COMP 633 - Parallel Computing

Lecture 23 November 18, 2021

Datacenters and Large Scale Data Processing

Announcements

• Written assignment 2

- due Tue Nov 23 at the start of class

Programming assignment 2

– due Tue Nov 30 (last day of class)

Final exam

- Saturday Dec 6, 4pm - 7pm in SN011

Topics

Parallel memory hierarchy

- extend to include disk storage

Google web search

- Large parallel application
- Distributed over a large cluster

Programming models for large data collections

- MapReduce
- Spark

Extending the parallel memory hierarchy

Incorporate disk storage

- Parallel transfers to disks
- Global access to all data distributed Storage Disk Disk distributed Memory Local Local Memory Memory Cache Cache

Google data processing

- Search and other services require parallel processing
 - search processing and/or query rate are too large for a single machine

Data storage requires replication

- to tolerate and recover from storage errors
- for parallel throughput
- to reduce latency

• multiple datacenters around the world

- to reduce latency and long-haul traffic
- to tolerate network or power failures or bigger disasters

Google web search – 2002

web statistics (2002)¹

- 3+ Billion static web pages
 - » doubles every 8 months (2012: 1 Trillion pages)
- 30% duplication

• Google usage statistics (2002)^{1,2}

- 260 million users
 - » 80% do searches
- 150 million searches/day (2020: 5.8 billion searches/day, 70,000 searches/sec)
 - » ~2000 queries/sec average
 - » ~1000 queries/sec minimum
- query response time
 - » less than 0.25 secs typical
 - » target 0.5 secs max
- uptime
 - » target 100%

Sources: [1] Monika Henzinger, "Indexing the Web: A challenge for supercomputing", invited talk, ISC 2002 Heidelberg, June 2002. [2] Urs Hoelzle, "Google Linux Cluster", Univ Washington Colloquium, November 2002.

Google Linux Cluster (2002)

Google Web Search: 2010 vs. 1999*

# docs: tens of millions to tens of billions	~1,000 x
queries processed/day:	~1,000 x
per doc info in index:	~3 x
update latency: months to tens of secs	~50,000 x
avg. query latency: <1s to <0.2s	~5 x
more machines * faster machines	~1,000 x

* Jeff Dean - Building Software Systems at Google and Lessons Learned

8

Google data centers

The Joys of Real Hardware*

Typical first year for a new cluster:

- **~1 network rewiring** (rolling: ~5% of machines down over 2-day span)
- ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
- ~5 racks go wonky (40-80 machines see 50% packet loss)
- **~8 network maintenances** (4 might cause ~30-minute random connectivity loss)
- ~12 router reloads (takes out DNS and external vips for a couple minutes)
- ~3 router failures (have to immediately pull traffic for an hour)
- ~dozens of minor 30-second blips for dns
- ~1000 individual machine failures
- ~thousands of hard drive failures slow disks, bad memory, misconfigured machines, flaky machines, etc.
- Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

* Jeff Dean - Building Software Systems at Google and Lessons Learned

Google query processing steps (simplified)

1. secret sauce to map query to search terms

detect query language + fix spelling errors

2. locate search terms in dictionary

- over 100 M words in dictionary per language

3. for each search term in dictionary

- use inverted index to locate web pages containing term
- ordered by page number

4. compute and order pages satisfying the query

- explicit rules
 - » conjunction, disjunction, etc. of terms
 - » document language
- implicit rules
 - » search term proximity in documents
 - » location of search terms in document structure
 - » quality of page PAGE RANK

5. Construct synopsis reports from documents in order

- extract page from cache and highlight search terms in context
- 10 results returned per query

Challenges

Query processing

- how to distribute data structures?
 - » dictionary
 - » inverted index
 - » web pages
- how to implement query processing algorithms?

