COMP 790-033 Parallel Computing

Lecture 10
October 19, 2022

BSP (1)
Bulk-Synchronous Processing Model

Models of parallel computation

- Shared-memory model
- Implicit communication
- algorithm design and analysis relatively simple
- but implementation issues shine through
- caches, distribution of data in memories, consistency, synchronization costs,
- limits to scaling in practice
- Distributed-memory model
- explicit communication (message passing)
- design and analysis takes into account interconnection network and is complex
- results not easily transferred between different networks

- "Bridging" model
- simplified communication costs
- balance realism with tractability of analysis
- independent of detailed network characteristics (topology, routing, etc.)
- cost model relies on average or "expected" network behavior

Bridging model of parallel computation

- p (processor-memory) pairs
- p separate address spaces (distributed memory)
- Memory references
- segregated into local and remote references
- remote references
- are explicit, typically in the form (proc, addr)
- carry communication cost
- Global barrier synchronization
- has large cost

BSP - Bulk Synchronous Parallel programming model

- BSP algorithm consists of a sequence of supersteps
- Superstep i consists of
- local work: processors compute asynchronously
- access values in local memory
- record remote reads \& writes to be performed
- global communication
- let $O u t_{i}^{j}$ be the set of values leaving proc j in step i
- let $I n_{i+1}^{j}$ be the set of values arriving at proc j at the start of step $i+1$
- the relation $O u t_{i} \leftrightarrow I n_{i+1}$ over all processors specifies the communication pattern proc j memory during step i
- global synchronization
- ensure communication phase is
 complete
- ensure memory incorporates all updates (consistency)

BSP communication cost

- Definition
- the communication size in step i (measured in 8-byte words) is

$$
h_{i}=\max _{0 \leq j<p}\left(\max \left(\mid \text { Out }_{i}^{j}\left|,\left|I n_{i+1}^{j}\right|\right)\right)\right.
$$

- the communication cost for superstep i is $h_{i} \cdot g+L$
- g and L are machine-specific parameters of the cost model where
- g (bandwidth ${ }^{-1}$ i.e. time per word) is the per-processor full-load permeability of the network

Source	Dest
Proc	Proc
0	O_{0}
0	0

- L (latency) is the transit time across the network plus any additional time for barrier synchronization of the processors

Basic communication operations (1)

- Send n values from proc 1 to proc 3

Source Proc 0	$\begin{gathered} \text { Dest } \\ \text { Proc } \\ \mathrm{O}_{0} \end{gathered}$
${ }_{1} \mathrm{O}$	O_{1}
${ }_{2} \mathrm{O}$	O_{2}
3 O	O_{3}

Basic communication operations (2)

- Exchange n values between proc 1 and proc 3

Basic communication operations (3)

- Send n values between proc i and proc $\mathrm{H}(\mathrm{i})$ forall $0 \leq \mathrm{i}<\mathrm{p}$, with H a permutation of 0:p-1

Source	Dest
Proc	Proc
0	0
0	0

\bigcirc_{1}
2

O_{3}

$$
\mathrm{h}=
$$

BSP communication cost $=$

Basic communication operations (4)

- Distribute $\mathrm{n}=\mathrm{kp}$ values in proc 0 among p procs. Each proc receives k values from proc 0

Source	Dest
Proc	Proc
O	O_{0}

O_{2}
O_{3}

$$
\mathrm{h}=
$$

BSP communication cost $=$

Basic communication operations (5)

- Combine $\mathrm{n}=\mathrm{kp}$ values into proc 0 . Each proc sends k values

Basic communication operations (6)

- Total exchange (all-to-all exchange) of $n=k p$ values among p processors. Each processor receives k values from every other processor

0
1

20

3

$$
\mathrm{h}=
$$

BSP communication cost $=$

Basic communication operations (7)

