
COMP 790-033  - Parallel Computing

Lecture 11  
Oct 26, 2022

BSP (2)
Parallel Sorting in the BSP model

Topics
1. What work remains this semester:

• programming project and presentation

2. Sorting in the BSP model
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Parallel sorting: problem definition

• Given
– N values, each of size b bits
– a total order ≤ defined on the values

• Initial distribution
– each processor holds n = N  / p values

• Result
proc0 proc1 proc2 ... procp-1

V1 Vk1+1 Vk2+1 Vkp-1+1
... ... ... ...
Vk1

Vk2
Vk3

Vkp

– Vi ≤ Vi+1 for all 1 ≤ i < N = kp
– generally ki = n•i,  i.e. evenly distributed across processors
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Parallel sorting: general remarks
• Typically concerned with case of N >> p

– Small N problems don’t require parallel processing
– Use algorithm cascading with efficient sequential sort of n elements

» sequential radix sort of n values has WSORT(n) = Ω(bn)
» sequential comparison-based sort has WSORT(n) = Ω(n lg n) and may be more 

appropriate when b is large
– Examine scalability in N and p using BSP model

» two parallel algorithms considered
• Bitonic sort, Sample sort

• What is the lower bound BSP cost for sorting?
– Work bound

» (1/p) * optimal sequential work WSORT(N) 
– Communication bound

» each value may have to move between processors from input to output
– BSP lower bound
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Background:  Sorting networks for parallel sorting
• Basic component: the comparator module

• Comparator modules can be connected to form a sorting network
– all inputs are presented in parallel

» ex: sorting network for 4 values

a

b

min(a,b)

max(a,b)

a

b

c

d

a’

b’

c’

d’

a

b

c

d

a’

b’

c’

d’

sorting network schematic representation
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Sorting networks
• Sorting networks are oblivious

– predetermined sequence of comparisons sorts any input sequence
– the depth of a comparator is the maximum number of preceding comparators 

on any path to an input

• A sorting network specifies a parallel sorting algorithm
– in step i, evaluate all comparators at depth i in parallel

» each step permutes inputs to outputs (EREW)
» at most n comparators evaluated in each step

• let d(n) be the depth of a network of size n, then S(n) = d(n), W(n) = O(n⋅d(n))

step 1 step 2 step 3
a

b

c

d

a’

b’

c’

d’
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Bitonic Sequence
• Definitions

– A sequence of values w is up-down if w = uv with u increasing and v decreasing
» ex:  w = 1 3 5 9 6 4 3

– A sequence of values w is bitonic if w is a circular rotation of an up-down sequence
» ex:  w = 5 9 6 4 3 1 3

u v

u1 v u0
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Bitonic sequence theorem
• Theorem

– Suppose w is a bitonic sequence of length 2n and we define sequences 
r, s of length n as follows

then

• Proof
(by picture)

n n

2n

w

s

r
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:,1 ≤≤≤∀ partitions the sorting problem !

bitonic subproblems !
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Bitonic merge
• A bitonic sequence of length n = 2k can be sorted with a depth k sorting network

– apply bitonic sequence theorem recursively

w0 w1 w2 w3 w4 w5 w6 w7

one application of 
theorem with n = 8

two applications of 
theorem with n = 4

four applications of 
theorem with n = 2
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Bitonic Sort
• Combine two length n bitonic merge sequences to form a length 2n bitonic sequence

– given two bitonic sequences s, r of length n let
w = (bitonic merge r) ++ (reverse (bitonic merge s))

– w is a bitonic sequence of length 2n

• Bitonic sort of n = 2k values
– view input as n/2 bitonic sequences of length 2
– combine bitonic sequences k-1 times to create a length n bitonic sequence
– apply final bitonic merge to yield sorted sequence

• ex: n = 8

r s w

n n bitonic merge r reverse 
(bitonic merge s)

4 parallel merges
of size 2

2 parallel merges
of size 4

1 merge
of size 8
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Hypercube communication pattern

• Let p = 2k for some k ≥ 0.    Processors are numbered 0 ≤ h < p.   Let h(j) be the 
jth bit in the boolean representation of h, where 1 ≤ j ≤ k

– ex p = 8, k = 3
h  = 4  =               1   0   0

• For 0 ≤ h < p, processor nbj(h) is the neighbor of processor h in dimension j.  
The bits of nbj(h) are specified as follows, for 1 ≤ r ≤ k

h(3) h(1)

0 1 0 0 1 1

0 0 0 0 0 1

1 1 0 1 1 1

1 0 0 1 0 1

dim 1

dim 3dim 2

𝑛𝑛𝑏𝑏𝑗𝑗 ℎ
(r) = � ℎ(𝑟𝑟)

1 − ℎ 𝑟𝑟
if 𝑟𝑟 ≠ 𝑗𝑗
if 𝑟𝑟 = 𝑗𝑗
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Bitonic sort of A[0:p-1] using p processors
• Assumptions

– p = 2k  and A[h] is stored in variable a on processor h
– CE(x,y) = (min(x,y), max(x,y))

• SPMD program for processor h

for i := 1 to k do
for j := i downto 1 do

b := value of a at nbj(h)
a,b := CE(a,b)
if (h(j) ≠ h(i+1)) then a,b := b,a

end do
end do

• BSP cost

2 supersteps
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Extending bitonic sort to N > p
• Simulate larger parallel machine

– Let 𝑁𝑁 = 𝑛𝑛𝑛𝑛 where 𝑛𝑛 = 2𝑞𝑞 and 𝑛𝑛 = 2𝑘𝑘 so 𝑁𝑁 = 2 𝑘𝑘+𝑞𝑞

for i:= 1 to k+q do

for j := i downto 1 do

CE on dimension j

• BSP cost of CE on dimension j
– lower dimensions in memory, higher dimensions across processors

• BSP cost for algorithm
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Improving work-efficiency
• What can be done?

