
COMP 790-033 - Parallel Computing

Lecture 12
November 2, 2022

Interconnection Networks
and

MPI: Message Passing Interface

• Skim through
– Message Passing Interface

MPICOMP 790-033 - Prins

2MPICOMP 790-033 - Prins

Topics
• Short overview of basic issues in message passing

• MPI: A message-passing interface for distributed-memory parallel
programming

• Collective communication operations

3

Topics
• Interconnection networks for parallel processors

– components
– characteristics
– network models

• Analysis of networks
– diameter
– bisection bandwidth
– degree

• MPI message-passing interface
– portable distributed-memory parallel programming
– collective communication operations

MPICOMP 790-033 - Prins

4MPICOMP 790-033 - Prins

Kinds of networks
• Wide-area networks (WAN)

– internet

• Local-area networks (LAN)
– ethernet, wireless 802.11x

• System-level networks
– processor to processor
– (processor to memory)

These networks differ in scalability, assumptions, cost
– Primary focus in this course is system-level networks

5MPICOMP 790-033 - Prins

Components of a network
• clusters

– each processor has a dedicated network interface

• switches
– k inputs, m outputs, m ≥ k

» simplest: k = m = 2

• links
– characteristic bandwidth

(# parallel bits per link) • (signaling rate)

6MPICOMP 790-033 - Prins

Four characteristics of networks
• Network topology

– physical interconnection structure of network
» analogy: Roadmap showing interstates

• Routing algorithm
– rules that specify which routes a message may follow

» analogy: To go from Durham to DC, take I-85N to I-95N to I-495

• Switching Strategy
– determines how a message traverses a route

» analogy: Presidential convoy reserves entire route in advance, while a group of
travelers in separate cars make individual switching decisions

• Flow control
– determines when a message makes progress

» analogy: Traffic signals and rules: two cars cannot occupy the same location at the
same time

7MPICOMP 790-033 - Prins

Network topology
• Connected undirected graph G = (N, C)

– N = set of nodes
– C = set of channels (bidirectional links)

• Indirect network (switching fabric)
– employs switching nodes without an attached processor or memory
– switching nodes do not generate traffic
– typical case in modern networks

• Direct network
– every node can be a producer and/or consumer of messages
– no pure switching nodes

8MPICOMP 790-033 - Prins

Indirect networks
• Processor to memory interconnect in shared-memory machines

• Connect p processors to p memory banks
– Example: bus

» Θ(p) switches
» simultaneous references always serialize

– Example: crossbar
» Θ(p2) switches
» simultaneous references in disjoint banks serviced in parallel

– Example: multistage network
» Θ(p lg p) switches and links

• Θ(lg p) stages of Θ(p) switches each
» simultaneous reference of disjoint memories may be serialized

• due to contention within the network

9MPICOMP 790-033 - Prins

Multistage Butterfly indirect network (p = 8)

P MSwitches

stage 1P = 23 stage 2 stage 3

10MPICOMP 790-033 - Prins

Routing in butterfly networks
• based on destination address

– destination address dk-1 ….. d0

– in stage i, switch setting is determined by dk-i
» switch to top or bottom

Switch to top Switch to bottom

dk-1... dk-i ... d0
0 1

1

00

1

11MPICOMP 790-033 - Prins

Multistage Omega network (p = 8)
• Isomorphic to butterfly network

– same “perfect shuffle” connection pattern between successive stages

P = 23

P MSwitches

stage 1 stage 2 stage 3

12MPICOMP 790-033 - Prins

Network Topology: Graph-theoretic measures
• Diameter: Maximum length of shortest path between any pair of nodes

– i.e. distance between maximally separated nodes - related to latency

• Bisection width: Minimum number of edges crossing approximately equal
bipartition of nodes

– related to bandwidth with full applied load
– a scalable network has bisection width Ω(p)

• Degree: number of edges (links) per node (switch)
– related to cost and switch complexity
– fixed degree is simpler and more scalable

• Cost: number of wires
– length of wires and wiring regularity is also an issue

max
u,v∈N

min
u→v∈C*

u → v

13MPICOMP 790-033 - Prins

Linear array

• |C| = p-1

• Diameter = p-1

• Degree ≤ 2

• Bisection width = 1

14MPICOMP 790-033 - Prins

Ring

• |C| = p

• Diameter = p/2

• Degree = 2

• Bisection width = 2

15MPICOMP 790-033 - Prins

Binary Tree

• |C| = p - 1

• Diameter = 2 lg p

• Degree ≤ 3

• Bisection width = 1

16MPICOMP 790-033 - Prins

d-dimensional mesh

• p = kd

– Cartesian product of d linear arrays
with k = p1/d nodes each

• |C| < 2dp
– short wires when d ≤ 3

• Diameter = dp1/d

• d ≤ Degree ≤ 2d

• Bisection width = p(1-1/d)

