## COMP 790 - 033 - Parallel Computing Lecture 6 September 21, 2022

1. Shared Memory Implementation

2. OpenMP Case Study: The Barnes-Hut N-body Algorithm

# Topics

- Shared-memory
  - how can this be implemented in a scalable fashion?
  - n-body example
- Shared-memory multiprocessor performance and implementation issues
  - coherence
  - consistency
  - synchronization
- Example
  - Implementation of Barnes-Hut N-body algorithm

## Shared memory multi-processors

- Main memory has a fixed access time
  - it has to serialize reads and writes
  - naïve implementation requires processors to serialize memory references among all processors
    - this doesn't scale
- Instead processors maintain local caches of memory data
  - locality of reference
    - the unit of transfer to/from memory is a *cache line* (64 bytes)
    - L1 and L2 caches are local to the core
    - L3 is local to the socket
    - first touch principle for page faults
      - the page frame is allocated in the physical memory attached to the socket

# Shared-memory multiprocessor implementation

## • Objectives

- Examine implementation issues in shared-memory multiprocessors
  - cache coherence
  - memory consistency
  - synchronization mechanisms
- Why?
  - Correctness
    - memory consistency (or lack thereof) can be the source of very subtle bugs
  - Performance
    - cache coherence and synchronization mechanisms can have profound performance implications

# **Coherence of memory location x**





## **Consistency Models**

- The consistency problem
  - Performance motivates replication
    - Keep data in caches close to processors
  - Replication of read-only blocks is easy
    - No consistency problem
  - Replication of written blocks is hard
    - In what order do we see different write operations?
    - Can we see different orders when viewed from different processors?
  - Fundamental trade-offs
    - Programmer-friendly models perform poorly

## **Cache-coherent shared memory multiprocessor**

- Implementations
  - shared bus
    - bus may be a "slotted" ring
  - scalable interconnect
    - fixed per-processor bandwidth
- Effect of CPU write on *local* cache
  - write-through policy value is written to cache and to memory
  - write-back policy value written in cache only; memory updated upon cache line eviction
- Effect of CPU write on *remote* cache
  - update remote value is modified
  - invalidate remote value is marked invalid



## **Bus-Based Shared-Memory protocols**

- Invalidation protocol with write-back cache
  - Cache block can be in one of three states:
    - INVALID The block does not contain valid data
    - SHARED The block is a current copy of memory data
      - other copies may exist in other caches
    - EXCLUSIVE The block holds the only copy of the correct data
      - memory may be incorrect, no other cache holds this block
  - Handling exclusively-held blocks
    - Processor events
      - cache is block "owner"
        - » reads and writes are local
    - Snooping events
      - on detecting a read-miss or write-miss from another processor to an exclusive block
        - » write-back block to memory
        - » change state to shared (on external read-miss) or invalid (on external write-miss)



## Invalidation protocol: example





# Implementation: FSM per cache line

• Action in response to CPU event



Action in response to bus event



# Intel cache coherence (skylake)

- basically a directory-based protocol with 2 or 4 clusters
- each package (socket) is a cluster with p cores distributed across two slotted rings



# Intel physical organization

- up to 4 sockets
- up to 28 cores per socket
- up to 56 thread contexts (28 threads and 28 hyperthreads)



# Mapping OpenMP threads to hardware (1)

- Mapping threads to maximize data locality
  - KMP\_AFFINITY = "granularity=fine, compact"



Nearby threads-ids tend to share more lower-level cache

# Mapping OpenMP threads to hardware (2)

- Mapping threads to maximize bandwidth without data locality
  - KMP\_AFFINITY = "granularity=fine,scatter"



# Mapping OpenMP threads to hardware (3)

- Mapping threads to maximize data locality and equal thread progress
  - KMP\_AFFINITY = "granularity=fine, compact, 1, 0"
  - $OMP_NUM_THREADS = 4$



# Mapping OpenMP threads to hardware (4)

- Mapping threads to maximize bandwidth and equal thread progress
  - KMP\_AFFINITY = "granularity=fine,scatter"
  - OMP\_NUM\_THREADS = 4



## **Coherence and Consistency**

#### Coherence

- behavior of a single memory location
- viewed from a single processor
- read returns "most recent" written value
- Consistency
  - behavior of multiple memory locations read and written by multiple processors
  - viewed from one or more of the processors
  - read may not return the "most recent" value
    - What are the permitted ordering among reads and writes of several memory locations?



