COMP 790-033 - Parallel Computing

Lecture 2
August 24, 2022

The PRAM model and its complexity measures

- Reading for next class (Wed Aug 31): PRAM handout secns 3.6, 4.1

First class summary

- In this course we study how to speed up large computational problems using parallel computing
- in theory and in practice
- We study various parallel programming models
- Initially we consider a theoretical model, the Parallel Random Access Machine (PRAM)
- study algorithms and their asymptotic complexity
- Subsequently we focus on practical models and their implementation on current hardware
- shared memory multiprocessors, accelerators, and distributed memory clusters
- examine execution model, hardware operation, programming constructs, performance analysis
- illustrate principles using various case studies

Topics today

- PRAM model
- execution model
- programming model
- Work-Time model
- programming model
- complexity metrics
- Brent's theorem: translation to PRAM programs
- Parallel prefix algorithm
- derivation
- applications

PRAM model of parallel computation

- PRAM = Parallel Random Access Machine
- p processors
- shared memory
- each processor has a unique identity $1 \leq i \leq \mathrm{p}$
- synchronous PRAM model
- Single Instruction, Multiple Data (SIMD)
- each processor may be active (\checkmark) or inactive (x)
- each instruction is executed by active processors only
- each instruction completes in unit time
shared memory

instructions

PRAM program

- PRAM program
- sequential program
- expressions involving processor id i have a unique value in each processor
- i can be used as an array index

$$
X[i]:=10 \text { * i }
$$

- conditionals specify active processors

```
if odd(i) then
\[
X[i]:=X[i]+X[i+1]
\]
```

```
endif
```



```
if i < 2 then
```

X[i] := 1

```
X[i] := 1
else
    X[i] := -1
endif
```


Concurrent memory access－Read

－Concurrent reads（CR）
－all readers of a given location see the same value
X［i］：＝y
X［i］：＝B［「i／2〕］
value of y read concurrently by all p processors
the first $p / 2$ elements of B are read concurrently
by two processors
－Eliminating bounded－degree concurrent reads
－replace X［i］：＝B［「i／2〕］with

```
if odd(i) then
        X[i] := B[`i/2`]
endif
if even(i) then
        X[i] := B[`i/2`]
endif
\[
\underset{f}{X[i]}:=B[\lceil i / 2\rceil]
\]
endif
```

Ex．

$$
p=6
$$

concurrent read is eliminated but number of steps is doubled

Concurrent memory access - Write

- Concurrent writes (CW)
- final value depends on the arbitration policy among writes to the same destination:
- Arbitrary CW
- nondeterministic choice among values written
- Common CW
- processors that write a value to the same destination must write the same value, else error
- Priority CW
- value written by processor with lowest processor id
- Combining Write
- all values combined using a specified associative operation (e.g. "+")
- Example ($p=6$)

$$
\begin{aligned}
& y:=X[i] \\
& B[\lceil i / 2\rceil]:=X[i]
\end{aligned}
$$

Concurrent writes:

- Let $\mathrm{B}[1: \mathrm{p}]$ be an array of boolean values and define $c=B_{1} \vee B_{2} \vee \ldots \vee B_{p}$
- use p processors and concurrent writes to compute c in a constant number of steps
a) with combining CW
b) with a CW policy other than combining CW (which?)

Concurrent memory access

- PRAM variants
- EREW, CREW, ERCW, CRCW
- differ in performance, not expressive power
- EREW < CREW < CRCW
- loosely reflect difficulty of model implementation
- The following are considered EREW
- references to
- processor id i
- number of processors p
- problem size n
- references to local variables
local h; h := 2*i + 1; X[h] := X[i]
- expression evaluation is synchronous, e.g. X[i] := X[i] + X[i+1] is EREW

A PRAM program

- Simple problem: vector addition
- given V, W vectors of length n
- compute Z = V + W
- PRAM program
- constructed to operate with arbitrary
- problem size n
- number of processors p
- work to be performed must explicitly be "scheduled" across processors
- time complexity with p procs
- $T_{c}(n, p)=$
- PRAM model?