- Broadcast n values from proc 0 to all other processors

BSP communication cost $=$

BSP programs and execution model

- Basic presentation style is processor-centric
- not like WT programs
- number of processors p
- explicit processor id j
- Single-Program Multiple-Datastream (SPMD) execution model
- all processors execute same sequential program asynchronously
- explicitly specify distribution of data over processors
- specify supersteps
- for each superstep specify
- work to be performed by each processor
- h-relation to be communicated

BSP cost

- Total cost of a BSP algorithm
- let c be the number of supersteps
- let p be the number of processors
- Define

$$
\begin{aligned}
w_{i} & =\max _{0 \leq j<p}(\text { work done in FLOPS on superstep } i \text { by processor } j) \\
h_{i} & =\max _{0 \leq j<p}\left(\max \left(\left|O u t_{i}^{j}\right|,\left|n_{i+1}^{j}\right|\right)\right)
\end{aligned}
$$

- then total cost (\sim running time) $C(n, p)$ of a BSP algorithm is

$$
\begin{aligned}
C(n, p) & =\sum_{i=1}^{c}\left(w_{i}+h_{i} \cdot g+L\right) \\
& =\sum_{i=1}^{c} w_{i}+\sum_{i=1}^{c} h_{i} \cdot g+c \cdot L
\end{aligned}
$$

BSP algorithm: Vector summation

- Problem: given V^{n} distributed evenly over p processors, find $s=\operatorname{Sum}(\mathrm{V})$
- for simplicity, assume $p=2^{k}$ and p divides n
- let $0 \leq j<p$ be the processor id
- initially processor j holds $r=n / p$ values: $V[j \cdot r:(j+1) \cdot r-1]$
- on completion, each processor holds the value of s
- Algorithm
- Superstep 1
$-\mathrm{s}:=\operatorname{Sum}(V[j \cdot r:(j+1) \cdot r-1])$
- read s from $\operatorname{proc}(j+1) \bmod p$ into s^{\prime}
- Superstep $i=2$ to $\lg p$
- s:= s + s'
- read s in $\operatorname{proc}\left(j+2^{i-1}\right) \bmod p$ into s^{\prime}
- Superstep 1+ Ig p

$$
-s:=s+s^{\prime}
$$

- BSP cost

BSP algorithm: Vector summation

- Problem: given V^{n} distributed evenly over p processors, find $s=\operatorname{Sum}(\mathrm{V})$
- for simplicity, assume p divides n
- initially processor i holds $r=n / p$ values: $V[i \cdot r:(i+1) \bullet r-1]$
- on completion, each processor holds the value of s
- Algorithm
- Let $0 \leq \mathrm{i}<\mathrm{p}$ be processor id
- Superstep 1

$$
w_{1}=\frac{n}{p}-1, \quad h_{1}=0
$$

- s:= Sum (V[i•r: (i+1)•r-1])
- read s in proc (i+1) mod pinto s'
- Superstep jin $2 . .1+\lg p$

$$
w_{j}=1, \quad h_{j}=1
$$

- s := s + s'
- read s in proc $\left(i+2^{j-1}\right)$ mod p into s^{\prime}
- BSP cost

$$
\begin{gathered}
C^{\operatorname{sum}}(n, p)=\sum_{j=1}^{1+\lg p}\left(w_{j}+h_{j} g+L\right)=\left(\frac{n}{p}-1+\lg p\right)+(1+\lg p) \cdot(g+L) \\
\approx \frac{n}{p}+(\lg p) \cdot(g+L)
\end{gathered}
$$

BSP alternate vector summation algorithm

- Problem: given V^{n} distributed evenly over p processors, find $s=\operatorname{Sum}(\mathrm{V})$
- for simplicity, assume p divides n
- initially processor i holds $r=n / p$ values: $V[i \cdot r:(i+1) \cdot r-1]$
- on completion, each processor holds the value of s
- Algorithm

