COMP 790-033 Parallel Computing

Lecture 10
October 19, 2022

BSP (1)
Bulk-Synchronous Processing Model
Models of parallel computation

- **Shared-memory model**
 - Implicit communication
 - algorithm design and analysis relatively simple
 - but implementation issues shine through
 - caches, distribution of data in memories, consistency, synchronization costs, ….
 - limits to scaling in practice

- **Distributed-memory model**
 - explicit communication (message passing)
 - design and analysis takes into account interconnection network and is complex
 - results not easily transferred between different networks

- “Bridging” model
 - simplified communication costs
 - balance realism with tractability of analysis
 - independent of detailed network characteristics (topology, routing, etc.)
 - cost model relies on average or “expected” network behavior
Bridging model of parallel computation

• p (processor-memory) pairs
 – p separate address spaces (distributed memory)

• Memory references
 – segregated into local and remote references
 – remote references
 • are explicit, typically in the form $(\text{proc}, \text{addr})$
 • carry communication cost

• Global barrier synchronization
 – has large cost
BSP - Bulk Synchronous Parallel programming model

- BSP algorithm consists of a sequence of supersteps
- Superstep i consists of
 - local work: processors compute asynchronously
 - access values in local memory
 - record remote reads & writes to be performed
 - global communication
 - let Out_i^j be the set of values leaving proc j in step i
 - let In_{i+1}^j be the set of values arriving at proc j at the start of step $i+1$
 - the relation $Out_i^j \leftrightarrow In_{i+1}^j$ over all processors specifies the communication pattern
 - global synchronization
 - ensure communication phase is complete
 - ensure memory incorporates all updates (consistency)
BSP communication cost

• Definition

 – the *communication size* in step i (measured in 8-byte *words*) is
 \[h_i = \max_{0 \leq j < p} \left(\max \left(\{|Out_i^j|, |In_{i+1}^j|\} \right) \right) \]

 – the *communication cost* for superstep i is $h_i \cdot g + L$

• g and L are machine-specific parameters of the cost model where

• g (bandwidth$^{-1}$ i.e. time per word) is the per-processor full-load permeability of the network

• L (latency) is the transit time across the network plus any additional time for barrier synchronization of the processors

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Basic communication operations (1)

- Send n values from proc 1 to proc 3

h =

BSP communication cost =
Basic communication operations (2)

– Exchange n values between proc 1 and proc 3

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

$h =$

BSP communication cost $=$
Basic communication operations (3)

– Send \(n \) values between proc \(i \) and proc \(H(i) \) forall \(0 \leq i < p \), with \(H \) a permutation of \(0:p-1 \)

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[h = \]

BSP communication cost =
Basic communication operations (4)

– Distribute $n = kp$ values in proc 0 among p procs. Each proc receives k values from proc 0

\[
\begin{array}{ccc}
\text{Source Proc} & \text{Dest Proc} \\
0 & 0 \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
\end{array}
\]

\[
h = \]

BSP communication cost =
Basic communication operations (5)

– Combine $n = kp$ values into proc 0. Each proc sends k values

<table>
<thead>
<tr>
<th>Source Proc</th>
<th>Dest Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

$h =$

BSP communication cost $=$
Basic communication operations (6)

- **Total exchange** (all-to-all exchange) of \(n = kp \) values among \(p \) processors. Each processor receives \(k \) values from every other processor.

\[
\begin{align*}
\text{Source Proc} & \quad 0 \\
& \quad 0 \\
& \quad 1 \\
& \quad 2 \\
& \quad 3 \\
\text{Dest Proc} & \quad 0 \\
& \quad 0 \\
& \quad 1 \\
& \quad 2 \\
& \quad 3 \\
\end{align*}
\]

\[h = \]

BSP communication cost =
Basic communication operations (7)

- Broadcast \(n \) values from proc 0 to all other processors

\[
\begin{array}{cccc}
\text{Source Proc} & 0 & 1 & 2 & 3 \\
\text{Dest Proc} & 0 & 1 & 2 & 3 \\
\end{array}
\]

\[h = \]

BSP communication cost =
BSP programs and execution model

• Basic presentation style is processor-centric
 – not like WT programs
 • number of processors p
 • explicit processor id j

• Single-Program Multiple-Datastream (SPMD) execution model
 – all processors execute same sequential program asynchronously
 – explicitly specify distribution of data over processors
 – specify supersteps
 – for each superstep specify
 • work to be performed by each processor
 • h-relation to be communicated
BSP cost

• Total cost of a BSP algorithm
 – let c be the number of supersteps
 – let p be the number of processors
 – Define
 \[w_i = \max_{0 \leq j < p} \left(\text{work done in FLOPS on superstep } i \text{ by processor } j \right) \]
 \[h_i = \max_{0 \leq j < p} \left(\max(\lvert Out_i^j \rvert, \lvert In_{i+1}^j \rvert) \right) \]