# Example

- Case study: the Barnes-Hut algorithm
  - Study an important algorithm in scientific computing
    - efficient n-body simulation with long range forces
  - Investigate parallelization and implementation in a shared memory multiprocessor
    - expression and management of parallelism
    - memory hierarchy tuning

## **N-body simulations: self-gravitating systems**





# The *n*-body simulation problem

- Simulate the evolution of a system of n bodies over time
  - Pairwise interaction of bodies
    - force *f*(*i*,*j*) on body *i* due to body *j*
    - total force *f*(*i*) on body *i* due to all bodies
    - acceleration of body *i* via *f* = *ma*
- Numerical integration of body velocities and positions
  - timestep  $\Delta t$
- Non-negligible long-range forces
- for uniformly distributed bodies in 3D, total force due to all bodies at a given distance *r* is constant
  - cannot ignore contribution of distant bodies
- Examples
- astrophysics (gravity)
- molecular dynamics (electrostatics)

```
Ex: Gravitation r_{ij} = \| \mathbf{p}_i - \mathbf{p}_j \|

f(i, j) = -G \cdot \frac{m_i \cdot m_j}{r_{ij}^2} \cdot \frac{\mathbf{p}_i - \mathbf{p}_j}{r_{ij}}
f(i) = \sum_{j \neq i} f(i, j)
```

## the basic simulation algorithm:

```
while (t < t<sub>Final</sub>) do
  forall 1 ≤ i ≤ n do
    ⟨ compute force f(i) on body i ⟩
    end
    ⟨ update velocity and position of all bodies ⟩
    t = t + ⊿t
end
```

## Direct approach:

 $O(n^2)$  interactions per time-step

# **Reducing the number of interactions**

## Exploit combined effect of "distant" bodies



#### apply this idea *recursively*:

- determines control-structure
- requires hierarchical decomposition of space

• *Monopole approximation* of the force on the earth due to interaction with all masses in the *Andromeda* galaxy

$$f(b_{\text{earth}}) \approx -G \frac{m_{\text{earth}} M(\mathbf{p}_{\text{earth}} - \mathbf{c})}{r^3}$$

- Monopole approximation saves work if it can be reused with multiple bodies
- Accuracy of approximation improves with
  - increasing r
  - decreasing d
  - order of the approximation
    - Monopole, dipole, quadropole, ...
  - uniformity of body distribution

## **Hierarchical decomposition of space**



an octree decomposition



3D

# The Barnes-Hut algorithm

#### stepSystem():

// P(i) is coordinates and mass of body i T := makeTree(P(1:n))forall 1 < i < n do f(i) = qravCalc(P(i),T)( update velocities and positions )

#### Gravitation in 3D:

$$F = G \cdot \frac{m_p \cdot m_q}{r_{pq}^2} \cdot \left[ \frac{x_p - x_q}{r_{pq}}, \frac{y_p - y_q}{r_{pq}}, \frac{z_p - z_q}{r_{pq}} \right]$$

if ("p is distant enough from q") then  $\langle return \ body-cell \ interaction \ (p,q) \rangle$ 

else

else

function gravCal

forall  $q' \in nonemptyChildren(q)$  do accumulate gravCalc(p,q') (return accumulated interaction) end if

end if

$$r_{pq} = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2 + (z_p - z_q)^2}$$

ody-body interaction: use masses of bodies and distance between them.

body-cell interaction: use mass of body and mass of cell and distance between body and center of mass of cell.

force is additive; individual contributions can be accumulated.