Input: V[1:n], W[1:n] in shared memory
Output: $\mathrm{Z}[1: \mathrm{n}]$ in shared memory
local integer h, k
proc id
for h := 1 to (n / p) do
k := (h-1)•p + i
if $k \leq n$ then

$$
\mathrm{Z}[\mathrm{k}]:=\mathrm{V}[\mathrm{k}]+\mathrm{W}[\mathrm{k}]
$$

endif
enddo

Work-Time paradigm

- W-T parallel programming model
- high-level PRAM programming model
- specifies available parallelism
- no explicit scheduling of parallelism over processors
- simplifies algorithm presentation and analysis
- W-T programs can be mechanically translated to PRAM programs
- W-T program
- sequential program
- forall construct
- specification of available parallelism
- number of processors is not a parameter of the model!

WT program for vector addition

```
Input: V[1:n], W[1:n]
Output: Z[1:n]
forall i in 1:n do
    Z[i] := V[i] + W[i]
enddo
```


Programming notation for the W-T framework

- standard sequential programming notation
- statements
- assignment
- statement composition
- alternative construct (if ... then ... else ...)
- repetitive construct (for, while)
- expressions
- arithmetic and logical functions
- variable reference
- (recursive) function and procedure invocation
- forall statement
- specifies statement T may be executed simultaneously for each value of i in D

$$
\begin{aligned}
& \text { forall i in } D \text { do } \\
& \text { statement } T \text { depending on } i \\
& \text { enddo }
\end{aligned}
$$

- no restriction on T
- can be a sequence of statements
- can invoke (recursive) functions
- can be another (nested) forall statement

W-T complexity metrics

- Work complexity W(n)
- total number of operations performed (as a function of input size n)
- Step complexity S(n)
- number of steps required (as a function of input size n)
- assuming unbounded parallelism
- Inductively defined over constructs of W-T programming notation

W-T complexity measures: simple example

```
forall i in 2:n-1 do
    R[i] := (R[i-1] + R[i] + R[i+1])/3
enddo
```

```
for h := 1 to k do
    forall i in 2:n-1 do
        R[i] := (R[i-1] + R[i] + R[i+1])/3
    enddo
enddo
```


Work and Step Complexity of the forall construct

- How to define work and time complexity of the forall construct?

```
P: forall i in D do
    body T depending on i
enddo
```

- assume we can determine $W\left(T_{i}\right)$ and $S\left(T_{i}\right)$ for each i in D
- $W(P)=$
- $S(P)=$

W-T complexity measures: vector summation

- let $n=2^{k}$

```
forall i in 1:n/2 do
    S[i] := S[2i - 1] + S[2i]
enddo
```

```
for h := 1 to k do
    forall i in 1:n/2h do
        S[i] := S[2i - 1] + S[2i]
    enddo
enddo
```


W-T complexity measures: vector summation

- Vector summation (sum - reduction)
- given V[1..n], n=2 ${ }^{\mathrm{k}}$
- compute s = sum(V[1:n])
- optimal sequential time $T(n)=\Theta(n)$
- Complexity
$W(n)=$
$\mathrm{S}(\mathrm{n})=$

```
Input: V[1:n] vector of integers, n = 2
Output: s = sum(V[1:n])
P1:forall i in 1:n do
    B[i] := V[i]
    enddo
P2: for h := 1 to k do
    forall i in 1:n/2h do
        B[i] := B[2i-1]+B[2i]
    enddo
    enddo
P3: s := B[1]
```

PRAM model needed?

Brent's theorem and $T_{c}(n, p)$

- Brent's theorem schedules a W-T program for a p-processor PRAM
- idea
- simulate each parallel step in W-T program using p processors
- the work $W_{i}(n)$ to be performed in step i can be completed using p processors in time

$$
\left\lceil\frac{W_{i}(n)}{p}\right\rceil
$$

- bound concurrent runtime $T_{C}(n, p)$ of resultant PRAM program
- by summing over all $S(n)$ steps

