Big Data COMP 633

Parallel Execution

26Big Data COMP 633

Experience (10-15 years ago)
• Rewrote Google's production indexing system using MapReduce

– Set of 10, 14, 17, 21, 24 MapReduce operations
– New code is simpler, easier to understand

» 3800 lines C++ 700
– MapReduce handles failures, slow machines
– Easy to make indexing faster

» add more machines

• Redux
– MapReduce proved to be useful abstraction
– MapReduce has an open-source implementation

» Hadoop
– Extensively used with large datasets

» E.g. bioinformatics
» focus on problem
» let library deal w/ messy details

27

Improving MapReduce
• Problem: All computation is disk to disk

– No notion of locality

• Alternate approach: Spark
– System for expressing computations on objects distributed on disks
– Computations are moved to data instead of vice-versa

» disk data streamed into node memory
» data flow model applies multiple processing steps in memory

• Decreases number of map/reduce steps
• Best performance when data fita in memory

– MapReduce has better fault tolerance
– Spark has superior performance

» also more flexible in processing languages and tools

• Applications
– MapReduce

» linear processing of ultra-large datasets
– Spark

» real-time analytics, graph processing, SparkSQL, machine learning
Big Data COMP 633

28

Apache Hadoop
• Hadoop

– open source distributed file system (HDFS)
– processing layer

» MapReduce, in Java (other languages supported)
» Spark

Big Data COMP 633

	COMP 633 - Parallel Computing��Lecture 23 �November 18, 2021��Datacenters and�Large Scale Data Processing
	Announcements
	Topics
	 Extending the parallel memory hierarchy
	Google data processing	
	Google web search – 2002
	Google Linux Cluster (2002)
	Google Web Search: 2010 vs. 1999*
	Google data centers
	The Joys of Real Hardware*
	Google query processing steps (simplified)
	Challenges
	Google server architecture
	When designing large distributed applications
	Processing large data sets
	MapReduce
	Map in Lisp (Scheme)
	Map/Reduce a la Google
	Example 1: count words in docs
	Count words - example
	Execution
	Execution
	Parallel Execution
	Experience (10-15 years ago)
	Improving MapReduce	
	Apache Hadoop

