COMP 790-033 Parallel Computing

Lecture 10 October 19, 2022

BSP (1)
Bulk-Synchronous Processing Model

Models of parallel computation

- Shared-memory model
 - Implicit communication
 - algorithm design and analysis relatively simple
 - but implementation issues shine through
 - caches, distribution of data in memories, consistency, synchronization costs,
 - limits to scaling in practice
- Distributed-memory model
 - explicit communication (message passing)
 - design and analysis takes into account interconnection network and is complex
 - results not easily transferred between different networks

- "Bridging" model
 - simplified communication costs
 - balance realism with tractability of analysis
 - independent of detailed network characteristics (topology, routing, etc.)
 - cost model relies on average or "expected" network behavior

Bridging model of parallel computation

- p (processor-memory) pairs
 - p separate address spaces (distributed memory)
- Memory references
 - segregated into local and remote references
 - remote references

are explicit, typically in the form (proc, addr)

carry communication cost

- Global barrier synchronization
 - has large cost

BSP - Bulk Synchronous Parallel programming model

- BSP algorithm consists of a sequence of supersteps
- Superstep i consists of
 - local work: processors compute asynchronously
 - access values in local memory
 - record remote reads & writes to be performed
 - global communication
 - let Out_i^j be the set of values leaving proc j in step i
 - let In_{i+1}^{j} be the set of values arriving at proc j at the start of step i+1
 - the relation $Out_i \leftrightarrow In_{i+1}$ over all processors specifies the communication pattern

 proc j memory during step i
 - global synchronization
 - ensure communication phase is complete
 - ensure memory incorporates all updates (consistency)

BSP communication cost

Definition

- the *communication size* in step *i* (measured in 8-byte *words*) is

$$h_i = \max_{0 \le j \le p} \left(\max \left(\left| Out_i^j \right|, \left| In_{i+1}^j \right| \right) \right)$$

- the *communication cost* for superstep i is $h_i \cdot g + L$
 - g and L are machine-specific parameters of the cost model where
 - g (bandwidth-1 i.e. time per word) is the per-processor full-load permeability of the network
 - L (latency) is the transit time across the network plus any additional time for barrier synchronization of the processors

Dest Proc O
o
o 2
o 3

Basic communication operations (1)

Send n values from proc 1 to proc 3

h =

Basic communication operations (2)

Exchange n values between proc 1 and proc 3

Basic communication operations (3)

 Send n values between proc i and proc H(i) forall 0 ≤ i < p, with H a permutation of 0:p-1

Basic communication operations (4)

 Distribute n = kp values in proc 0 among p procs. Each proc receives k values from proc 0

Basic communication operations (5)

Combine n = kp values into proc 0. Each proc sends k values

3

O 3

h =

Basic communication operations (6)

 Total exchange (all-to-all exchange) of n = kp values among p processors. Each processor receives k values from every other

processor Source **Dest Proc Proc** h =

Basic communication operations (7)

Broadcast n values from proc 0 to all other processors

h =

BSP programs and execution model

- Basic presentation style is processor-centric
 - not like WT programs
 - number of processors p
 - explicit processor id j
- Single-Program Multiple-Datastream (SPMD) execution model
 - all processors execute same sequential program asynchronously
 - explicitly specify distribution of data over processors
 - specify supersteps
 - for each superstep specify
 - work to be performed by each processor
 - h-relation to be communicated

BSP cost

- Total cost of a BSP algorithm
 - let c be the number of supersteps
 - let p be the number of processors
 - Define

$$w_{i} = \max_{0 \le j < p} (\text{work done in FLOPS on superstep } i \text{ by processor } j)$$

$$h_{i} = \max_{0 \le j < p} (\max |Out_{i}^{j}|, |In_{i+1}^{j}|))$$

- then total cost (\sim running time) C(n,p) of a BSP algorithm is

$$C(n,p) = \sum_{i=1}^{c} (w_i + h_i \cdot g + L)$$
$$= \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} h_i \cdot g + c \cdot L$$

BSP algorithm: Vector summation

- Problem: given V^n distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume $p = 2^k$ and p divides n
 - let $0 \le j < p$ be the processor id
 - initially processor j holds r = n/p values: $V[j \cdot r : (j+1) \cdot r 1]$
 - on completion, each processor holds the value of s

