
COMP 790 - 033 - Parallel Computing
Lecture 6

September 21, 2022

CC-NUMACOMP 790 - 033 F22 Prins

1. Shared Memory Implementation

2. OpenMP Case Study:
The Barnes-Hut N-body Algorithm

2

Topics

• Shared-memory
– how can this be implemented in a scalable fashion?
– n-body example

• Shared-memory multiprocessor performance and implementation issues
– coherence
– consistency
– synchronization

• Example
– Implementation of Barnes-Hut N-body algorithm

CC-NUMACOMP 790 - 033 F22 Prins

3

Shared memory multi-processors

• Main memory has a fixed access time
– it has to serialize reads and writes
– naïve implementation requires processors to serialize memory

references among all processors
• this doesn’t scale

• Instead processors maintain local caches of memory data
– locality of reference

• the unit of transfer to/from memory is a cache line (64 bytes)
• L1 and L2 caches are local to the core
• L3 is local to the socket
• first touch principle for page faults

– the page frame is allocated in the physical memory attached to the socket

CC-NUMACOMP 790 - 033 F22 Prins

4CC-NUMACOMP 790 - 033 F22 Prins

Shared-memory multiprocessor implementation

• Objectives
– Examine implementation issues in shared-memory multiprocessors

• cache coherence
• memory consistency
• synchronization mechanisms

• Why?
– Correctness

• memory consistency (or lack thereof) can be the source of very subtle
bugs

– Performance
• cache coherence and synchronization mechanisms can have profound

performance implications

5CC-NUMACOMP 790 - 033 F22 Prins

Coherence of memory location x
• Defined by three properties (assume x = 0 initially)

(a)

(b)

(c)

P1: W(x,1) 1 = R(x)

no intervening write of x
by P1 or other processor

P1: W(x,1)
P2: 1 = R(x)

sufficiently large
interval and no
other write of x

P1: W(x,1) a = R(x)
P2: W(x,2) a = R(x)
P3: a = R(x)

a ∈ {1,2}
and has same value at all processors

sufficiently large
interval and no other writes of x

time

6CC-NUMACOMP 790 - 033 F22 Prins

Consistency Models

• The consistency problem
– Performance motivates replication

• Keep data in caches close to processors

– Replication of read-only blocks is easy
• No consistency problem

– Replication of written blocks is hard
• In what order do we see different write operations?
• Can we see different orders when viewed from different processors?

– Fundamental trade-offs
• Programmer-friendly models perform poorly

7CC-NUMACOMP 790 - 033 F22 Prins

Cache-coherent shared memory multiprocessor
• Implementations

– shared bus
• bus may be a “slotted” ring

– scalable interconnect
• fixed per-processor bandwidth

• Effect of CPU write on local cache
– write-through policy – value is

written to cache and to memory
– write-back policy – value written in

cache only; memory updated
upon cache line eviction

• Effect of CPU write on remote cache
– update – remote value is modified
– invalidate – remote value

is marked invalid

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •

8CC-NUMACOMP 790 - 033 F22 Prins

Bus-Based Shared-Memory protocols

• Invalidation protocol with write-back cache
– Cache block can be in one of three states:

• INVALID — The block does not contain valid data
• SHARED — The block is a current copy of memory data

– other copies may exist in other caches
• EXCLUSIVE — The block holds the only copy of the correct data

– memory may be incorrect, no other cache holds this block

– Handling exclusively-held blocks
• Processor events

– cache is block “owner”
» reads and writes are local

• Snooping events
– on detecting a read-miss or write-miss from

another processor to an exclusive block
» write-back block to memory
» change state to shared (on external read-miss)

or invalid (on external write-miss)

