
COMP 790 - 033 - Parallel Computing
Lecture 6  

September 21, 2022

CC-NUMACOMP 790 - 033  F22  Prins

1. Shared Memory Implementation

2.  OpenMP Case Study: 
The Barnes-Hut N-body Algorithm
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Topics

• Shared-memory 
– how can this be implemented in a scalable fashion?
– n-body example

• Shared-memory multiprocessor performance and implementation issues
– coherence
– consistency
– synchronization

• Example
– Implementation of Barnes-Hut N-body algorithm
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Shared memory multi-processors

• Main memory has a fixed access time
– it has to serialize reads and writes
– naïve implementation requires processors to serialize memory 

references among all processors
• this doesn’t scale

• Instead processors maintain local caches of memory data
– locality of reference

• the unit of transfer to/from memory is a cache line (64 bytes)
• L1 and L2 caches are local to the core
• L3 is local to the socket
• first touch principle for page faults

– the page frame is allocated in the physical memory attached to the socket
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Shared-memory multiprocessor implementation

• Objectives 
– Examine implementation issues in shared-memory multiprocessors

• cache coherence
• memory consistency
• synchronization mechanisms

• Why?
– Correctness

• memory consistency (or lack thereof) can be the source of very subtle 
bugs 

– Performance
• cache coherence and synchronization mechanisms can have profound 

performance implications
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Coherence of memory location x
• Defined by three properties   (assume x = 0 initially)

(a)

(b)

(c)

P1:        W(x,1)                    1 = R(x)

no intervening write of x
by P1 or other processor

P1:        W(x,1) 
P2:                                      1 = R(x)

sufficiently large 
interval and no 
other write of x

P1:        W(x,1)                   a = R(x)
P2:        W(x,2)                   a = R(x)         
P3:                                      a = R(x)

a ∈ {1,2} 
and has same value at all processors

sufficiently large 
interval and no other writes of x

time
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Consistency Models

• The consistency problem 
– Performance motivates replication

• Keep data in caches close to processors

– Replication of read-only blocks is easy
• No consistency problem

– Replication of written blocks is hard
• In what order do we see different write operations?
• Can we see different orders when viewed from different processors?

– Fundamental trade-offs
• Programmer-friendly models perform poorly
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Cache-coherent shared memory multiprocessor
• Implementations 

– shared bus
• bus may be a “slotted” ring

– scalable interconnect
• fixed per-processor bandwidth

• Effect of CPU write on local cache
– write-through policy – value is 

written to cache and to memory
– write-back policy – value written in 

cache only; memory updated 
upon cache line eviction

• Effect of CPU write on remote cache
– update – remote value is modified
– invalidate – remote value 

is marked invalid

• • •M1 C1

P1

M2 C2

P2

Mp Cp

Pp

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •
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Bus-Based Shared-Memory protocols

• Invalidation protocol with write-back cache
– Cache block can be in one of three states:

• INVALID — The block does not contain valid data
• SHARED — The block is a current copy of memory data 

– other copies may exist in other caches
• EXCLUSIVE — The block holds the only copy of the correct data

– memory may be incorrect, no other cache holds this block

– Handling exclusively-held blocks
• Processor events

– cache is block “owner”
» reads and writes are local

• Snooping events
– on detecting a read-miss or write-miss from 

another processor to an exclusive block
» write-back block to memory
» change state to shared (on external read-miss) 

or invalid (on external write-miss)

• • •

M1

C1

P1

M2

C2

P2

Mk

Cp

Pp

• • •
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Invalidation protocol:  example

P1 P3 x1P2

x1

Shared

P1 P3 x1

x1

P2

x1

SharedShared

P1 P3 x1

x2

P2

x1

InvalidExcl

W

R
P1 P3 x1

x3

P2

x1

InvalidExcl

W

P1 P3 x3

x3 x3

P2

x1

InvalidShared

R

Shared

P1 P3 x3

x3 x3

P2

x4

ExclInvalid

W

Invalid

R
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Implementation:  FSM per cache line