– first q iterations of outer loop create sorted sequences in processor memories
» replace with efficient localsort (O(n) radix sort is assumed here for simplicity)

– for each value i > q in outer loop, last q iterations of inner loop perform a 
bitonic merge in processor memories

» replace with efficient O(n) sequential algorithm for bitonic merge (sbmerge)

• Updated program
localsort(n)

for i:= q+1 to k+q do

for j := i downto q+1 do

CE on dimension j

sbmerge(n)

• BSP cost
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Improving communication efficiency
• What can be done?

– combine communication for up to lg p successive CE operations

• Updated program
localsort(n)

for i:= q+1 to k+q do

transpose(n)

(i-q) successive CE(n) on local data

transpose(n)

sbmerge(n)

• BSP cost
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BSP predicted and measured times for bitonic sort
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BSP breakdown of time in optimized bitonic sort
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Probabilistic parallel sorting algorithms
• Definitions

– An unordered collection H with N disjoint values is partitioned by splitters 
S = S1 < ... < Sp-1 into p disjoint subsets H1 … Hp such that 

– The skew W(S) of a partition S is the ratio of the maximum partition size to the 
optimal partition size (N/p)

{ } )   and  , (define        and | 01 +∞=−∞=<≤∈= − piii SSShSHhhH
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Determining good splitters through sampling
• Determining a set of splitters through sampling

– sample k⋅p elements at random from H
» k ≥ 1 is the oversampling ratio

– sort this sample into order b1 < b2 < … <bk⋅p and choose Si = bk⋅i

• Probabilistic bounds on W(S) of a sampled set of splitters S
– given some maximum skew W and a failure probability 0 < r < 1

– if we oversample sufficiently in choosing a set of splitters, the chance of a 
large skew can be made arbitrarily small
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Oversampling ratio k as a function of p
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• Example

– for p = 100 processors, we need to sample k = 4 ln (p/r) = 74 values per 
processor to bound the skew W(S) < 2 with failure probability r = 10-6
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Parallel samplesort
• Algorithm

1. sample k values at random in each processor to limit skew W w.h.p.
O(k)

2. sort kp sampled keys, extract p-1 splitters, and broadcast to all processors
a) by sending all samples to one processor and performing a local sort

O(kp) + (k+2)p ⋅ g + 2 ⋅ L
a) by performing a bitonic sort with k values per processor

O(k lg2 p) + k(1+2 lg p) ⋅ g + (1+lg p) ⋅ L
3. compute destination processor for each value by binary search in splitter set

O(N/p lg p)
4. permute values

WN/p ⋅ g + L
5. perform local sort of values in each processor

O(Ts(WN/p))

• BSP cost ( ) ( )
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Samplesort: predicted and measured times
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Samplesort: breakdown of execution time
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Parallel sorting:  performance summary
• 32 bit values

– for small N/p (not shown), bitonic sort is superior
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Samplesort issues
• Implementing the permutation

– What is the destination address of a given value?  Two strategies:
» Send-to-queue operation

• don’t care, maintain queue at destination

» Compute unique destination for each value
• planning cost:  O(p) + 2pg + 2L

– In what order should the values be sent?
» Global rearrangement defines a permutation, but piecewise implementation may 

yield poor performance
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Samplesort issues
• How to handle duplicate keys

– make each key unique
» (key, original index)

• increases comparison cost and network traffic

– random choice of possible destinations
» suppose p = 5 and splitters are

10, 20, 20, 30
where should we send key 20?

• What about restoring load balance?
– Worst-case communication cost?
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Two-phase sample sort
• Objectives

– scramble input data to create a random permutation 
– highly supersample input to minimize skew

processors

bu
ck

et
s

processors

so
rte

d
se

ct
io

ns
» Randomly distribute keys into p buckets
» Transpose buckets and processors

• expected bucket size N/p2

» Local sort
» Proc 1 selects and broadcasts splitters

• oversampling ratio k = N/p2

» Partition local keys into sorted 
sections according to splitters

• expected bucket size N/p2

» Transpose sorted sections and 
processors

» Local p-way merge
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Two-phase samplesort
1. Randomly distribute local keys into p 

local buckets

2. Transpose buckets and processors

3. Local sort

4. Processor 1 selects (p-1) splitters

5. Broadcast splitters

6. Local partitioning of values into p 
sorted sections

7. Transpose sorted sections and 
processors

8. Local p-way merge of sorted sections
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