$$
\begin{aligned}
& T_{c}(n, p)=\sum_{i=1}^{S(n)}\left\lceil\frac{W_{i}(n)}{p}\right\rceil \leq \sum_{i=1}^{S(n)}\left(\left\lfloor\frac{W_{i}(n)}{p}\right\rfloor+1\right) \leq\left\lfloor\sum_{i=1}^{S(n)} \frac{W_{i}(n)}{p}\right\rfloor+S(n)=\left\lfloor\frac{W(n)}{p}\right\rfloor+S(n) \\
&\left\lceil\frac{W(n)}{p}\right\rceil=\left\lceil\sum_{i=1}^{S(n)} \frac{W_{i}(n)}{p}\right\rceil \leq \sum_{i=1}^{S(n)}\left\lceil\frac{W_{i}(n)}{p}\right\rceil=T_{C}(n, p)
\end{aligned}
$$

Scheduling W-T vector summation algorithm

W-T vector summation algorithm
Input: $\mathrm{V}[1: \mathrm{n}]$ vector of integers, $\mathrm{n}=2^{\mathrm{k}}$
Output: $\mathrm{s}=\operatorname{sum}(\mathrm{V}[1: \mathrm{n}])$
P1: forall i in $1: \mathrm{n}$ do
$\mathrm{B}[\mathrm{i}] \quad:=\mathrm{V}[\mathrm{i}]$
enddo
P2: for $\mathrm{h}:=1$ to k do
forall i in $1: \mathrm{n} / 2^{\mathrm{h}}$ do
$\mathrm{B}[\mathrm{i}]:=\mathrm{B}[2 \mathrm{i}-1]+\mathrm{B}[2 \mathrm{i}]$
enddo
enddo
P3: $\mathrm{s}:=\mathrm{B}[1]$

```
PRAM vector summation algorithm
Input: V[1:n] vector of integers, \(\mathrm{n}=2^{\mathrm{k}}\)
Output: s = sum(V[1:n])
\(p>0\) processor PRAM; processor index \(i\)
local integer \(j\), \(r\);
P1: for \(\mathrm{j}:=1\) to \(\lceil\mathrm{n} / \mathrm{p}\rceil\) do
    \(r:=(j-1) \cdot p+i\)
    if \(r \leq n\) then \(B[r]:=V[r]\) endif
    enddo
P2: for \(h\) := 1 to \(k\) do
    for \(j:=1\) to \(\left\lceil\left(n / 2^{h}\right) / p\right\rceil\) do
        \(r:=(j-1) \cdot p+i\)
        if \(r \leq n / 2^{h}\) then
        \(B[r]:=B[2 r-1]+B[2 r]\)
        endif
    enddo
    enddo
P3:if \(i \leq 1\) then \(s:=B[1]\) endif
```


Performance of translated W-T program

- Count steps needed to perform the additions
- Brent's theorem predicts

$$
T_{c}(n, p)=O\left(\left\lfloor\frac{n-1}{p}\right\rfloor+\lg n\right)
$$

- counts for various p

p	$T_{c}(n, p)$
$p=1$	$(n-1) / p$
$p>n$	$\lg n$
$p=3, n=2^{k}, k$ even	$\approx\lfloor(n-1) / p\rfloor+\frac{1}{2} \lg n$

- Upper bound is tight (for this program)
- translation retains EREW model

PRAM vector summation algorithm

Input: $\mathrm{V}[1: \mathrm{n}]$ vector of integers, $\mathrm{n}=2^{\mathrm{k}}$
Output: s = sum(V[1:n])
$p>0$ processor PRAM; processor index i
local integer j, r;
P1: for $j:=1$ to $\lceil n / p\rceil$ do
$r:=(j-1) \cdot p+i$
if $r \leq n$ then $B[r]:=V[r]$ endif enddo

P2: for $h:=1$ to k do
for $j:=1$ to $\left\lceil\left(n / 2^{h}\right) / p\right\rceil$ do
$r:=(j-1) \cdot p+i$
if $r \leq n / 2^{h}$ then $B[r]:=B[2 r-1]+B[2 r]$
endif
enddo
enddo
P3:if $i \leq 1$ then $s:=B[1]$ endif

