
• Reading
– Patterson & Hennesey, Computer Architecture (2nd Ed.) secn 8.6 – a

condensed treatment of consistency models

COMP 790 - 033 - Parallel Computing

Lecture 7
October 5, 2022

CC-NUMA (2)
Memory Consistency and

Synchronization Operations

CC-NUMA (2)COMP 790 - 033 Prins F22

2CC-NUMA (2)COMP 790 - 033 Prins F22

Coherence and Consistency

• Memory coherence
– behavior of a single memory location M
– viewed by one or more processors
– informally

• all writes to M are seen in the same order by all processors

• Memory consistency
– behavior of multiple memory locations read and written by multiple

processors
– viewed by one or more processors
– informally

• concerned with the order in which writes on different locations may be seen

3CC-NUMA (2)COMP 790 - 033 Prins F22

Coherence of memory location x
• Defined by three properties (assume x = 0 initially)

(a)

(b)

(c)

P1: W(x,1) 1 = R(x)

no intervening write of x
by P1 or other processor

P1: W(x,1)
P2: 1 = R(x)

sufficiently large
interval and no
other write of x

P1: W(x,1) a = R(x)
P2: W(x,2) a = R(x)
P3: a = R(x)

a ∈ {1,2}
and has same value at all processors

sufficiently large
interval and no other writes of x

time

4CC-NUMA (2)COMP 790 - 033 Prins F22

Consistency Models

• The consistency problem
– Performance motivates replication

• Keep data in caches close to processors

– Replication of read-only blocks is easy
• No consistency problem

– Replication of written blocks is hard
• In what order do we see different write operations?
• Can we see different orders when viewed from different processors?

– Fundamental trade-offs
• Programmer-friendly models perform poorly

5CC-NUMA (2)COMP 790 - 033 Prins F22

Consistency Models

• The importance of a memory consistency model

initially A = B = 0

P1 P2
A := 1; B := 1;

if (B == 0) if (A == 0)

... P1 “wins” ... P2 “wins”

– P1 and P2 may both win in some consistency models!
• Violates our (simplistic) mental model of the order of events

• Some consistency models
• Strict consistency
• Sequential consistency
• Processor consistency
• Release consistency

6CC-NUMA (2)COMP 790 - 033 Prins F22

Strict Consistency

• Uniprocessor memory semantics
– Any read of memory location x returns the value stored by the most

recent write operation to x
• Natural, simple to program

P1: W(x, 1)

P2: 1 = R(x)

P1: W(x, 1)

P2: 0 = R(x) 1 = R(x)

Strictly Consistent Non-Strictly Consistent

7CC-NUMA (2)COMP 790 - 033 Prins F22

Strict Consistency

• Implementable in a real system?
– Requires...

• absolute measure of time (i.e., global time)
• slow operation else violation of theory of relativity!

– Claim: Not what we really wanted (or needed) in the first place!
• Bad to have correctness depend on relative execution speeds

Remote
MemoryP1 P2

Write

(1 km apart)

Read

(1 m apart)

8CC-NUMA (2)COMP 790 - 033 Prins F22

Sequential Consistency

• Mapping concurrent operations into a single total ordering
– The result of any execution is the same as if

• the operations of each processor were performed in sequential order and
are interleaved in some fashion to define the total order

P1: W(x, 1)

P2: 1 = R(x) 1 = R(x)

Both executions are sequentially consistent

P1: W(x, 1)

P2: 0 = R(x) 1 = R(x)

9CC-NUMA (2)COMP 790 - 033 Prins F22

Sequential Consistency: Example

• Earlier in time does not imply earlier in the merged sequence
– is the following sequence of observations sequentially consistent?
– what is the value of y?