• Action in response to CPU event

Excl

Invalid Shared

Eviction

CPU read

CPU read
Place read-miss on bus

CPU read
CPU write

Excl

Invalid Shared
Write-miss for this block

• Action in response to bus 
event
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Intel cache coherence (skylake)
– basically a directory-based protocol with 2 or 4 clusters
– each package (socket) is a cluster with p cores distributed across two 

slotted rings

CC-NUMACOMP 790 - 033  F22  Prins



12

Intel physical organization
– up to 4 sockets
– up to 28 cores per socket 
– up to 56 thread contexts (28 threads and 28 hyperthreads)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 3

thread context



13

Mapping OpenMP threads to hardware (1)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality
– KMP_AFFINITY = “granularity=fine,compact”

0 1 2 3 4 5 6 7 OpenMP thread-id

Note: we use a fictional 
machine with 2 sockets and 
4 cores with hyperthreads

to illustrate these mappings 

Nearby threads-ids tend to share more lower-level cache
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Mapping OpenMP threads to hardware (2)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth without data locality
– KMP_AFFINITY = “granularity=fine,scatter”

0 4 2 6 1 5 3 7 OpenMP thread id
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Mapping OpenMP threads to hardware (3)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize data locality and equal thread progress
– KMP_AFFINITY = “granularity=fine,compact,1,0”
– OMP_NUM_THREADS = 4

0 4 1 5 2 6 3 7 OpenMP thread id
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Mapping OpenMP threads to hardware (4)
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machine

socket 0

core 0 core 1 core 0 core 1

socket 1

thread context

• Mapping threads to maximize bandwidth and equal thread progress
– KMP_AFFINITY = “granularity=fine,scatter”
– OMP_NUM_THREADS = 4

0 4 2 6 1 5 3 7 OpenMP thread
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Coherence and Consistency

• Coherence
– behavior of a single memory location 
– viewed from a single processor
– read returns “most recent” written value

• Consistency
– behavior of multiple memory locations read and written by multiple 

processors
– viewed from one or more of the processors
– read may not return the “most recent” value

• What are the permitted ordering among reads and writes of several memory 
locations?
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Example

• Case study:  the Barnes-Hut algorithm
– Study an important algorithm in scientific computing

• efficient n-body simulation with long range forces

– Investigate parallelization and implementation in a shared memory 
multiprocessor

• expression and management of parallelism
• memory hierarchy tuning
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N-body simulations:  self-gravitating systems
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• Simulate the evolution of a system 
of n bodies over time
– Pairwise interaction of bodies

• force f(i,j) on body i due to body j
• total force f(i) on body i due to all

bodies
• acceleration of body i via f = ma

– Numerical integration of body velocities 
and positions

• timestep ∆t

• Non-negligible long-range forces
– for uniformly distributed bodies in 3D, 

total force due to all bodies at a given 
distance r is constant

• cannot ignore contribution of 
distant bodies

• Examples
– astrophysics (gravity)
– molecular dynamics (electrostatics)

the basic simulation algorithm:

while (t < tFinal) do

forall 1 ≤ i ≤ n do

〈 compute force f(i) on body i 〉
end

〈 update velocity and position of all bodies 〉
t = t + ∆t

end

The n-body simulation problem

Direct approach: 
O(n²) interactions per time-step
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Ex:  Gravitation𝑟𝑟𝑖𝑖𝑖𝑖 = 𝒑𝒑𝑖𝑖 − 𝒑𝒑𝑖𝑖
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Reducing the number of interactions
Exploit combined effect of “distant” bodies

Earth

Andromeda

Center of 
mass c

Total mass
M

d

r

• Monopole approximation of the force 
on the earth due to interaction with all 
masses in the Andromeda galaxy

• Monopole approximation saves work 
if it can be reused with multiple bodies

• Accuracy of approximation improves 
with

– increasing r
– decreasing d
– order of the approximation

• Monopole, dipole, quadropole, …
– uniformity of body distribution

3
earthearth

earth
)()(

r
MmGbf cp −

−≈

Vulcan

r’

d’

apply this idea recursively:
 determines control-structure

 requires hierarchical decomposition of space
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Hierarchical decomposition of space

an adaptive quadtree

an octree decomposition

3D

a quadtree2D
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The Barnes-Hut algorithm
stepSystem():

// P(i) is coordinates and mass of body i
T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) = gravCalc(P(i),T)