Algorithm

```
    Superstep 1
```

```
-s := Sum (V[j \cdot r : (j + 1) \cdot r - 1])
```

- read s from proc $(j + 1) \mod p$ into s'

Superstep i = 2 to lg p

```
-s := s + s'
```

- read s in proc $(j + 2^{i-1}) \mod p$ into s'

Superstep 1+ lg p

$$-s := s + s'$$

BSP cost

BSP algorithm: Vector summation

- Problem: given Vⁿ distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume p divides n
 - initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
 - on completion, each processor holds the value of s
- Algorithm
 - Let $0 \le i < p$ be processor id
 - Superstep 1

$$w_1 = \frac{n}{p} - 1$$
, $h_1 = 0$

 $|w_j=1, h_j=1$

- s := Sum (V[i•r: (i+1)•r-1])
- read s in proc (i+1) mod p into s'
- Superstep j in 2 .. 1 + lg p

$$-s := s + s'$$

- read s in proc (i + 2j-1) mod p into s'

BSP cost

$$C^{\text{sum}}(n,p) = \sum_{j=1}^{1+\lg p} (w_j + h_j g + L) = \left(\frac{n}{p} - 1 + \lg p\right) + (1 + \lg p) \cdot (g + L)$$

$$\approx \frac{n}{p} + (\lg p) \cdot (g + L)$$

BSP alternate vector summation algorithm

- Problem: given Vⁿ distributed evenly over p processors, find s = Sum(V)
 - for simplicity, assume p divides n
 - initially processor i holds r = n/p values: V[i•r: (i+1)•r-1]
 - on completion, each processor holds the value of s
- Algorithm

BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, Vⁿ distributed evenly over p processors, compute R = M•V
 - for simplicity, assume p divides n
 - initially each processor holds n²/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R
- BSP algorithm
 - Let $0 \le j < p$ be processor id, and let r = n/p
 - Superstep 1
 - get elements of M from other processors so that local M' = M[j•r: (j+1)•r-1, :]
 - get elements of V from other processors so that local V' = V
 - Superstep 2
 - perform local computation of R' = M' V' and observe that R' = R[j•r: (j+1)•r-1]
 - therefore each processor holds r = n/p elements of the result
- BSP cost

BSP algorithm: Matrix * Vector

- Problem: given M^{nxn}, Vⁿ distributed evenly over p processors, compute R = M•V
 - for simplicity, assume p divides n
 - initially each processor holds n²/p values of M, and n/p values of V
 - on completion, each processor should hold n/p values of R
- BSP algorithm
 - Let $0 \le j < p$ be processor id, and let r = n/p
 - Superstep 1 $w_1 = 0$, $h_1 = nr + n$
 - get elements of M from other processors so that local M' = M[j•r: (j+1)•r-1, :]
 - get elements of V from other processors so that local V' = V
 - Superstep 2 $w_2 = \frac{2n^2}{p}$, $h_2 = 0$
 - perform local computation of R' = M' V' and observe that R' = R[j•r: (j+1)•r-1]
 - therefore each processor holds r = n/p elements of the result
- BSP cost $C^{MV}(n,p) = \frac{2n^2}{p} + \left(\frac{n^2}{p} + n\right) \cdot g + 2 \cdot L$

BSP algorithm: Matrix * Matrix

- Problem: given A, B $\in \Re^{nxn}$ distributed evenly over p processors, compute C = A•B
 - assume p^{1/2} integral and divides n
 - initially each proc holds n²/p values of A and B
 - on completion, each proc should hold n²/p values of C
- BSP algorithm
 - Let (i,j) in (0.. $p^{1/2}$ -1, 0.. $p^{1/2}$ -1) be the processor id, and let s = $n/p^{1/2}$
 - Superstep 1
 - get elts of A from other processors so that A' = A[i•s: (i+1)•s-1 , :]
 - get elts of B from other processors so that B' = B[:, j•s: (j+1)•s-1]
 - Superstep 2
 - perform local computation of C' = A' B' to compute $s \times s$ portion of C
- BSP cost