P1: W(x, 1) ? = R(y)

P2: W(y, 2)

P3: 2 = R(y) 0 = R(x) 1 = R(x)

10CC-NUMA (2)COMP 790 - 033 Prins F22

Processor Consistency

• Concurrent writes by different processors on different variables may be
observed in different orders
– there may not be a single total order of operations observed by all

processors
• Writes from a given processor are seen in the same order at all other

processors
– writes on a processor are “pipelined”

P1: W(x, 1) 0 = R(y) 1 = R(y)

P2: W(y,1) 0 = R(x) 1 = R(x)

P3: 1 = R(x) 0 = R(y) 1 = R(y)

P4: 0 = R(x) 1 = R(y) 1 = R(x)

11CC-NUMA (2)COMP 790 - 033 Prins F22

Processor consistency

• Typical level of consistency
found in shared memory
multiprocessors
– insufficient to ensure correct

operation of many programs
• Ex: Peterson’s mutual

exclusion algorithm

program mutex
var enter1, enter2 : Boolean;

turn: Integer

process P1
repeat forever

enter1 := true
turn := 2
while enter2 and turn=2 do skip end
... critical section ...
enter1 := false
... non-critical section ...

end repeat
end P1;

process P2
repeat forever

enter2 := true
turn := 1
while enter1 and turn=1 do skip end
... critical section ...
enter2 := false
... non-critical section ...

end repeat
end P2;

begin
enter1, enter2, turn := false, false, 1
cobegin P1 || P2 coend

end

12CC-NUMA (2)COMP 790 - 033 Prins F22

Weak Consistency

• Observation
– memory “fence”

• if all memory operations up to a checkpoint are known to have
completed, the detailed completion order may not be of importance

– defining a checkpoint
• a synchronizing operation S issued by processor Pi

– e.g. acquiring a lock, passing a barrier, or being released from a condition
wait

– delays Pi until all outstanding memory operations from Pi have been
completed in other processors

• Execution rules
– synchronizing operations exhibit sequential consistency
– a synchronizing operation is a memory fence
– if Pi and Pj are synchronized then all memory operations in Pi

complete before any memory operations in Pj can start

13CC-NUMA (2)COMP 790 - 033 Prins F22

Weak Consistency: Examples

P1: W(x, 1) W(y, 2) S

P2: 1 = R(x) 0 = R(y) S 1 = R(x), 2 = R(y)

P3: 0 = R(x) 2 = R(y) S 1 = R(x), 2 = R(y)

P1: W(x, 1) W(x, 2) S

P2: S 1 = R(x)

Not weakly consistent

Weakly consistent

14CC-NUMA (2)COMP 790 - 033 Prins F22

Memory consistency: processor-centric definition
• A memory consistency model defines which orderings of memory-references

made by a processor are preserved for external observers
– Reference order defined by

• Instruction order →
• Reference type {R,W} or synchronizing operation (S)
• location referenced {a,b}

– A memory consistency model preserves some of the reference orders
• Sequential Consistency (SC), Processor consistency = Total store ordering (TSO),

Partial store ordering (PSO), weak consistency

reference Consistency Model
order a = b a ≠ b

(coherence) SC TSO PSO weak
Ra → Rb * * *
Ra → Wb * * * *
Wa → Wb * * *
Wa → Rb * *

?a → S → ?b * * * * *

15CC-NUMA (2)COMP 790 - 033 Prins F22

Consistency models: ordering of “writes”

• Sequential consistency
– all processors see all writes in the same order

• Processor consistency
– All processors see

• writes from a given processor in the order they were performed (TSO) or
in some unknown but fixed order (PSO)

• writes from different processors may be observed in varying interleavings
at different processors

• Weak consistency
– All processors see same state only after explicit synchronization

16CC-NUMA (2)COMP 790 - 033 Prins F22

Example

• OpenMP threads T1, T2
– variables a,b,c are shared and initially a = b = c = 0
– r1,r2,r3 are registers
– which values of (r1,r2,r3) can be observed if printed by the threads?

T1 T2
A1: r2 := b B1: a := 1

A2: c := 1 B2: r3 := c

A3: r1 := a B3: b := 1

(r1,r2) = ? r3 = ?