〈 update velocities and positions 〉 

function gravCalc(body p, treenode q)

if (“q is a leaf”) then
〈return body-body interaction  (p,q) 〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction (p,q) 〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

Gravitation in 3D:

body-body interaction: use masses of 
bodies and distance between them.

body-cell interaction: use mass of body and 
mass of cell and distance between body and 
center of mass of cell.

force is additive; individual contributions can 
be accumulated.
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The Barnes-Hut algorithm - Performance issues
stepSystem(P(1:n))

-- P(1:n) is sequence of bodies

T := makeTree(P(1:n))

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)  

〈update velocities and positions〉 

function gravCalc(p,q)

if (“q is a leaf”) then
〈return body-body interaction〉

else

if (“p is distant enough from q”) then

〈return body-cell interaction〉
else

forall q’∈ nonemptyChildren(q) do

accumulate gravCalc(p,q’)

〈return accumulated interaction〉
end if

end if

Parallelism
nested parallelism

• over bodies
• over recursively divided cells

load balance
different number of interactions 
for different bodies

Locality
nearby bodies interact with similar set 
of nodes in tree
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Constructing the tree

function insert(p,T)

if empty(T) then

〈 return p as singleton tree 〉
else

〈 determine child S of T in which p belongs 〉
S’ := insert(p,S)

〈 return T with S replaced by S’  〉
endif

• Small fraction f of the total work
– but sequential tree 

construction can limit 
overall speedup

• Amdahl’s law:  SP <  1/f

• Computing monopole 
approximation for each cell
– Post-order traversal of tree

• At leaves, monopole 
coincides with single body

• At interior nodes, 
monopole is weighted sum 
of all children’s monopoles

function makeTree( P(1:n) )

for i := 1 to n do

T := insert(P(i),T)

〈 compute monopole approximation at each node 〉
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• when is a cell “distant enough”?

• problem: detonating galaxy anomaly

CC-NUMA

The acceptance criterion

Earth

Andromeda

Center θ
of mass

d

r

original criterion used by Barnes-Hut:

where usually

(one) solution: add distance between center 
of mass (cm) and geometric center of cell 
(c)

θ
θ dr

r
d

>≡<     

primary galaxy

secondary galaxy

(3D) 3~

(2D) 2~

d

d

0.17.0 ≤≤θ

|| ccmdr −+>
θθ<≈ 7.0

2d
d

Center
of mass

r

d
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Effects of acceptance criterion … on runtime

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987. 
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Effects of acceptance criterion … on accuracy

Source: L. Hernquist. Performance characteristics of tree codes. Astrophysical Journal Supplement Series, Vol. 64, Pages 715-734, 1987. 

1% accuracy sufficient for most astrophysical simulations. Different techniques 
with better error control necessary for other systems (fast multipole methods).
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Effect of body distribution … on total work

Plummer distributionUniform distribution

For fixed n
• uniform distributions generate high interaction work (shallow trees)
• non-uniform distributions generate higher tree construction and lower 
interaction work
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Complexity of Barnes-Hut

• Tree building
– cost of tree construction depends on distribution of bodies

• cost of body insertion ∝ distance to root
• for a uniform distribution of n particles, sequential construction of the tree is O(n log n) time

– In a simulation, tree could be maintained rather than reconstructed each time step

• Force calculation (uniform distribution of bodies in 2D)
– consider computing the force acting on a body in the lower right corner
– if θ = 1.0 the 3 undivided top-level squares will satisfy the acceptance criterion
– The remaining square does not satisfy the criterion, hence we

descend into the next level
– each level of the tree incurs a constant amount of

work while descending along the path to the lower right corner
– for a uniform distribution of n bodies, the length of the path is

O(log4 n)
– computing the forces on n bodies is O(n log n) work
– non-uniform distribution more difficult to analyze

• Accuracy and complexity are difficult to control
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Implementation issues - parallelization

• parallelization of the force computation loop:

SUBROUTINE stepSystem()

CALL makeTree()

!$OMP PARALLEL DO SCHEDULE(GUIDED,4)

DO i = 1, n

CALL gravCalc(i,root)