Parallel prefix-sum

- Prefix sum
- Input
- Sequence X of $n=2^{k}$ elements, binary associative operator +
- Output
- Sequence S of $n=2^{k}$ elements, with $S_{i}=x_{1}+\ldots+x_{i}$
- Example:
- $X=[1,4,3,5,6,7,0,1]$
- $S=[1,5,8,13,19,26,26,27]$
$-T_{S}(n)=\Theta(n)$
- Uses of prefix sum
- efficient parallel implementation of sequential "scan" through consecutive actions
- ex: Given series of bank transactions T[1:n], with T[i] positive or negative, and $\mathrm{T}[1]$ the opening deposit >0
- Was the account ever overdrawn?
- explicit or implicit component of many parallel algorithms

Prefix sum algorithm

- Recursive solution
- Xi stands for X[i] and Xij stands for X[i]+X[i+1]+... +X[j]
$\mathrm{S}: \mathrm{X11}$
- W-T complexity
- $W(n)=W\left(\frac{n}{2}\right)+O(n), W(1)=O(1) \Rightarrow$?
- $S(n)=S\left(\frac{n}{2}\right)+O(1), S(1)=O(1) \Rightarrow$?

Parallel prefix sum algorithm - WT model

Input: $\mathrm{X}[1 . . \mathrm{n}]$ vector of integers
Output: S[1..n]
par_prefix_sum(X[1..n]) =

$$
\text { var } Y[1 . . n / 2], Z[1 . . n / 2], S[1 . . n] ;
$$

$$
S[1]:=X[1]
$$

if $n>1$ then
forall $1 \leq i \leq n / 2$ do
Y[i] := X[2i-1] + X[2i]
enddo
Z[1..n/2] := par_prefix_sum(Y[1..n/2]);
forall $2 \leq i \leq n d o$
if even(i) then
S[i] := Z[i/2]
else
S[i] := Z[(i-1)/2] + X[i]
endif
enddo

endif

return S[1..n]

Balanced trees in arrays

- Balanced Tree Ascend / Descend
- Key idea
- view input data as balanced binary tree
- sweep tree up and/or down
- "Tree" not a data structure but a control structure (e.g., recursion)
- Example
- vector summation

In-place prefix sum

$\longrightarrow+$ ascend phase
$---\rightarrow+$ descend phase
\longrightarrow retained value

- $S(n)$
- $W(n)$
- Space
- PRAM model

In-place prefix-sum algorithm - WT model


```
Input: X[1..n] vector of values, n= 2 
Output: S[1..n] vector of prefix sums
parallel_prefix_sum( X[1..n] ) =
    forall i in 1:n do
        S[i] := X[i]
    enddo
    for h = 1 to k do
        forall i in 1:n/2h do
        S[2hi] := S[2'hi - 2 }\mp@subsup{2}{}{h-1}] + S[2\mp@subsup{2}{i}{\prime}
        enddo
    enddo
    for h = k downto 1
        forall i in 2:n/2h-1 do
        if odd(i) then
            S[2h-1 i] := S[2 h-1 i - 2 h-1}]+S[\mp@subsup{2}{}{h-1}i
            endif
        enddo
    enddo
```


Scan-based primitives

- Scan operations (parallel prefix operations) can be used to implement many useful primitives
- Suppose we are given SCAN to compute prefix sum of integer sequences

```
seq<int> SCAN(seq<int>)
```

- step complexity is $\Theta(\lg n)$
- work complexity is $\Theta(n)$
- PRAM model is EREW
- The next three examples have the same complexity as SCAN

COPY (or DISTRIBUTE)

$$
\begin{aligned}
& \text { seq<int> COPY(int v, int n))\{ } \\
& \text { seq<int> V[1:n]; } \\
& \mathrm{V} \text { [1] = } \mathrm{v} \text {; } \\
& \text { forall i in } 2 \text { : } n \text { do } \\
& \text { V[i] := 0; } \\
& \text { enddo } \\
& \text { return SCAN(V); } \\
& \text { \} } \\
& \text { v }=5 \\
& \text { n }=7 \\
& \mathrm{~V}=5 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& \text { Res }=\begin{array}{lllllll}
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}
\end{aligned}
$$