17CC-NUMA (2)COMP 790 - 033 Prins F22

Memory consistency: Summary

• Memory consistency
– contract between parallel programmer and parallel processor

regarding observable order of memory operations
• with multiple processors and shared memory, more opportunities to

observe behavior
• therefore more complex contracts

• Where is memory consistency critical?
– fine-grained parallel programs in a shared memory

• concurrent garbage collection
• avoiding race conditions: Java instance constructors
• constructing high-level synchronization primitives
• wait-free and lock-free programs

18CC-NUMA (2)COMP 790 - 033 Prins F22

Memory consistency: Summary

• Why memory consistency contracts are difficult to use
– What memory references does a program perform?

• Need to understand the output of optimizing compilers
– In what order may they be observed?

• Need to understand the memory consistency model
– How can we construct a correct parallel programs that accommodate these

possibilities?
• Need deep thought and formal methods

• What is a parallel programmer to do, then?
– Use higher-level concurrency constructs such as loop-level parallelization

and synchronized methods (Java)
• the synchronization inherent in these constructs enables weak

consistency models to be used
– Use machines that provide sequential consistency

• Increasingly hard to find and invariably “slower”
– Leave fine-grained unsynchronized memory interaction to the pros

19CC-NUMA (2)COMP 790 - 033 Prins F22

Synchronizing Operations

• Examples
– locks to gain exclusive access for manipulation of shared variables
– barrier synchronization to ensure all processors have reached a

program point

• How are these efficiently implemented in a cache-coherent shared
memory multiprocessor?

20CC-NUMA (2)COMP 790 - 033 Prins F22

Atomic operations in cc-numa multiprocessors

• Possible atomic machine operations
In the following, < ... > refers to atomic execution of action within the brackets,

m is a memory location, and r1, r2 are processor registers
– read and write

<r1 := m>
<m := r1>

– exchange(m,r1)
<r1, m := m, r1>

– test and set(m,r1,r2)
<if (m == r1) then m := r2>

– fetch and add(m,r1,r2)
<r2 := m + r1; m := r2>

– load-linked(r1,m) and store-conditional(m,r2)
<r1 := m>; …. ; <m := r2 or fail>

– if m is updated by another processor between the read and write, the write to m will not
be performed and the condition code cc will be set to fail

21CC-NUMA (2)COMP 790 - 033 Prins F22

How implemented?
• Atomic read and write

– simple to implement, difficult to use (recall memory consistency discussion)

• Exchange, test-and-set, fetch-and-add
– require read-modify-write

• Involves some hardware-level special coherence protocol

• Load-linked (LL) / Store conditional (SC)
– LL fetches value into cache line (state = shared)
– cache-line state is monitored
– SC fails if cache line has invalid state at time of store
– Example

;; implementation of r2 := fetch-and-add(m,r1) using LL/SC
try: ll r3, m

add r3, r1, r3 ; r3 := r3 + r1
sc r3, m
bcz try ; try again if sc fails

22CC-NUMA (2)COMP 790 - 033 Prins F22

Lock/unlock using atomic operations
• Exchange lock

– key holds access to the lock
• key == 0 means lock available

– to get access, a processor must exchange value 1 with key value 0
{r1 == 1}

lock: exch r1, key ; spin until zero obtained
cmpi r1, 0 ;
bne lock ;
{lock obtained}

– to release, exchange with key
{r1 == 0}

unlock: exch r1, key
{lock released}

– what is the effect of spinning on an exchange lock in a CC-NUMA machine?
• with single processor trying to obtain lock?

– key is cache-resident in EXCLUSIVE state until released by other processor
• with multiple processors trying to obtain lock?

– each exchange brings key into cache and invalidates other copies requiring O(p) cache
lines to be refreshed.