END DO

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

〈integrate velocities and positions〉
!$OMP END PARALLEL DO

END SUBROUTINE stepSystem

• observations: 
– force computation scales reasonably up to 16 processors
– dynamic scheduling important
– single processor performance not impressive

1 2 4 8 16
tree construction 25.759 27.444 29.028 24.334 26.066
force computation 1568.854 809.294 416.174 196.997 120.664
speedup 1.00 1.94 3.77 7.96 13.00

0
200
400
600
800

1000
1200
1400
1600
1800

se
c

Processors

Results on O2000 (evans) for 1M particles
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tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

25.759

1568.854

1

27.444

809.294

1.9385464368

29.028

416.174

3.7697069014

24.334

196.997

7.9638471652

26.066

120.664

13.0018398197



Sheet1

				1		2		4		8		16

		tree construction		25.759		27.444		29.028		24.334		26.066

		force computation		1568.854		809.294		416.174		196.997		120.664

		speedup		1.00		1.94		3.77		7.96		13.00

		sum		1594.613		836.738		445.202		221.331		146.73
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Implementation issues - tuning of gravCalc (1) 

• performance analysis of gravCalc shows
– poor cache reuse (90% L1 and 88% L2)
– poor use of floating point units
– poor reuse of subexpressions
compiler can’t generate good code?

• manual tuning of gravCalc
– inline computation of acceptance criterion
– inline computation of interaction
– reuse distance vector (body-cell)
– fuse loops
significant performance improvement!

• observations:
– 2.5 times faster
– good scaling
– better use of FPUs and better prediction
cache reuse (93% L1 and 94% L2) still bad

RECURSIVE SUBROUTINE gravCalc(p,q)
IF (“q is a body”) THEN

〈compute body-body interaction; accumulate〉
ELSE

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(p,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

700

Processors

se
c

tree construction 19.066 17.878 19.527 15.323 13.686

force computation 639.961 315.785 164.764 79.049 44.678

speedup 1.00 2.03 3.88 8.10 14.32

1 2 4 8 16
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tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

19.066

639.961

1

17.878

315.785

2.0265718764

19.527

164.764

3.8841069651

15.323

79.049

8.0957507369

13.686

44.678

14.3238506648



Sheet1

				1		2		4		8		16

		tree construction		19.066		17.878		19.527		15.323		13.686

		force computation		639.961		315.785		164.764		79.049		44.678

		speedup		1.00		2.03		3.88		8.10		14.32

		sum		659.027		333.663		184.291		94.372		58.364
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Implementation issues - tuning of gravCalc (2a) 

• how can we improve cache reuse?
– neighboring bodies in space will most likely interact with the same cells 

and bodies!
• sort bodies according to some spatial order:
– precompute spatial order such as Morton order or Peano-Hilbert order
– or simply order bodies as they are encountered during a depth-first 

treewalk of T
– Sorted bodies may also speed up subsequent tree rebuilding

Morton order Peano-Hilbert order Tree order
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Implementation issues - tuning of gravCalc (2b)

• observations:
– 30-40% increase in performance
– very good scaling
– L2 reuse now up at 99.8%
– L1 still at 93%

stepSystem(P(1:n))

T := makeTree(P(1:n))

re-order P(1:n) according to T

forall 1 ≤ i ≤ n do

f(i) := gravCalc(P(i),T)  

〈update velocities and positions〉

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

600

Processors

se
c

tree construction 19.161 14.51 18.524 18.564 19.873

force computation 495.355 247.89 125.225 62.741 31.281

speedup 1.00 2.00 3.96 7.90 15.84

1 2 4 8 16
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tree construction

force computation

speedup

Processors

sec

Results on O2000 (evans) for 1M particles

19.161

495.355

1

14.51

247.89

1.9982855299

18.524

125.225

3.9557197045

18.564

62.741

7.8952359701

19.873

31.281

15.8356510342



Sheet1

				1		2		4		8		16

		tree construction		19.161		14.51		18.524		18.564		19.873

		force computation		495.355		247.89		125.225		62.741		31.281

		speedup		1.00		2.00		3.96		7.90		15.84

		sum		514.516		262.4		143.749		81.305		51.154







35CC-NUMA

Implementation issues - tuning of gravCalc (3)