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •

9CC-NUMACOMP 790 - 033 F22 Prins

Invalidation protocol: example

P1 P3 x1P2

x1

Shared

P1 P3 x1

x1

P2

x1

SharedShared

P1 P3 x1

x2

P2

x1

InvalidExcl

W

R
P1 P3 x1

x3

P2

x1

InvalidExcl

W

P1 P3 x3

x3 x3

P2

x1

InvalidShared

R

Shared

P1 P3 x3

x3 x3

P2

x4

ExclInvalid

W

Invalid

R

10CC-NUMACOMP 790 - 033 F22 Prins

Implementation: FSM per cache line

• Action in response to CPU event

Excl

Invalid Shared

Eviction

CPU read

CPU read
Place read-miss on bus

CPU read
CPU write

Excl

Invalid Shared
Write-miss for this block

• Action in response to bus
event

11

Intel cache coherence (skylake)
– basically a directory-based protocol with 2 or 4 clusters
– each package (socket) is a cluster with p cores distributed across two

slotted rings

CC-NUMACOMP 790 - 033 F22 Prins

12

Intel physical organization
– up to 4 sockets
– up to 28 cores per socket
– up to 56 thread contexts (28 threads and 28 hyperthreads)

CC-NUMACOMP 790 - 033 F22 Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 3

thread context

13

Mapping OpenMP threads to hardware (1)

CC-NUMACOMP 790 - 033 F22 Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality
– KMP_AFFINITY = “granularity=fine,compact”

0 1 2 3 4 5 6 7 OpenMP thread-id

Note: we use a fictional
machine with 2 sockets and
4 cores with hyperthreads

to illustrate these mappings

Nearby threads-ids tend to share more lower-level cache

14

Mapping OpenMP threads to hardware (2)

CC-NUMACOMP 790 - 033 F22 Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth without data locality
– KMP_AFFINITY = “granularity=fine,scatter”

0 4 2 6 1 5 3 7 OpenMP thread id

15

Mapping OpenMP threads to hardware (3)

CC-NUMACOMP 790 - 033 F22 Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality and equal thread progress
– KMP_AFFINITY = “granularity=fine,compact,1,0”
– OMP_NUM_THREADS = 4

0 4 1 5 2 6 3 7 OpenMP thread id

16

Mapping OpenMP threads to hardware (4)

CC-NUMACOMP 790 - 033 F22 Prins

machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth and equal thread progress
– KMP_AFFINITY = “granularity=fine,scatter”
– OMP_NUM_THREADS = 4

0 4 2 6 1 5 3 7 OpenMP thread

17CC-NUMACOMP 790 - 033 F22 Prins

Coherence and Consistency

• Coherence
– behavior of a single memory location
– viewed from a single processor
– read returns “most recent” written value

• Consistency
– behavior of multiple memory locations read and written by multiple

processors
– viewed from one or more of the processors
– read may not return the “most recent” value

• What are the permitted ordering among reads and writes of several memory
locations?

18CC-NUMA

Example

• Case study: the Barnes-Hut algorithm
– Study an important algorithm in scientific computing

• efficient n-body simulation with long range forces

– Investigate parallelization and implementation in a shared memory
multiprocessor

• expression and management of parallelism
• memory hierarchy tuning

COMP 790-033 F22 - PrinsCOMP 790 - 033 F22 Prins

19CC-NUMA

N-body simulations: self-gravitating systems

COMP 790 - 033 F22 Prins

20CC-NUMA

• Simulate the evolution of a system
of n bodies over time
– Pairwise interaction of bodies

• force f(i,j) on body i due to body j
• total force f(i) on body i due to all

bodies
• acceleration of body i via f = ma

– Numerical integration of body velocities
and positions

• timestep ∆t

• Non-negligible long-range forces
– for uniformly distributed bodies in 3D,

total force due to all bodies at a given
distance r is constant

• cannot ignore contribution of
distant bodies

• Examples
– astrophysics (gravity)
– molecular dynamics (electrostatics)

the basic simulation algorithm:

while (t < tFinal) do

forall 1 ≤ i ≤ n do

〈 compute force f(i) on body i 〉
end

〈 update velocity and position of all bodies 〉
t = t + ∆t

end

The n-body simulation problem

Direct approach:
O(n²) interactions per time-step

∑
≠

=

−
⋅

⋅
⋅−=

ij

ij

ji

ij

ji

jifif

rr

mm
Gjif

),()(

),(2
pp

Ex: Gravitation𝑟𝑟𝑖𝑖𝑖𝑖 = 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑖𝑖

COMP 790 - 033 F22 Prins

21CC-NUMA

Reducing the number of interactions
Exploit combined effect of “distant” bodies

Earth

Andromeda

Center of
mass c

Total mass
M

d

r

• Monopole approximation of the force
on the earth due to interaction with all
masses in the Andromeda galaxy

• Monopole approximation saves work
if it can be reused with multiple bodies

• Accuracy of approximation improves
with

– increasing r
– decreasing d
– order of the approximation

• Monopole, dipole, quadropole, …
– uniformity of body distribution

3
earthearth

earth
)()(

r
MmGbf cp −

−≈

Vulcan

r’

d’

apply this idea recursively:
 determines control-structure

 requires hierarchical decomposition of space

COMP 790 - 033 F22 Prins

22CC-NUMA

Hierarchical decomposition of space

an adaptive quadtree

an octree decomposition

3D

a quadtree2D

COMP 790 - 033 F22 Prins

23CC-NUMA

The Barnes-Hut algorithm
stepSystem():

// P(i) is coordinates and mass of body i
T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) = gravCalc(P(i),T)

〈 update velocities and positions 〉

function gravCalc(body p, treenode q)

if (“q is a leaf”) then
〈return body-body interaction (p,q) 〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction (p,q) 〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

Gravitation in 3D:

body-body interaction: use masses of
bodies and distance between them.

body-cell interaction: use mass of body and
mass of cell and distance between body and
center of mass of cell.

force is additive; individual contributions can
be accumulated.

222

2

)()()(

,,

qpqpqppq

pq

qp

pq

qp

pq

qp

pq

qp

zzyyxxr

r
zz

r
yy

r
xx

r

mm
GF

−+−+−=

 −−−

⋅
⋅

⋅=

COMP 790 - 033 F22 Prins

24CC-NUMA

The Barnes-Hut algorithm - Performance issues
stepSystem(P(1:n))

-- P(1:n) is sequence of bodies

T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)

〈update velocities and positions〉

function gravCalc(p,q)

if (“q is a leaf”) then
〈return body-body interaction〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

Parallelism
nested parallelism

• over bodies
• over recursively divided cells

load balance
different number of interactions
for different bodies

Locality
nearby bodies interact with similar set
of nodes in tree

COMP 790 - 033 F22 Prins

25CC-NUMA

Constructing the tree

function insert(p,T)

if empty(T) then

〈 return p as singleton tree 〉
else

〈 determine child S of T in which p belongs 〉
S’ := insert(p,S)

〈 return T with S replaced by S’ 〉
endif

• Small fraction f of the total work
– but sequential tree

construction can limit
overall speedup

• Amdahl’s law: SP < 1/f

• Computing monopole
approximation for each cell
– Post-order traversal of tree

• At leaves, monopole
coincides with single body

• At interior nodes,
monopole is weighted sum
of all children’s monopoles

function makeTree(P(1:n))

for i := 1 to n do

T := insert(P(i),T)

〈 compute monopole approximation at each node 〉

COMP 790 - 033 F22 Prins

26

• when is a cell “distant enough”?

• problem: detonating galaxy anomaly

CC-NUMA

The acceptance criterion

Earth

Andromeda

Center θ
of mass

d

r

original criterion used by Barnes-Hut:

where usually

(one) solution: add distance between center
of mass (cm) and geometric center of cell
(c)

θ
θ dr

r
d

>≡<

primary galaxy

secondary galaxy

(3D) 3~

(2D) 2~

d

d

0.17.0 ≤≤θ

|| ccmdr −+>
θθ<≈ 7.0

2d
d

Center
of mass

r

d

COMP 790 - 033 F22 Prins

27CC-NUMA

Effects of acceptance criterion … on runtime

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

COMP 790 - 033 F22 Prins

28CC-NUMA

Effects of acceptance criterion … on accuracy

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

1% accuracy sufficient for most astrophysical simulations. Different techniques
with better error control necessary for other systems (fast multipole methods).