 – then total cost (~ running time) \(C(n, p) \) of a BSP algorithm is
 \[
 C(n, p) = \sum_{i=1}^{c} (w_i + h_i \cdot g + L)
 \]
 \[
 = \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} h_i \cdot g + c \cdot L
 \]
BSP algorithm: Vector summation

- **Problem**: given V^n distributed evenly over p processors, find $s = \text{Sum}(V)$
 - for simplicity, assume $p = 2^k$ and p divides n
 - let $0 \leq j < p$ be the processor id
 - initially processor j holds $r = n/p$ values: $V[j \cdot r : (j + 1) \cdot r - 1]$
 - on completion, each processor holds the value of s

- **Algorithm**
 - **Superstep 1**
 - $s := \text{Sum}(V[j \cdot r : (j + 1) \cdot r - 1])$
 - read s from proc $(j + 1) \mod p$ into s'
 - **Superstep $i = 2$ to $\lg p$**
 - $s := s + s'$
 - read s in proc $(j + 2^{i-1}) \mod p$ into s'
 - **Superstep $1 + \lg p$**
 - $s := s + s'$

- **BSP cost**
BSP algorithm: Vector summation

- Problem: given V^n distributed evenly over p processors, find $s = \text{Sum}(V)$
 - for simplicity, assume p divides n
 - initially processor i holds $r = n/p$ values: $V[i\cdot r: (i+1)\cdot r-1]$
 - on completion, each processor holds the value of s

- Algorithm
 - Let $0 \leq i < p$ be processor id
 - Superstep 1
 - $w_1 = \frac{n}{p} - 1$, $h_1 = 0$
 - $s := \text{Sum} (V[i\cdot r: (i+1)\cdot r-1])$
 - read s in proc $(i+1) \mod p$ into s'
 - Superstep j in $2 .. 1 + \lg p$
 - $w_j = 1$, $h_j = 1$
 - $s := s + s'$
 - read s in proc $(i + 2^{j-1}) \mod p$ into s'

- BSP cost
 \[
 C^{\text{sum}}(n,p) = \sum_{j=1}^{1+\lg p} (w_j + h_j g + L) = \left(\frac{n}{p} - 1 + \lg p\right) + (1 + \lg p) \cdot (g + L)
 \approx \frac{n}{p} + (\lg p) \cdot (g + L)
 \]
BSP alternate vector summation algorithm

• Problem: given V^n distributed evenly over p processors, find $s = \text{Sum}(V)$
 • for simplicity, assume p divides n
 • initially processor i holds $r = n/p$ values: $V[i \cdot r: (i+1) \cdot r-1]$
 • on completion, each processor holds the value of s

• Algorithm
BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, V^n distributed evenly over p processors, compute $R = M \cdot V$
 - for simplicity, assume p divides n
 - initially each processor holds n^2/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R

- BSP algorithm
 - Let $0 \leq j < p$ be processor id, and let $r = n/p$
 - Superstep 1
 - get elements of M from other processors so that local $M' = M[j \cdot r : (j+1) \cdot r - 1, :]$
 - get elements of V from other processors so that local $V' = V$
 - Superstep 2
 - perform local computation of $R' = M' \cdot V'$ and observe that $R' = R[j \cdot r : (j+1) \cdot r - 1]$
 - therefore each processor holds $r = n/p$ elements of the result

- BSP cost
BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, V^n distributed evenly over p processors, compute $R = M \cdot V$
 - for simplicity, assume p divides n
 - initially each processor holds n^2/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R

- BSP algorithm
 - Let $0 \leq j < p$ be processor id, and let $r = n/p$
 - Superstep 1 $w_1 = 0, \ h_1 = nr + n$
 - get elements of M' from other processors so that local $M' = M[j\cdot r: (j+1)\cdot r-1, :]$
 - get elements of V' from other processors so that local $V' = V$
 - Superstep 2 $w_2 = \frac{2n^2}{p}, \ h_2 = 0$
 - perform local computation of $R' = M' \cdot V'$ and observe that $R' = R[j\cdot r: (j+1)\cdot r-1]$
 - therefore each processor holds $r = n/p$ elements of the result

- BSP cost
 $$C_{MV}^{(n, p)} = \frac{2n^2}{p} + \left(\frac{n^2}{p} + n\right) \cdot g + 2 \cdot L$$
BSP algorithm: Matrix * Matrix

- Problem: given $A, B \in \mathbb{R}^{nxn}$ distributed evenly over p processors, compute $C = A \cdot B$
 - assume $p^{1/2}$ integral and divides n
 - initially each proc holds n^2/p values of A and B
 - on completion, each proc should hold n^2/p values of C

- BSP algorithm
 - Let (i,j) in $(0.. p^{1/2} -1, 0.. p^{1/2} -1)$ be the processor id, and let $s = n/p^{1/2}$
 - Superstep 1
 - get els of A from other processors so that $A' = A[i•s: (i+1)•s-1 , :]$
 - get els of B from other processors so that $B' = B[: , j•s: (j+1)•s-1]$
 - Superstep 2
 - perform local computation of $C' = A' \cdot B'$ to compute $s \times s$ portion of C