– 2-D mesh, d = 2

p × p

17MPICOMP 790-033 - Prins

k-ary d-cubes
• p = kd

– Cartesian product of d rings with
k = p1/d nodes each

• |C| = 2dp = 2dkd

• Diameter = dp1/d / 2

• Degree = 2d

• Bisection width = 2 p(1-1/d) = 2kd-1

– Ring: p-ary 1-cube

– 2-D Torus:

– 3-D Torus:

– Hypercube: 2-ary (lg p)-cube

p − ary 2 – cube
p3 − ary 3 – cube

18MPICOMP 790-033 - Prins

(Boolean) Hypercube

• |C| = p lg p

• Diameter = lg p

• Degree = lg p

• Bisection width = Θ(p)
0 0 0 0 0 1

0 1 0 0 1 1

1 0 0

1 1 0 1 1 1

1 0 1

19MPICOMP 790-033 - Prins

Butterfly (Indirect)

• |C| = p lg p

• Diameter = lg p

• Degree = 2

• “Bisection” width (congestion)
– There are some bad permutations

Θ(p1/2)
– Overwhelming majority have

bisection of Θ(p)

20MPICOMP 790-033 - Prins

Fat-tree (Indirect)

• |C| = p lg p

• Diameter = 2 lg p

• Degree = varying (2i i ε 0..lg p)

• Bisection width = Θ(p)

VLSI

Cluster

36-port non-blocking switches

21MPICOMP 790-033 - Prins

Crossbar

• Complete graph on p nodes

• |C| = p(p-1)/2

• Diameter = 1

• Degree = p-1

• Bisection width = p2/4

22MPICOMP 790-033 - Prins

Networks in current parallel computers
• Modern interconnects are indirect

– Hardware routing between source and destination

• Indirect networks
– Cluster of commodity nodes

» Fat-tree (assembled using 36 port non-blocking switches)
– IBM Summit (ORNL)

» Fat-tree Infiniband [4,608 nodes] (24,000 GPU, 202,752 cores)
– Fujitsu Fugaku

» 6D torus [160,000 nodes k-ary d-cube, ? k~7 d=6] (3M+ cores)

• Processor – memory interconnects (p procs, m memories)
– Tera MTA

» 3D torus (p = 256, m = 4,096)
– NEC SX-9

» crossbar (p = 16 procs * 16 channels/proc = 256, m = 8,192)

23

Routing and flow control
• System-level networks

– Tradeoffs are very different than WAN (TCP)
» use flow control instead of dropping packets
» mostly static routing instead of dynamic routing

– Routing algorithm
» prescribes a unique path from source to destination

• e.g. dimension ordered routing on hypercube and lower dimensional d-cubes
• some networks dynamically “misroute” if a needed link is unavailable

» routing can be store-and-forward or cut-through

– Flow control
» contention for output links in a switch can block progress
» generally low-latency per-link flow control is used

• delay in access to a link rapidly propagates back to sender

MPICOMP 790-033 - Prins

24MPICOMP 790-033 - Prins

Communication cost model
• Message size m bits

• Number of hops (links) to travel h

• Channel width W and link cycle time tc

– Per-bit transfer time tw = tc/W
» assuming m is sufficiently large

• Startup time ts

– overhead to insert message into network

• Node latency or per-hop time th

– time taken by message header cross channel and be interpreted at
destination

25MPICOMP 790-033 - Prins

Store-and-forward routing
• flow-control mechanism at message or packet level

• packet s are transferred one link at a time

• large buffers, high latency

• cost
tSF = ts + (th + m tw) h

time

location

26MPICOMP 790-033 - Prins

Cut-through routing
• flow control is per-link and payload transmission is pipelined

• message spread out across multiple links in the network

• small buffers, low latency

• cost
tCT = ts + hth + mtw

tim
e

location

27MPICOMP 790-033 - Prins

Basic Interprocess Communication
• Basic building block

– message passing: send and receive operations between in different address
spaces

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

How will this really be performed?