How can we improve L1 reuse?
– interact a group of bodies with a cell 

or body!
– walk the tree and compute forces for a set 

of neighboring bodies

RECURSIVE SUBROUTINE gravCalc(set P,node q)
IF (“q is a body”) THEN

DO p ∈ P
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = ∅
DO p ∈ P
IF (“p is distant enough from q”) THEN

〈compute body-cell interaction; accumulate〉
ELSE

P’ = P’ ∪ {p}
END IF

END DO
IF (P’.NE. ∅) THEN
DO q’ ∈ nonemptyChildren(q)

CALL gravCalc(P’,q’)
END DO

END IF
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

100

200

300

400

500

Processors

se
c

tree construction 20.041 19.471 19.824 18.605 13.716

force computation 421.391 205.309 104.438 51.828 25.805

speedup 1.00 2.05 4.03 8.13 16.33

1 2 4 8 16

observations:

 20-40% increase in performance

 L1 reuse now at 99.7% 
(32 bodies per group)

 L2 down slightly at 96%

 ordered particles essential
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Processors

sec

Results on O2000 (evans) for 1M particles

20.041

421.391

1

19.471

205.309

2.0524721274

19.824

104.438

4.0348436393

18.605

51.828

8.1305664892

13.716

25.805

16.3298198024



Sheet1

				1		2		4		8		16

		tree construction		20.041		19.471		19.824		18.605		13.716

		force computation		421.391		205.309		104.438		51.828		25.805

		speedup		1.00		2.05		4.03		8.13		16.33

		sum		441.432		224.78		124.262		70.433		39.521
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Implementation issues - tuning of gravCalc (4)

Another technique to improve L1 reuse 
– allow leaf-cells to contain more than 1 body
– compute the body-body interactions in a 

doubly nested loop.

RECURSIVE SUBROUTINE gravCalc(set P, node q)
P’ = ∅
DO p ∈ P

IF (“p is distant enough from q”) THEN
〈compute body-cell interaction; accumulate〉

ELSE
IF (“q is a leaf”) THEN

DO p ∈ P, q’ ∈ q
〈compute body-body interaction; accumulate〉

END DO
ELSE

P’ = P’ ∪ {p}
END IF

END IF
END DO
IF (P’.NE.∅) THEN

DO q’ ∈ nonemptyChildren(q)
CALL gravCalc(P’,q’)

END DO
END IF

END SUBROUTINE gravCalc

Results on O2000 (evans) for 1M particles

0

50
100

150
200

250

300
350

400

Processors

se
c

tree construction 13.179 12.494 13.362 12.682 9.536

force computation 378.345 189.231 94.996 47.866 23.809

speedup 1.00 2.00 3.98 7.90 15.89

1 2 4 8 16

observations:

 10% increase in performance

this algorithm will perform strictly 
more work than the previous 
versions! More particles per leaf 
potentially causes more body-body 
interactions and fewer body-cell 
interactions to be computed. 
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378.345

1

12.494

189.231

1.9993817081

13.362

94.996

3.982746642

12.682

47.866

7.9042535411
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23.809

15.8908395985
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				1		2		4		8		16

		tree construction		13.179		12.494		13.362		12.682		9.536

		force computation		378.345		189.231		94.996		47.866		23.809

		speedup		1.00		2.00		3.98		7.90		15.89

		sum		391.524		201.725		108.358		60.548		33.345
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Implementation issues - summary

• Shared memory model
– enables relatively simple parallelization of basic algorithm using OpenMP
– shared memory model critical in dynamic load balancing

• Performance tuning
– overall these optimizations lead to 4-5 times faster single-processor performance
– Linear or superlinear parallel speedup to 16 processors
– optimizing serial performance is essential for obtaining good parallel performance
– last two optimization are instances of exposing parallelism to improve serial 

performance

• Observations
– the better the performance of gravCalc, the more seriously the serial tree-

construction affects the overall speedup 
• when makeTree time is included in speedup

– speedup drops from 13.00 to 10.8 for p = 16 in first version
– speedup drops from 15.89 to 11.74 for p = 16 on last version

– parallel tree construction algorithms!

COMP 790 - 033  F22  Prins
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