- BSP cost
BSP algorithm: Matrix * Matrix

- Problem: given $A, B \in \mathbb{R}^{n \times n}$ distributed evenly over p procs, compute $C = A \cdot B$
 - assume $p^{1/2}$ integral and divides n
 - initially each proc holds n^2/p values of A and B
 - on completion, each proc should hold n^2/p values of C

- BSP algorithm
 - Let (i,j) in $(0..p^{1/2}-1, 0..p^{1/2}-1)$ be the processor id, and let $s = n/p^{1/2}$

 - **Superstep 1**
 \[w_1 = 0, \quad h_1 = 2 \left(\frac{n}{\sqrt{p}} \right) n = \frac{2n^2}{\sqrt{p}} \]
 - get elts of A from other processors so that $A' = A[i \cdot s: (i+1) \cdot s-1, :]$
 - get elts of B from other processors so that $B' = B[:, j \cdot s: (j+1) \cdot s-1]$

 - **Superstep 2**
 \[w_1 = (2n) \left(\frac{n}{\sqrt{p}} \right)^2 = \frac{2n^3}{p}, \quad h_1 = 0 \]
 - perform local computation of $C' = A' \cdot B'$ to compute $s \times s$ portion of C

- BSP cost
 \[C^{MM}(n, p) = \frac{2n^3}{p} + \left(\frac{2n^2}{\sqrt{p}} \right) \cdot g + 2 \cdot L \]
BSP cost model: units

- **Goal:** architecture-independent performance analysis
 - g and L are expressed in FLOPS
 - h is expressed in words (8 bytes)
 - $g = 10$ means 10 FLOPS can be performed for every word communicated

- **Relating BSP cost to running time**
 - $T_p(n,p) = s \cdot C(n,p)$
 - parallel running time $T_p(n,p)$
 - BSP cost $C(n,p)$
 - s is a processor-specific constant in units of seconds per flop
 - typically $s = 1/(\text{peak MFLOPS per second})$
 - tends to substantially underestimate true time on many machines
g, L, s values for some (old) machines

<table>
<thead>
<tr>
<th>Machine</th>
<th>Network topology</th>
<th>p_{max}</th>
<th>Bisection b/w B (MB/s)</th>
<th>Peak rate r (Mflops)</th>
<th>$g = 8r/B$ (flops/wd)</th>
<th>L (flops)</th>
<th>s (sec/flop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>bus</td>
<td>4</td>
<td>250</td>
<td>250p</td>
<td>8p</td>
<td>1200</td>
<td>4x10^{-9}</td>
</tr>
<tr>
<td>SGI O2000</td>
<td>hypercube</td>
<td>128</td>
<td>250p</td>
<td>500p</td>
<td>16</td>
<td>800</td>
<td>2x10^{-9}</td>
</tr>
<tr>
<td>Cray T3E</td>
<td>3D Torus</td>
<td>1024</td>
<td>$600p^{2/3}$</td>
<td>900p</td>
<td>$12p^{1/3}$</td>
<td>500</td>
<td>1.1x10^{-9}</td>
</tr>
<tr>
<td>NEC SX-5</td>
<td>crossbar</td>
<td>16</td>
<td>64000p</td>
<td>8000p</td>
<td>1</td>
<td>400</td>
<td>0.13x10^{-9}</td>
</tr>
</tbody>
</table>

Notes

- Bisection bandwidth is for the complete network and is measured in megabytes per second
- Peak computing rate is total for p processor machine and is measured in megaflops per second
BSP metrics: normalized cost

- Normalized BSP cost
 - ratio of BSP cost to optimal parallel execution

\[
\bar{C}(n, p) = \frac{T_P^{BSP}(n, p)}{W(n)/p} = a + b \cdot g + c \cdot L
\]

- work efficiency goal
 - \(a \sim 1 \)

- communication efficiency goal
 - \(b \ll 1/g \)
 - \(c \ll 1/L \)
More BSP metrics: asymptotic efficiency

- **Recall**
 \[C(n, p) = \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} (h_i \cdot g + L) \]

- **Asymptotic efficiency**
 - work efficiency \(\pi \)
 - also measures load-balance
 - goal \(\pi \) close to 1
 - communication overhead \(\mu \)
 - goal \(\mu < 1 \)

- **Examples**
 - Matrix * Vector
 - \(\pi = 1, \quad \mu = g/2 \)
 - highly dependent on network performance at all problem sizes
 - Matrix * Matrix
 - \(\pi = 1, \quad \mu = 0 \)
 - insensitive to network performance, for sufficiently large problems

\[
\pi = \lim_{n \to \infty} \left(\frac{c(n, p)}{\sum_{i=1}^{W(n)/p}} \right)
\]

\[
\mu = \lim_{n \to \infty} \left(\frac{c(n, p)}{\sum_{i=1}^{W(n)/p}} \right)
\]