## The Barnes-Hut algorithm - Performance issues

# stepSystem(P(1:n)) -- P(1:n) is sequence of bodies T := makeTree(P(1:n)) forall 1 ≤ i ≤ n do f(i) := gravCalc(P(i),T) ⟨update velocities and positions⟩

function gravCalc(p,q)

if ("q *is a leaf*") then

(return body-body interaction)

#### else

if ("p is distant enough from q") then {return body-cell interaction}

#### else

forall q'∈ nonemptyChildren(q) do
 accumulate gravCalc(p,q')
 ⟨return accumulated interaction⟩
end if

end if

## Parallelism

- nested parallelism
  - over bodies
  - over recursively divided cells
- load balance

different number of interactions for different bodies

## Locality

nearby bodies interact with similar set of nodes in tree



## **Constructing the tree**

- Small fraction f of the total work
  - but sequential tree construction can limit overall speedup
    - Amdahl's law: SP < 1/f
- Computing monopole approximation for each cell
  - Post-order traversal of tree
    - At leaves, monopole coincides with single body
    - At interior nodes, monopole is weighted sum of all children's monopoles

```
function makeTree( P(1:n) )
for i := 1 to n do
T := insert(P(i),T)
( compute monopole approximation at each node )
```



## The acceptance criterion

• when is a cell "distant enough"?



original criterion used by Barnes-Hut:

$$\frac{d}{r} < \theta \equiv r > \frac{d}{\theta}$$
 where usually

 $0.7 \le \theta \le 1.0$ 

• problem: detonating galaxy anomaly



(one) solution: add distance between center of mass (cm) and geometric center of cell (c)

$$r > \frac{d}{\theta} + |cm - c|$$

## Effects of acceptance criterion ... on runtime



FIG. 3.—Scaling of CRAY X-MP CPU time (CPU seconds per step per particle) for spherical, isotropic Plummer models, as a function of the number of particles, for values of the clumping parameter  $\theta$  in the range  $0 \le \theta \le 1.5$ . Only monopole terms have been included in the force computation.

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

## Effects of acceptance criterion ... on accuracy



FIG. 6.—Magnitude of the typical error (in percent) in the tree force computation, relative to a direct sum, as a function of  $\theta$ , for selected values of the particle number N. The calculations have assumed spherical, isotropic Plummer models with softening parameter  $\varepsilon = 0$ , and only monopole terms have been included in the force computations.

Source: L. Hernquist. *Performance characteristics of tree codes*. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987.

1% accuracy sufficient for most astrophysical simulations. Different techniques with better error control necessary for other systems (*fast multipole methods*).

## Effect of body distribution ... on total work



For fixed *n* 

- uniform distributions generate high interaction work (shallow trees)
- non-uniform distributions generate higher tree construction and lower interaction work

# **Complexity of Barnes-Hut**

#### • Tree building

- cost of tree construction depends on distribution of bodies
  - cost of body insertion  $\infty$  distance to root
  - for a uniform distribution of n particles, sequential construction of the tree is  $O(n \log n)$  time
- In a simulation, tree could be maintained rather than reconstructed each time step
- Force calculation (uniform distribution of bodies in 2D)
  - consider computing the force acting on a body in the lower right corner
  - if  $\theta$  = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion
  - The remaining square does not satisfy the criterion, hence we descend into the next level
  - each level of the tree incurs a constant amount of work while descending along the path to the lower right corner
  - for a uniform distribution of *n* bodies, the length of the path is  $O(\log_4 n)$
  - computing the forces on n bodies is  $O(n \log n)$  work
  - non-uniform distribution more difficult to analyze
- Accuracy and complexity are difficult to control



## **Implementation issues - parallelization**

## • parallelization of the force computation loop:



Results on O2000 (evans) for 1M particles



## • observations:

- force computation scales reasonably up to 16 processors

- dynamic scheduling important
- single processor performance not impressive

Processors

# Implementation issues - tuning of gravCalc (1)

#### performance analysis of gravCalc shows

- poor cache reuse (90% L1 and 88% L2)
- poor use of floating point units
- poor reuse of subexpressions

compiler can't generate good code?