BSP algorithm: Matrix * Vector

- Problem: given $\mathrm{M}^{\mathrm{nxn}}, \mathrm{V}^{\mathrm{n}}$ distributed evenly over p processors, compute $\mathrm{R}=\mathrm{M} \cdot \mathrm{V}$
- for simplicity, assume p divides n
- initially each processor holds n^{2} / p values of M, and n / p values of V
- on completion, each processor should hold n / p values of R
- BSP algorithm
- Let $0 \leq j<p$ be processor id, and let $r=n / p$
- Superstep 1
- get elements of M from other processors so that local $M^{\prime}=M[j \cdot r:(j+1) \cdot r-1,:]$
- get elements of V from other processors so that local $\mathrm{V}^{\prime}=\mathrm{V}$
- Superstep 2
- perform local computation of $R^{\prime}=M^{\prime} \cdot V^{\prime}$ and observe that $R^{\prime}=R[j \bullet r:(j+1) \cdot r-1]$
- therefore each processor holds $r=n / p$ elements of the result
- BSP cost

BSP algorithm: Matrix * Vector

- Problem: given $\mathrm{M}^{\mathrm{nxn}}, \mathrm{V}^{\mathrm{n}}$ distributed evenly over p processors, compute $\mathrm{R}=\mathrm{M} \cdot \mathrm{V}$
- for simplicity, assume p divides n
- initially each processor holds n^{2} / p values of M, and n / p values of V
- on completion, each processor should hold n / p values of R
- BSP algorithm
- Let $0 \leq \mathrm{j}<\mathrm{p}$ be processor id, and let $\mathrm{r}=\mathrm{n} / \mathrm{p}$
- Superstep $1 \quad w_{1}=0, \quad h_{1}=n r+n$
- get elements of M from other processors so that local $M^{\prime}=M[j \cdot r:(j+1) \cdot r-1, \quad:]$
- get elements of V from other processors so that local $\mathrm{V}^{\prime}=\mathrm{V}$
- Superstep $2 w_{2}=\frac{2 n^{2}}{p}, \quad h_{2}=0$
- perform local computation of $R^{\prime}=M^{\prime} \cdot V^{\prime}$ and observe that $R^{\prime}=R[j \cdot r:(j+1) \cdot r-1]$
- therefore each processor holds $r=n / p$ elements of the result
- BSP cost

$$
C^{\mathrm{MV}}(n, p)=\frac{2 n^{2}}{p}+\left(\frac{n^{2}}{p}+n\right) \cdot g+2 \cdot L
$$

BSP algorithm: Matrix * Matrix

- Problem: given $A, B \in \mathfrak{R}^{n \times n}$ distributed evenly over p processors, compute $\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$
- assume $\mathrm{p}^{1 / 2}$ integral and divides n
- initially each proc holds n^{2} / p values of A and B
- on completion, each proc should hold n^{2} / p values of C
- BSP algorithm
- Let (i, j) in ($0 . . \mathrm{p}^{1 / 2}-1,0 . . \mathrm{p}^{1 / 2}-1$) be the processor id, and let $\mathrm{s}=\mathrm{n} / \mathrm{p}^{1 / 2}$
- Superstep 1
- get elts of A from other processors so that $A^{\prime}=A[i \cdot s:(i+1) \cdot s-1,:]$
- get elts of B from other processors so that $B^{\prime}=B[:, j \cdot s:(j+1) \cdot s-1]$
- Superstep 2
- perform local computation of $\mathrm{C}^{\prime}=\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime}$ to compute $\mathrm{s} \times \mathrm{s}$ portion of C
- BSP cost