Fault tolerance

- component count is very large
 - » 10,000 servers with 3 year MTBF, expect to lose ten a day
 - » 50,000 disks with 10% failing per year is a disk failure every couple of hours
 - » 10⁻¹⁵ undetected bit error rate on I/O is ~50 incorrect bits in 5PB copy

Scaling

- how can the system be designed to scale with
 - » increasing number of queries
 - » increasing size of web (number of pages and total text size)
 - » increasing component failures (as a consequence of scaling up)

Google server architecture

When designing large distributed applications

• "Numbers Everyone Should Know" - Jeff Dean

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

Processing large data sets

Process data distributed across thousands of disks

- Large datasets pose an I/O bottleneck
 - » Attach disks to all nodes
 - » Stripe data across disks
 - » How to manage this?

MapReduce provides

- Parallel disk bandwidth
- Automatic parallelization & distribution
- Fault tolerance
- I/O scheduling
- Monitoring & status updates

- MapReduce
 - parallel programming schema
 - name inspired by functional language view of the schema
- Many problems can be approached this way
- Easy to distribute across nodes
- Simple failure/retry semantics

Map in Lisp (Scheme)

- (map f list [list₂ list₃ ...])
- (map square '(1 2 3 4)) (1 4 9 16)
- (reduce + '(1 4 9 16))
 (+ 16 (+ 9 (+ 4 1)))
 = 30

Map/Reduce a la Google

An input file contains a large list of items

- Each item is a (key,val) pair
- The file is distributed across disks on p nodes

• map(key, val) is run on each item in the list

- emits new-key / new-val pairs
- map: $(k_1, v_1) \rightarrow list(k_2, v_2)$

reduce(key, vals) is run for each unique key emitted by map()

- reduce: $(k_2, list(v_2)) \rightarrow list(v_2)$
- the result is written to a file distributed across disks attached to the nodes

Example 1: count words in docs

- Input consists of (url, contents) pairs
- map(key=url, val=contents):
 - » For each word w in contents, emit (w, "1")
- reduce(key=word, values=uniq_counts):
 - » Sum all "1"s in values list
 - » Emit result "(word, sum)"

Count words - example

map(key=url, val=contents): For each word *w* in contents, emit (w, "1")

reduce(key=word, values=uniq_counts): Sum all "1"s in values list Emit result "(word, sum)"

Execution

• How is this distributed?

- 1. Partition input key/value pairs into chunks, run map() tasks in parallel
- 2. After all map()s are complete, consolidate all emitted values for each unique emitted key
- 3. Now partition space of output map keys, and run reduce() in parallel
- If map() or reduce() fails, re-execute!

Parallel Execution

Experience (10-15 years ago)

Rewrote Google's production indexing system using MapReduce

- Set of 10, 14, 17, 21, 24 MapReduce operations
- New code is simpler, easier to understand
 - » 3800 lines C++ \rightarrow 700
- MapReduce handles failures, slow machines
- Easy to make indexing faster
 - » add more machines
- Redux

COMP 633

- MapReduce proved to be useful abstraction
- MapReduce has an open-source implementation
 - » Hadoop
- Extensively used with large datasets
 - » E.g. bioinformatics
 - » focus on problem
 - » let library deal w/ messy details

Improving MapReduce

Problem: All computation is disk to disk

- No notion of locality

Alternate approach: Spark

- System for expressing computations on objects distributed on disks
- Computations are moved to data instead of vice-versa
 - » disk data streamed into node memory
 - » data flow model applies multiple processing steps in memory
 - Decreases number of map/reduce steps
 - Best performance when data fita in memory
- MapReduce has better fault tolerance
- Spark has superior performance
 - » also more flexible in processing languages and tools

Applications

- MapReduce
 - » linear processing of ultra-large datasets
- Spark
 - » real-time analytics, graph processing, SparkSQL, machine learning

Apache Hadoop

Hadoop

- open source distributed file system (HDFS)
- processing layer
 - » MapReduce, in Java (other languages supported)
 - » Spark