COMP 790-033 - Parallel Computing

Lecture 5 September 14, 2022

SMM (3) Nested Parallelism

- Reference material for this lecture
 - OpenMP 3.1 Tutorial

Topics

- Nested parallelism in OpenMP and other frameworks
 - nested parallel *loops* in OpenMP (2.0)
 - implementation
 - nested parallel *tasks* in OpenMP (3.0)
 - task graph and task scheduling
 - OpenMP directives and implementation

Nested loop parallelism

• OpenMP annotation of matrix-vector product $R = M^{n \times m} \cdot V^{m}$

```
#pragma omp parallel for private(i)
for (i= 0; i < n; i++) {
    R[i] = 0;
    #pragma omp parallel for private(j) reduction(+:R[i])
    for (j = 0; j < m; j++) {
        R[i] += M[i][j] * V[j];
    }
}</pre>
```

- what should nested parallel directives mean?
 - each thread in the outer parallel region becomes the master thread for a team of threads in an instance of the inner parallel region
- how will it be executed?
 - most OpenMP implementations allocate all threads to the outer loop by default
 - the **num_threads(***t***)** clause specifies *t* threads be allocated to a parallel region
- additional consideration
 - Most modern processors have short vector units (256 or 512 bit AVX)
 - accelerate the dot product in the inner loop using a single thread

Nested parallelism: a more challenging problem

- <u>sparse</u> matrix-vector product R = MV
 - sparse matrix M is represented using two 1D arrays
 - A[nz], H[nz] arrays of non-zero values and corresponding column indices
 - S[n+1] describes the partitioning of A and H into n rows of M


```
#pragma omp parallel for private(i)
for (i = 0; i < n; i++) {
    R[i] = 0;
    #pragma omp parallel for private(j) reduction(+:R[i])
    for (j = S[i]; j < S[i+1]; j++) {
        R[i] += A[j] * V[H[j]];
    }
}</pre>
```

How should SPMV be executed?

- Parallelize outer loop?
 - requires dynamic load balancing
 - Poor performance possible when
 - n is not much larger than p
 - there is a large variation in number of non-zeros per row

- Parallelize inner loop?
 - poor performance on "short" rows with few non-zeros
- Both loops must be fully parallelized
 - to achieve runtime bounds of the sort promised by Brent's theorem
 - W(nz) = O(nz)
 - S(nz) = O(lg nz)

Nested parallelism model (a)

- In the W-T model nested parallelism is unrestricted
 - divide & conquer algorithms
 - parallel quicksort, quickhull
 - Other examples, e.g. histogram problem
 - (Ig n) reductions of size (n/lg n) run in parallel
- OpenMP work sharing recognizes nested parallelism in nested loops, but only implements certain cases
 - typically only outermost level of parallelism is realized
 - occasional support for orthogonal iteration spaces
 - e.g. {1, ...,n} X {1, ...,m} treated as single iteration space of size nm
 - but how to divide into p equal parts?
 - OpenMP 2.0 directives
 - specify allocation of threads to loops
 - e.g. 16 threads total
 - outermost loop: 4 threads
 - nested loop: respective teams of e.g. 3, 5, 4, 4 threads
 - very tedious and dependent on both problem and machine

Nested parallel model (b)

- Towards the Work-Time model:
 - task parallelism
 - a task is some code for execution and some context for data
 - inputs, outputs, private data
 - dynamically generated and terminated at run time
 - tasks are automatically scheduled onto threads for execution
 - language support for tasks
 - Cilk, Cilk Plus (MIT, Intel)
 - » C or C++ with tasks (and data-parallel operations in Cilk Plus)
 - » runtime scheduler with optimal scheduling strategy
 - OpenMP 3.0
 - » C, C++, Fortran with tasks
 - nested data parallelism
 - generalization of data parallelism
 - implemented in NESL (NEsted Sequence Language)
 - functional language with sequence construction functions (forall)
 - nested sequence construction corresponds to nested parallelism
 - compile-time *flattening transformation* to convert nested sequence operations to simple data-parallel vector operations

Task parallelism: Cilk

Cilk fibonacci program

- $Cilk = C + \{cilk, spawn, sync\}$
- **cilk** declares a procedure to be executable as a task
- spawn starts a cilk task that executes concurrently with creator
- sync waits for all tasks spawned in current procedure to complete

```
cilk int fib (int n)
{
    if (n < 2) return n;
    else
    {
        int x, y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}</pre>
```