COMP 790 - 033 F22 Prins

29CC-NUMA

Effect of body distribution … on total work

Plummer distributionUniform distribution

For fixed n
• uniform distributions generate high interaction work (shallow trees)
• non-uniform distributions generate higher tree construction and lower
interaction work

COMP 790 - 033 F22 Prins

30CC-NUMA

Complexity of Barnes-Hut

• Tree building
– cost of tree construction depends on distribution of bodies

• cost of body insertion ∝ distance to root
• for a uniform distribution of n particles, sequential construction of the tree is O(n log n) time

– In a simulation, tree could be maintained rather than reconstructed each time step

• Force calculation (uniform distribution of bodies in 2D)
– consider computing the force acting on a body in the lower right corner
– if θ = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion
– The remaining square does not satisfy the criterion, hence we

descend into the next level
– each level of the tree incurs a constant amount of

work while descending along the path to the lower right corner
– for a uniform distribution of n bodies, the length of the path is

O(log4 n)
– computing the forces on n bodies is O(n log n) work
– non-uniform distribution more difficult to analyze

• Accuracy and complexity are difficult to control

COMP 790 - 033 F22 Prins

31CC-NUMA

Implementation issues - parallelization

• parallelization of the force computation loop:

SUBROUTINE stepSystem()

CALL makeTree()

!$OMP PARALLEL DO SCHEDULE(GUIDED,4)

DO i = 1, n

CALL gravCalc(i,root)

END DO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

〈integrate velocities and positions〉
!$OMP END PARALLEL DO

END SUBROUTINE stepSystem

• observations:
– force computation scales reasonably up to 16 processors
– dynamic scheduling important
– single processor performance not impressive

1 2 4 8 16
tree construction 25.759 27.444 29.028 24.334 26.066
force computation 1568.854 809.294 416.174 196.997 120.664
speedup 1.00 1.94 3.77 7.96 13.00

0
200
400
600
800

1000
1200
1400
1600
1800

se
c

Processors

Results on O2000 (evans) for 1M particles

COMP 790 - 033 F22 Prins

Chart2

		1		1		1

		2		2		2

		4		4		4

		8		8		8

		16		16		16

tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

25.759

1568.854

1

27.444

809.294

1.9385464368

29.028

416.174

3.7697069014

24.334

196.997

7.9638471652

26.066

120.664

13.0018398197

Sheet1

				1		2		4		8		16

		tree construction		25.759		27.444		29.028		24.334		26.066

		force computation		1568.854		809.294		416.174		196.997		120.664

		speedup		1.00		1.94		3.77		7.96		13.00

		sum		1594.613		836.738		445.202		221.331		146.73

32CC-NUMA

Implementation issues - tuning of gravCalc (1)

• performance analysis of gravCalc shows
– poor cache reuse (90% L1 and 88% L2)
– poor use of floating point units
– poor reuse of subexpressions
compiler can’t generate good code?

• manual tuning of gravCalc
– inline computation of acceptance criterion
– inline computation of interaction
– reuse distance vector (body-cell)
– fuse loops
significant performance improvement!