ENUMERATE

```
seq<int> ENUMERATE(seq<bool> Flag){
    seq<int> V[1:#Flag];
    forall i in 1 : #Flag do
        V[i] := Flag[i] ? 1 : 0;
    enddo
    return SCAN(V);
}
```

Flag $=\mathrm{T} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{T} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{T}$
$V=\begin{array}{lllllll}1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$
Res = $\begin{array}{lllllll}1 & 2 & 2 & 3 & 3 & 3 & 4\end{array}$

PACK

```
seq<T> PACK(seq<T> A, seq<bool> Flag){
    seq<T> R[1:#A];
    P := ENUMERATE(Flag);
    forall i in 1 : #Flag do
        if Flag[i] then R[P[i]] := A[i] endif;
    enddo
    return R[1:P[#Flag]];
}
```


Flag= T T F T F F T
$P=1 \quad 2 \quad 2 \quad 3 \quad 3 \quad 3 \quad 4$
R =! @ \$ \&

Radix Sort

```
Input: \(\quad \mathrm{A}[1: \mathrm{n}]\) with \(b\)-bit integer elements
Output: \(\quad \mathrm{A}[1: \mathrm{n}]\) sorted
Auxiliary: \(F L[1: n], F H[1: n], B L[1: n], B H[1: n]\)
for \(h\) := 0 to \(b-1\) do
    forall i in 1:n do
            FL[i] := (A[i] bit h) == 0
            FH[i] := (A[i] bit h) \(!=0\)
        enddo
        BL := PACK (A,FL)
        BH : \(=\operatorname{PACK}(\mathrm{A}, \mathrm{FH})\)
        m := \#BL
        forall i in 1:n do
            A[i] := if (i \(\leq m\) ) then BL[i] else BH[i-m]endif
        enddo
enddo
```

$$
\begin{aligned}
& S(n)= \\
& W(n)=
\end{aligned}
$$

Complexity measures for W-T algorithms

- Asymptotic time complexity measures
- (optimal) sequential time complexity $T_{s}(n)$
- parallel time complexity $T_{c}(n, p)$
- Speedup
- definition

$$
S P(n, p)=\frac{T_{s}(n)}{T_{c}(n, p)}
$$

- limitation

$$
S P(n, p)=\frac{T_{s}(n)}{T_{c}(n, p)} \leq \frac{T_{s}(n)}{W(n) / p}=\frac{p T_{s}(n)}{W(n)}=O(p)
$$

- Average available parallelism
- definition

$$
A A P(n)=\frac{W(n)}{S(n)}
$$

Objectives in the design of W-T algorithms

- Goal 1: construct work efficient algorithms
- a W-T algorithm is work efficient if $W(n)=\Theta\left(T_{s}(n)\right)$
- work-inefficient parallel algorithms have limited appeal on a PRAM with a fixed number of processors p

$$
\lim _{n \rightarrow \infty} S P(n, p) \leq \lim _{n \rightarrow \infty} \frac{p T_{S}(n)}{W(n)}=p \lim _{n \rightarrow \infty} \frac{T_{S}(n)}{W(n)}=0
$$

Objectives in the design of W-T algorithms

- Goal 2: minimize step complexity
- get optimal speedup using $A A P(n)=T_{s}(n) / S(n)$ processors

$$
\begin{aligned}
S P(n, A A P(n)) & =\Theta\left(\frac{T_{s}(n)}{T_{c}(n, \operatorname{AAP}(n))}\right)=\Omega\left(\frac{T_{s}(n)}{\frac{T_{s}(n)}{\operatorname{AAP}(n)}+S(n)}\right) \\
& =\Omega\left(\frac{T_{s}(n)}{S(n)+S(n)}\right)=\Omega(\operatorname{AAP(n))}
\end{aligned}
$$

- when $S(n)$ is decreased, $A A P(n)$ is increased
- with fixed problem size
- can use more processors to get greater speedup
- with fixed number of processors
- reach optimal speedup at smaller problem size

W-T model advantages

- Widely developed body of techniques
- Ignores scheduling, communication and synchronization
- "easiest" parallel programming
- Source-level complexity metrics
- Work and step complexity
- related to running time via Brent's theorem
- Good place to start
- many "real-world" algorithms can be derived starting from W-T algorithms