Task dependence graph

CILK runtime task scheduler

- Task dependence graph unfolds dynamically
 - typically far more tasks ready to run than threads available
 - potential blow-up in space
- Scheduling strategy
 - each thread maintains a local double-ended queue of tasks ready to run
 - shallow and deep ends refer to relative positions of tasks in dependence graph
 - if queue is nonempty
 - execute ready task at the *deepest level* in the queue
 - corresponds to sequential execution order, generally friendly to memory hierarchy
 - if queue is empty
 - steal a task at *shallowest level* of the queue in some *randomly chosen* other thread

Cilk execution properties

- Task execution order is parallel depth-first
 - serial order at each processor
 - good fit to the parallel memory hierarchy
 - space bound: $Space_p(n) = Space_1(n) + pS(n)$
- Global execution time follows bounds determined by Brent's theorem
 - $T_p(n,p) = O(W(n)/p + S(n))$
- Efficiency
 - work-first principle (busy processors keep working)
 - minimizes interference with useful progress
 - work-stealing principle
 - idle processors steal tasks towards high end of current DAG
 - these tasks are expected to unfold into larger portions of the complete DAG

Sparse matrix-vector product in Cilk++

• Does this solve our problem?

```
double A[nz], V[n], R[n];
int H[nz], S[n+1];
void sparse matvec() {
   for (int i = 0; i < n; i++) {</pre>
      R[i] = cilk spawn dot product(S[i],S[i+1]);
   cilk synch;
}
double dot product(int j1, int j2) {
   cilk::reducer opadd<double> sum;
   for (int j = j1; j < j2; j++) {</pre>
      cilk spawn sum += A[j] * V[H[j]];
   cilk synch;
   return sum.get value();
```

Task creation in loops with Cilk++

 cilk_for creates a set of tasks using recursive division of the iteration space

```
double A[nz], V[n],R[n];
int H[nz], S[n+1];
void sparse matvec() {
   cilk_for (int i = 0; i < n; i++) {
      R[i] = dot product(S[i],S[i+1]);
   }
}
double dot_product(int j1, int j2) {
   cilk::reducer opadd<double> sum;
   cilk for (int j = j1; j < j2; j++) {
      sum += A[j] * V[H[j]];
   return sum.get value();
```

Divide and conquer algorithms with Cilk

```
cilk void mergesort(int A[], int n) {
    if (n <= 1)
        return
    else {
        spawn mergesort(&A[0], n/2);
        spawn mergesort(&A[n/2], n/2);
    }
    sync;
    merge(&A[0], n/2, &A[n/2], n/2);
}</pre>
```

W(n) =

S(n) =

Why well-suited to the memory hierarchy?

Using two threads:

Thread 0

Thread 1

A better parallel sort using Cilk

```
cilk void sort(int A[], int n) {
  if (n < 100)
      sort sequentially
  else {
      spawn sort(\&A[0], n/2);
      spawn sort(&A[n/2], n/2);
  }
  sync;
 merge(&A[0], n/2, &A[n/2], n/2);
}
cilk void merge(int A[], int na, int B[], int nb) {
  if (na < 100 || nb < 100)
      merge sequentially
  else {
      int m = binary search(B, A[na/2]);
      spawn merge(A, na/2, B, m);
      spawn merge(&A[na/2], na/2, &B[m], nb - m);
  }
  sync;
}
```

OpenMP 3.0 includes tasks

- Tasks consist of statements or code blocks
 - basic constructs are task and taskwait
- Works in C, C++, Fortran, supported by many compilers

```
int fib(int n){
    int x, y;
    if (n < 2)
        return n;
    else {
        #pragma omp task
        x = fib(n-1);
        #pragma omp task
        y = fib(n-2);
        #pragma omp taskwait
        return (x+y);
    }
}</pre>
```

Scheduling OpenMP Tasks: the Basic Rules

- In general, a task may begin execution on any thread in the team
 - OpenMP does not prescribe a task scheduling strategy
 - generally uses "help first" strategy to create more ready tasks
 - queue the spawned task, and keep going on the parent
 - leads to breadth first evaluation order
 - if(<cond>) forces task execution when <cond> evaluates to true
 - Tied tasks are started on an arbitrary thread and then run to completion in that thread. They can be suspended only at a task spawn or when waiting on a lock.
 - Untied tasks can suspend at any point and may resume on any thread in the team (permits pre-emption – not generally safe)
 - barriers in OpenMP require completion of all outstanding tasks generated by the team of threads encountering the barrier

Scope of variables

- Variables can be shared, threadprivate, or (task) private
 - Shared variables can be accessed concurrently by all tasks
 - Threadprivate variables can be accessed safely within a thread by tied tasks
 - Private variables can only be accessed by the owning task
- Examples where threadprivate variables help
 - Fast summation
 - Dynamic memory allocation