- manual tuning of gravCalc
  - inline computation of acceptance criterion
  - inline computation of interaction
  - reuse distance vector (body-cell)
  - fuse loops

#### significant performance improvement!

- observations:
  - 2.5 times faster
  - good scaling
  - better use of FPUs and better prediction

cache reuse (93% L1 and 94% L2) still bad

```
RECURSIVE SUBROUTINE gravCalc(p,q)

IF ("q is a body") THEN

⟨compute body-body interaction; accumulate⟩

ELSE

IF ("p is distant enough from q") THEN

⟨compute body-cell interaction; accumulate⟩

ELSE

DO q' ∈ nonemptyChildren(q)

CALL gravCalc(p,q')

END DO

END IF

END IF

END SUBROUTINE gravCalc
```

#### Results on O2000 (evans) for 1M particles



Processors

## Implementation issues - tuning of gravCalc (2a)

- how can we improve cache reuse?
  - neighboring bodies in space will most likely interact with the same cells and bodies!
- sort bodies according to some spatial order:
  - precompute spatial order such as Morton order or Peano-Hilbert order
  - or simply order bodies as they are encountered during a depth-first treewalk of T
  - Sorted bodies may also speed up subsequent tree rebuilding



Morton order







## Implementation issues - tuning of gravCalc (2b)

## • observations:

- 30-40% increase in performance
- very good scaling
- L2 reuse now up at 99.8%
- L1 still at 93%

#### stepSystem(P(1:n))

T := makeTree(P(1:n))
re-order P(1:n) according to T
forall 1 ≤ i ≤ n do
 f(i) := gravCalc(P(i),T)
⟨update velocities and positions⟩

#### Results on O2000 (evans) for 1M particles



Processors



## Implementation issues - tuning of gravCalc (3)

#### How can we improve L1 reuse?

- interact a group of bodies with a cell or body!
- walk the tree and compute forces for a set of neighboring bodies

```
RECURSIVE SUBROUTINE gravCalc(set P, node q)
```

```
IF ("q is a body") THEN
```

```
DO p \in P
```

```
ELSE
```

```
P' = ∅
```

```
DO p \in P
```

```
IF ("p is distant enough from q") THEN 
(compute body-cell interaction; accumulate)
```

ELSE

```
P' = P' \cup \{p\}
```

```
END IF
```

```
END DO
```

```
IF (P'.NE. Ø) THEN
DO q' ∈ nonemptyChildren(q)
```

```
CALL gravCalc(P',q')
```

```
END DO
```

```
END IF
```

```
END IF
```

```
END SUBROUTINE gravCalc
```

#### Results on O2000 (evans) for 1M particles



Processors

observations:

- 20-40% increase in performance
- L1 reuse now at 99.7% (32 bodies per group)
- L2 down slightly at 96%
- ordered particles essential

## Implementation issues - tuning of gravCalc (4)

#### Another technique to improve L1 reuse

- allow leaf-cells to contain more than 1 body
- compute the body-body interactions in a doubly nested loop.

```
RECURSIVE SUBROUTINE gravCalc(set P, node q)
  P' = \emptyset
  DO p \in P
    IF ("p is distant enough from q") THEN
       (compute body-cell interaction; accumulate)
    ELSE
       IF ("q is a leaf") THEN
         DO p \in P, q' \in q
            (compute body-body interaction; accumulate)
         END DO
       ELSE
         P' = P' \cup \{p\}
       END IF
    END IF
  END DO
  IF (P'.NE.\emptyset) THEN
    DO q' \in nonemptyChildren(q)
       CALL gravCalc(P',q')
    END DO
  END IF
END SUBROUTINE gravCalc
```

#### Results on O2000 (evans) for 1M particles



Processors

observations:

10% increase in performance

this algorithm will perform strictly more work than the previous versions! More particles per leaf potentially causes more body-body interactions and fewer body-cell

-interactions to be computed

## **Implementation issues - summary**

## Shared memory model

- enables relatively simple parallelization of basic algorithm using OpenMP
- shared memory model critical in dynamic load balancing

## Performance tuning

- overall these optimizations lead to 4-5 times faster single-processor performance
- Linear or superlinear parallel speedup to 16 processors
- optimizing serial performance is essential for obtaining good parallel performance
- last two optimization are instances of exposing parallelism to improve serial performance

## Observations

- the better the performance of gravCalc, the more seriously the serial treeconstruction affects the overall speedup
  - when makeTree time is included in speedup
    - speedup drops from 13.00 to 10.8 for p = 16 in first version
    - speedup drops from 15.89 to 11.74 for p = 16 on last version
- parallel tree construction algorithms!