BSP algorithm: Matrix * Matrix

- Problem: given A, B ∈ ℜ^{nxn} distributed evenly over p procs, compute C = A•B
 - assume p^{1/2} integral and divides n
 - initially each proc holds n²/p values of A and B
 - on completion, each proc should hold n²/p values of C
- BSP algorithm
 - Let (i,j) in (0.. $p^{1/2}$ -1, 0.. $p^{1/2}$ -1) be the processor id, and let s = $n/p^{1/2}$
 - Superstep 1 $w_1 = 0$, $h_1 = 2(n/\sqrt{p})n = \frac{2n^2}{\sqrt{p}}$
 - get elts of A from other processors so that A' = A[i•s: (i+1)•s-1 , :]
 - get elts of B from other processors so that B' = B[:, j•s: (j+1)•s-1]
 - Superstep 2 $w_1 = (2n) \left(\frac{n}{\sqrt{p}}\right)^2 = \frac{2n^3}{p}, \quad h_1 = 0$
 - perform local computation of C' = A' B' to compute $s \times s$ portion of C
- BSP cost $C^{\text{MM}}(n,p) = \frac{2n^3}{p} + \left(\frac{2n^2}{\sqrt{p}}\right) \cdot g + 2 \cdot L$

BSP cost model: units

- Goal: architecture-independent performance analysis
 - g and L are expressed in FLOPS
 - h is expressed in words (8 bytes)
 - g = 10 means 10 FLOPS can be performed for every word communicated
- Relating BSP cost to running time
 - $-\mathsf{T}_{\mathsf{p}}(\mathsf{n},\mathsf{p})=\mathsf{s}\!\cdot\!\mathsf{C}(\mathsf{n},\mathsf{p})$
 - parallel running time T_p(n,p)
 - BSP cost C(n,p)
 - s is a processor-specific constant in units of seconds per flop
 - typically s = 1/(peak MFLOPS per second)
 - tends to substantially underestimate true time on many machines

g, L, s values for some (old) machines

Machine	Network topology	p _{max}	Bisection b/w B (MB/s)	Peak rate r (Mflops)	g = 8r/B (flops/wd)	L (flops)	s (sec/flop)
PC	bus	4	250	250p	8p	1200	4x10 ⁻⁹
SGI O2000	hypercube	128	250p	500p	16	800	2x10 ⁻⁹
Cray T3E	3D Torus	1024	600p ^{2/3}	900p	12p ^{1/3}	500	1.1x10 ⁻⁹
NEC SX-5	crossbar	16	64000p	8000p	1	400	0.13x10 ⁻⁹

Notes

- Bisection bandwidth is for the complete network and is measured in megabytes per second
- Peak computing rate is total for p processor machine and is measured in megaflops per second

BSP metrics: normalized cost

- Normalized BSP cost
 - ratio of BSP cost to optimal parallel execution

$$\overline{C}(n,p) = \frac{T_P^{BSP}(n,p)}{W(n)/p}$$
$$= a + b \cdot g + c \cdot L$$

- work efficiency goal
 - a ~ 1
- communication efficiency goal
 - b << 1/g
 - c << 1/L

More BSP metrics: asymptotic efficiency

• Recall
$$C(n,p) = \sum_{i=1}^{c} w_i + \sum_{i=1}^{c} (h_i \cdot g + L)$$

- Asymptotic efficiency
 - work efficiency π
 - also measures load-balance
 - goal π close to 1
 - communication overhead μ
 - goal μ < 1

$$\pi = \lim_{n \to \infty} \left(\frac{\sum_{i=1}^{c(n,p)} w_i}{\frac{i=1}{W(n)/p}} \right)$$

$$\mu = \lim_{n \to \infty} \begin{pmatrix} c(n,p) \\ \sum (h_i \cdot g + l) \\ \frac{i=1}{W(n)/p} \end{pmatrix}$$

- Examples
 - Matrix * Vector
 - $\pi = 1$, $\mu = g/2$
 - highly dependent on network performance at all problem sizes
 - Matrix * Matrix
 - $\pi = 1$, $\mu = 0$
 - insensitive to network performance, for sufficiently large problems