Task parallelism - summary

• Cilk

- only on Intel systems (but being phased out)
- work-first scheduling, generally good for locality
- cilk_for helps parallelize loops more effectively
- OpenMP
 - scheduling strategy is not prescribed, generally help-first,
 - not quite as cache-friendly as work-first
 - locality aware schedulers try to schedule tasks on the socket where they were spawned
 - helps increase last-level cache locality
- General
 - task parallelism is well suited to divide & conquer algorithms and irregular parallelism
 - but has higher overheads than pure loop-level parallelization
 - generally insensitive to variation in processor speeds
 - can effectively use hyperthreads and is oblivious to OS interruptions

Nested data parallelism

- Dependence graph reveals available parallelism
 - nodes: computations
 - edges: dependencies
 - dynamic unfolding of graph in execution
 - nested data-parallel loops yield series/parallel graphs

```
FORALL (i = 1,4)
WHERE C(i) DO
FORALL (j = 1,i) DO
G(i,j)
END FORALL
ELSEWHERE
H(i)
END WHERE
END FORALL
```


Flattening execution strategy

- Each node in the spawn tree is part of a data-parallel operation
 - *flattening* transforms program to a sequence of simple data-parallel operations
 - data-parallel operations have low computational intensity so require high performance parallel memory systems
 - each data-parallel operation is optimally executed using all processors

```
FORALL (i = 1,4)
WHERE C(i) DO
FORALL (j = 1,i) DO
G(i,j)
END FORALL
ELSEWHERE
H(i)
END WHERE
END FORALL
```


NESL: Sparse matrix-vector product

R = MV where $V, R \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$ and M has nz nonzeros

- Nested sequence representation of M
 - Each row is represented by a sequence of pairs
 - (non-zero value a, column index h)
 - M is a sequence of m row representations
- Nested parallel algorithm (NESL)

MatVect(M,V) =
 [R in M:
 sum([(a,h) in R: a * V[h]])
]

a sparse matrix

Flattening

- Compile-time elimination of nested data parallelism
 - Flattening theorem
 - Let F be a set of basic data parallel operations on sequences
 - Let L(F) be a nested data-parallel programming language over F
 - For any program P in L(F), flattening yields a program P' in L(F + F') such that
 - P and P' compute the same function
 - P' contains no nested data-parallel constructs
 - no additional work is introduced and no available parallelism is lost, i.e.

 $W_{P'}(n) = O(W_{P}(n))$ and $S_{P'}(n) = O(S_{P}(n))$

- Example primitives F and F' v = [1,2,3] w = [1], [1,2], [1,2,3]

F: $\alpha \rightarrow \beta$	F': Seq(α) \rightarrow Seq(β)
arithmetic opns	vector arithmetic opns
e.g. $plus(1,1) = 2$	e.g. $plus'(V,V) = [2,4,6]$
sum(V) = 6	sum'(W) = [1,3,6]
size(V) = 3	size'(W) = [1,2,3]
range(3) = [1,2,3]	range'(V) = $[[1], [1,2], [1,2,3]]$
index(V,3) = 3	index'(W,V) = [1,2,3]
dist(1,3) = [1,1,1]	dist'(V,V) = [[1], [2,2], [3,3,3]]

OpenMP: sparse matrix – vector product

Parallel Implementation of primitives F'

- Goal
 - precise load balance
 - insensitive to
 - number of subproblems
 - size of subproblems

- Example
 - sum' :: Seq(Seq(α)) → Seq(α)
 - uses
 - sequential segmented sum of size n/p
 - single parallel segmented sum scan of size p

Flattening: Segmented primitives

Flattening: NAS Conjugate Gradient benchmark

- Benchmark: find principal eigenvalue of random sparse linear system using power method
 - repeated use of conjugate gradient method
 - class B benchmark, N = 75,000, average # nz per row = 140, 96% of the work is in sparse matrix – vector product

Comparing execution strategies

Nested task parallelism

- few restrictions on program form
- tasks must be "coarsened" to amortize scheduling overhead
 - load balanced up to granularity of tasks
- provably good time and space bounds for strict programs
- can maintain locality (depends on scheduling strategy)
- Nested data parallelism
 - restricted to data parallel programs (subset of all programs)
 - execution is sequence of vector operations
 - easily load-balanced
 - but low computational intensity
 - no run-time scheduler required
 - provably good time bounds, but space bounds are harder

OpenMP example: n-body simulation