23CC-NUMA (2)COMP 790 - 033 Prins F22

Improving cost of contended locks
• “Local” spinning using read-only copy of key

– avoid coherence traffic while spinning
lock: {r1 == 1}
try: lw r2, key

cmpi r2,0
bne try
{lock observed available}
exch r1, key
cmpi r1, 0
bne try
{lock obtained}

• What happens with p processors spinning?
– No coherence traffic when all processors have key in cache in “shared” state

• What happens when key is released with p processors spinning?
– key is invalidated and up to p processors observe the lock available
– up to p processors attempt an exchange

• one succeeds
• up to p-1 other processors perform an unsuccessful exch

– each exch invalidates up to p-2 local copies of key
– O(p2) cache lines moved per lock release

24CC-NUMA (2)COMP 790 - 033 Prins F22

Improving cost of lock release
• LL/SC makes an improvement

– now 2p movements of cache line on release
lock: {r1 == 1}
try: ll r2, key

cmpi r2,0
bne try
{lock observed available}
sc r1, key
bz try
{lock obtained}

– basic problem
• attempt to replicate contended value across caches
• high cost when p processors contending

• Alternate approaches
– exponential backoff

• increase time to re-try with each failure
– array lock: each process spins on different cache line

25CC-NUMA (2)COMP 790 - 033 Prins F22

Barrier Synchronization

• Delay p processors until all have arrived at barrier
– simple strategy

• shared variables: count, release (initially with value 0)
• in each processor

lock; count = count + 1; unlock
if (count == p) then release := 1
local spinning while release == 0

– How many cache line moves are required for p processors to pass
the barrier?

• p lock/unlock operations
• each lock and unlock may have O(p) cache line moves

– O(p2) cache line moves in the presence of contention
– Can we do better?

26CC-NUMA (2)COMP 790 - 033 Prins F22

Barrier synchronization

• Barrier synchronization may have high contention on entry and on
release
– reduce contention on entry using backoff

• exponential backoff in re-attempting lock acquisition
• random delay in re-attempting lock acquisition
• both approaches fully serialize entry to the barrier

– O(2p) cache block movements

– reduce contention on entry and exit using a combining tree
• O(1) contention in lock acquisition
• O(p) cache line movements
• O(lg p) lock acquisitions worst case delay
• more parallelism in scalable shared memory multiprocessors
• Sometimes implemented in hardware

27

Dissemination barrier

• Barrier using only atomic reads and writes
– assume p = 2k processors
– arrive[0 : p -1] has initial value zero for all elements.
– program executed by processor i

int s = 1;

for (int j = 0; j < k; j++) {

arrive[i] += 1;

while (arrive[i] > arrive[(i+s) mod p]) { /* spin */}

s = 2 * s;

}

/* barrier synchronization achieved */

CC-NUMA (2)COMP 790 - 033 Prins F22

arrive[i : i+s-1 mod p] > 0

arrive[i : i+p-1 mod p] > 0

28

Dissemination barrier: example (p = 4)
int s = 1;

for (int j = 0; j < k; j++) {

arrive[i] += 1;

while (arrive[i] > arrive[(i+s) mod p]) { /* spin */}

s = 2 * s;

}

s = 4

s = 2

s = 1

CC-NUMA (2)COMP 790 - 033 Prins F22

arrive[0] arrive[1] arrive[2] arrive[3]

0 0 0 0

	COMP 790 - 033 - Parallel Computing��Lecture 7 �October 5, 2022�� CC-NUMA (2) �Memory Consistency and �Synchronization Operations
	Coherence and Consistency
	Coherence of memory location x
	Consistency Models
	Consistency Models
	Strict Consistency
	Strict Consistency
	Sequential Consistency
	Sequential Consistency: Example
	Processor Consistency
	Processor consistency
	Weak Consistency
	Weak Consistency: Examples
	Memory consistency: processor-centric definition
	Consistency models: ordering of “writes”
	Example
	Memory consistency: Summary
	Memory consistency: Summary
	Synchronizing Operations
	Atomic operations in cc-numa multiprocessors
	How implemented?
	Lock/unlock using atomic operations
	Improving cost of contended locks
	Improving cost of lock release
	Barrier Synchronization
	Barrier synchronization
	Dissemination barrier
	Dissemination barrier: example (p = 4)