• observations:
– 2.5 times faster
– good scaling
– better use of FPUs and better prediction
cache reuse (93% L1 and 94% L2) still bad

RECURSIVE SUBROUTINE gravCalc(p,q)
IF (“q is a body”) THEN

〈compute body-body interaction; accumulate〉
ELSE

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(p,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

700

Processors

se
c

tree construction 19.066 17.878 19.527 15.323 13.686

force computation 639.961 315.785 164.764 79.049 44.678

speedup 1.00 2.03 3.88 8.10 14.32

1 2 4 8 16

COMP 790 - 033 F22 Prins

Chart2

		1		1		1

		2		2		2

		4		4		4

		8		8		8

		16		16		16

tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

19.066

639.961

1

17.878

315.785

2.0265718764

19.527

164.764

3.8841069651

15.323

79.049

8.0957507369

13.686

44.678

14.3238506648

Sheet1

				1		2		4		8		16

		tree construction		19.066		17.878		19.527		15.323		13.686

		force computation		639.961		315.785		164.764		79.049		44.678

		speedup		1.00		2.03		3.88		8.10		14.32

		sum		659.027		333.663		184.291		94.372		58.364

33CC-NUMA

Implementation issues - tuning of gravCalc (2a)

• how can we improve cache reuse?
– neighboring bodies in space will most likely interact with the same cells

and bodies!
• sort bodies according to some spatial order:
– precompute spatial order such as Morton order or Peano-Hilbert order
– or simply order bodies as they are encountered during a depth-first

treewalk of T
– Sorted bodies may also speed up subsequent tree rebuilding

Morton order Peano-Hilbert order Tree order

COMP 790 - 033 F22 Prins

34CC-NUMA

Implementation issues - tuning of gravCalc (2b)

• observations:
– 30-40% increase in performance
– very good scaling
– L2 reuse now up at 99.8%
– L1 still at 93%

stepSystem(P(1:n))

T := makeTree(P(1:n))

re-order P(1:n) according to T

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)

〈update velocities and positions〉

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

Processors

se
c

tree construction 19.161 14.51 18.524 18.564 19.873

force computation 495.355 247.89 125.225 62.741 31.281

speedup 1.00 2.00 3.96 7.90 15.84

1 2 4 8 16

COMP 790 - 033 F22 Prins

Chart2

		1		1		1

		2		2		2

		4		4		4

		8		8		8

		16		16		16

tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

19.161

495.355

1

14.51

247.89

1.9982855299

18.524

125.225

3.9557197045

18.564

62.741

7.8952359701

19.873

31.281

15.8356510342

Sheet1

				1		2		4		8		16

		tree construction		19.161		14.51		18.524		18.564		19.873

		force computation		495.355		247.89		125.225		62.741		31.281

		speedup		1.00		2.00		3.96		7.90		15.84

		sum		514.516		262.4		143.749		81.305		51.154

35CC-NUMA

Implementation issues - tuning of gravCalc (3)

How can we improve L1 reuse?
– interact a group of bodies with a cell

or body!
– walk the tree and compute forces for a set

of neighboring bodies

RECURSIVE SUBROUTINE gravCalc(set P,node q)
IF (“q is a body”) THEN

DO p ∈ P
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = ∅
DO p ∈ P
IF (“p is distant enough from q”) THEN

〈compute body-cell interaction; accumulate〉
ELSE

P’ = P’ ∪ {p}
END IF

END DO
IF (P’.NE. ∅) THEN
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(P’,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

Processors

se
c

tree construction 20.041 19.471 19.824 18.605 13.716

force computation 421.391 205.309 104.438 51.828 25.805

speedup 1.00 2.05 4.03 8.13 16.33

1 2 4 8 16

observations:

 20-40% increase in performance

 L1 reuse now at 99.7%
(32 bodies per group)

 L2 down slightly at 96%

 ordered particles essential
COMP 790-033 F22 - PrinsCOMP 790 - 033 F22 Prins

Chart2

		1		1		1

		2		2		2

		4		4		4

		8		8		8

		16		16		16

tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

20.041

421.391

1

19.471

205.309

2.0524721274

19.824

104.438

4.0348436393

18.605

51.828

8.1305664892

13.716

25.805

16.3298198024

Sheet1

				1		2		4		8		16

		tree construction		20.041		19.471		19.824		18.605		13.716

		force computation		421.391		205.309		104.438		51.828		25.805

		speedup		1.00		2.05		4.03		8.13		16.33

		sum		441.432		224.78		124.262		70.433		39.521

36CC-NUMA

Implementation issues - tuning of gravCalc (4)

Another technique to improve L1 reuse
– allow leaf-cells to contain more than 1 body
– compute the body-body interactions in a

doubly nested loop.