BSP algorithm: Matrix * Matrix

- Problem: given $A, B \in \Re^{n \times n}$ distributed evenly over p procs, compute $C=A \cdot B$
- assume $\mathrm{p}^{1 / 2}$ integral and divides n
- initially each proc holds n^{2} / p values of A and B
- on completion, each proc should hold n^{2} / p values of C
- BSP algorithm
- Let (i, j) in ($0 . . p^{1 / 2}-1,0 . . p^{1 / 2}-1$) be the processor id, and let $s=n / p^{1 / 2}$
- Superstep $1 \quad w_{1}=0, h_{1}=2(n / \sqrt{p}) n=\frac{2 n^{2}}{\sqrt{p}}$
- get elts of A from other processors so that $A^{\prime}=A[i \cdot s:(i+1) \cdot s-1,:]$
- get elts of B from other processors so that $B^{\prime}=B[:, j \cdot s:(j+1) \cdot s-1]$
- Superstep $2 \quad w_{1}=(2 n)\left(\frac{n}{\sqrt{p}}\right)^{2}=\frac{2 n^{3}}{p}, \quad h_{1}=0$
- perform local computation of $C^{\prime}=A^{\prime} \cdot B^{\prime}$ to compute $s \times s$ portion of C
- BSP cost $C^{\mathrm{MM}}(n, p)=\frac{2 n^{3}}{p}+\left(\frac{2 n^{2}}{\sqrt{p}}\right) \cdot g+2 \cdot L$

BSP cost model: units

- Goal: architecture-independent performance analysis
- g and L are expressed in FLOPS
-h is expressed in words (8 bytes)
- $\mathrm{g}=10$ means 10 FLOPS can be performed for every word communicated
- Relating BSP cost to running time
$-T_{p}(n, p)=s \cdot C(n, p)$
- parallel running time $T_{p}(n, p)$
- BSP cost C(n,p)
- s is a processor-specific constant in units of seconds per flop
- typically s = 1/(peak MFLOPS per second)
- tends to substantially underestimate true time on many machines

g, L, s values for some (old) machines

Machine	Network topology	$\mathrm{p}_{\text {max }}$	$\begin{gathered} \text { Bisection } \\ \text { b/w B } \\ \text { (MB/s) } \\ \hline \end{gathered}$	Peak rate r (Mflops)	$\mathrm{g}=8 \mathrm{r} / \mathrm{B}$ (flops/wd)	$\begin{gathered} \mathrm{L} \\ \text { (flops) } \end{gathered}$	$\begin{gathered} \mathbf{s} \\ \text { (sec/flop) } \end{gathered}$
PC	bus	4	250	250p	8p	1200	4×10^{-9}
SGI O2000	hypercube	128	250p	500p	16	800	2×10^{-9}
Cray T3E	3D Torus	1024	600p ${ }^{2 / 3}$	900p	$12 p^{1 / 3}$	500	1.1×10^{-9}
NEC SX-5	crossbar	16	64000p	8000p	1	400	0.13×10^{-9}

- Notes
- Bisection bandwidth is for the complete network and is measured in megabytes per second
- Peak computing rate is total for p processor machine and is measured in megaflops per second

BSP metrics: normalized cost

- Normalized BSP cost
- ratio of BSP cost to optimal parallel execution

$$
\begin{aligned}
\bar{C}(n, p) & =\frac{T_{P}^{B S P}(n, p)}{W(n) / p} \\
& =a+b \cdot g+c \cdot L
\end{aligned}
$$

- work efficiency goal
- a ~ 1
- communication efficiency goal
-b $\ll 1 / \mathrm{g}$
- c $\ll 1 / L$

More BSP metrics: asymptotic efficiency

- Recall $C(n, p)=\sum_{i=1}^{c} w_{i}+\sum_{i=1}^{c}\left(h_{i} \cdot g+L\right)$
- Asymptotic efficiency
- work efficiency π
- also measures load-balance
- goal π close to 1
- communication overhead μ
- goal $\mu<1$

$$
\begin{aligned}
& \pi=\lim _{n \rightarrow \infty}\left(\frac{\sum_{i=1}^{c(n, p)}}{W(n) / p}\right) \\
& \mu=\lim _{n \rightarrow \infty}\left(\frac{\sum_{i=1}^{c(n, p)}\left(h_{i} \cdot g+l\right)}{W(n) / p}\right)
\end{aligned}
$$

- Examples
- Matrix * Vector
- $\pi=1, \quad \mu=g / 2$
- highly dependent on network performance at all problem sizes
- Matrix * Matrix
- $\pi=1, \quad \mu=0$
- insensitive to network performance, for sufficiently large problems