RECURSIVE SUBROUTINE gravCalc(set P, node q)
P’ = ∅
DO p ∈ P

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
IF (“q is a leaf”) THEN

DO p ∈ P, q’ ∈ q
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = P’ ∪ {p}
END IF

END IF
END DO
IF (P’.NE.∅) THEN

DO q’ ∈ nonemptyChildren(q)
CALL gravCalc(P’,q’)

END DO
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

50
100

150
200

250

300
350

400

Processors

se
c

tree construction 13.179 12.494 13.362 12.682 9.536

force computation 378.345 189.231 94.996 47.866 23.809

speedup 1.00 2.00 3.98 7.90 15.89

1 2 4 8 16

observations:

 10% increase in performance

this algorithm will perform strictly
more work than the previous
versions! More particles per leaf
potentially causes more body-body
interactions and fewer body-cell
interactions to be computed.

COMP 790 - 033 F22 Prins

Chart2

		1		1		1

		2		2		2

		4		4		4

		8		8		8

		16		16		16

tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

13.179

378.345

1

12.494

189.231

1.9993817081

13.362

94.996

3.982746642

12.682

47.866

7.9042535411

9.536

23.809

15.8908395985

Sheet1

				1		2		4		8		16

		tree construction		13.179		12.494		13.362		12.682		9.536

		force computation		378.345		189.231		94.996		47.866		23.809

		speedup		1.00		2.00		3.98		7.90		15.89

		sum		391.524		201.725		108.358		60.548		33.345

37CC-NUMA

Implementation issues - summary

• Shared memory model
– enables relatively simple parallelization of basic algorithm using OpenMP
– shared memory model critical in dynamic load balancing

• Performance tuning
– overall these optimizations lead to 4-5 times faster single-processor performance
– Linear or superlinear parallel speedup to 16 processors
– optimizing serial performance is essential for obtaining good parallel performance
– last two optimization are instances of exposing parallelism to improve serial

performance

• Observations
– the better the performance of gravCalc, the more seriously the serial tree-

construction affects the overall speedup
• when makeTree time is included in speedup

– speedup drops from 13.00 to 10.8 for p = 16 in first version
– speedup drops from 15.89 to 11.74 for p = 16 on last version

– parallel tree construction algorithms!

COMP 790 - 033 F22 Prins

	COMP 790 - 033 - Parallel Computing�Lecture 6 �September 21, 2022�� ��
	Topics
	Shared memory multi-processors
	Shared-memory multiprocessor implementation
	Coherence of memory location x
	Consistency Models
	Cache-coherent shared memory multiprocessor
	Bus-Based Shared-Memory protocols
	Invalidation protocol: example
	Implementation: FSM per cache line
	Intel cache coherence (skylake)
	Intel physical organization
	 Mapping OpenMP threads to hardware (1)
	 Mapping OpenMP threads to hardware (2)
	 Mapping OpenMP threads to hardware (3)
	 Mapping OpenMP threads to hardware (4)
	Coherence and Consistency
	Example
	N-body simulations: self-gravitating systems
	The n-body simulation problem
	Reducing the number of interactions
	Hierarchical decomposition of space
	The Barnes-Hut algorithm
	The Barnes-Hut algorithm - Performance issues
	Constructing the tree
	The acceptance criterion
	Effects of acceptance criterion … on runtime
	Effects of acceptance criterion … on accuracy
	Effect of body distribution … on total work
	Complexity of Barnes-Hut
	Implementation issues - parallelization
	Implementation issues - tuning of gravCalc (1)
	Implementation issues - tuning of gravCalc (2a)
	Implementation issues - tuning of gravCalc (2b)
	Implementation issues - tuning of gravCalc (3)
	Implementation issues - tuning of gravCalc (4)
	Implementation issues - summary