28MPICOMP 790-033 - Prins

Synchronous Message Passing
• Communication upon synchronization

– Hoare’s Communicating Sequential Processes (1978)

• BLOCKING send and receive operations
– unbuffered communication
– several steps in protocol

» synchronization, data movement, completion
– delays participating processes

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

29MPICOMP 790-033 - Prins

Asynchronous Message Passing
• Buffered communication

– send/receive via OS-maintained buffers
» e.g. pipes or TCP connections
» may increase concurrency (e.g. producer/consumer)
» may increase transit time

– send operation
» send operation completes when message is completely copied to buffer
» generally non-blocking but will block if buffer is full

– receive operation – two flavors
» BLOCKING

• receive operation completes when message has been delivered
» NON-BLOCKING

• receive operation provides location for message
• notified when receive complete (via flag or interrupt)

30MPICOMP 790-033 - Prins

Asynchronous Message Passing

process P1

. . .

send m to P2

. . .

process P2

. . .

receive x from P1

. . .

(OS)
Buffering

(OS)
Buffering

31MPICOMP 790-033 - Prins

Deadlock in message passing
• Can concurrent execution of P1 and P2 lead to deadlock?

– assuming synchronous message passing?
– assuming asynchronous message passing?

process P2

. . .

send m2 to P1

receive x from P1

. . .

process P1

. . .

send m1 to P2

receive y from P2

. . .

32MPICOMP 790-033 - Prins

Non-determinism in Message Passing

process P1

. . .

send m1 to P3

. . .

process P2

. . .

send m2 to P3

. . .

process P3

. . .

receive x from ?

. . .

receive y from ?

. . .

• In what order should the receive operations be performed?

Here we want
receive x from any_process
receive y from any_process

Two producers One consumer

33MPICOMP 790-033 - Prins

Safe communication
• MPI has four pairwise message passing modes

– Synchronous
» unbuffered, but all send-receive pairs must synchronize

– Buffered (asynchronous)
» Programmer supplies (sufficient) buffer space

– Ready
» Receiver guaranteed to be ready to receive at the time of the send

– “Standard”
» OS Buffered for small messages, synchronous for large messages

• Most programs rely on a certain amount of buffering in communication
– SPMD programming models: send, then receive
– Nondeterminacy: receive from left, receive from right

• Most programs use standard model
– Dangerous, as buffer size is system-dependent

34MPICOMP 790-033 - Prins

Destination naming
• How are messages addressed to their receiver?

– Static process to processor mapping
» Fixed set of processes at compile time
» mapper statically assigns processes to processors at run time.
» Ex: Communicating Sequential Processes (CSP)

– Semi-dynamic process to processor mapping (SPMD)
» Unknown set of processes at compile time
» Fixed set of processes at run time
» fixed mapping over execution lifetime
» Ex: MPI communicators

– Dynamic process to processor mapping
» Unknown set of processes at compile time
» Processes may be created or moved dynamically at run time
» Communication requires lookup
» MPI-2

35MPICOMP 790-033 - Prins

Data Representation
• In general, prefer to send an abstract data type (ADT) rather than single

elements
– ADTs represent abstractions suited to application
– higher performance can be obtained for large messages

» e.g. aggregate data types

• How are components of an ADT combined together?
– data marshalling

» packing components into a send buffer

• How is a message represented as a sequence of bits?
– encoding must be suitable for source and destination

» XDR (eXternal Data Representation)

• How is a message disassembled into an ADT?
– data unmarshalling

» extracting components from a receive buffer

36MPICOMP 790-033 - Prins

Message Selection
• Receiving process may need to receive message from multiple potential

senders

– How to specify/distinguish message to be received?
» sender selection (socket, MPI, CSP)
» message data type selection (MPI, CSP)
» condition selection (CSP)
» message “tag” (MPI)

– specification of message to be received can decrease nondeterminacy
» Non-deterministic reception order requires care with blocking sends/receives

37MPICOMP 790-033 - Prins

Message Passing Interface (MPI)
• A library of communication operations for distributed-memory parallel programming

– history
» TCP/IP, …., PVM (1990), MPI (1994), MPI-2 (1997), MPI-3 (2012), Open MPI v5 (2021)

– programming model
» SPMD - single program with library calls

– MPI functionality
» send/receive, synchronization, collective communication
» MPI specifies 129 procedures

• widely implemented and generally efficient
» MPI-2 adds one-sided communication, dynamic processes, parallel I/O and more

• One-sided communication: remote direct memory access – good for BSP.
• Over 15 years from full specification to correct and (generally) efficient implementations

» MPI-3
• Tweaks and shared memory segments between MPI processes

– portability
» MPI is the most portable parallel programming paradigm – it runs on

• shared and distributed memory machines
• homogeneous and heterogeneous systems
• variety of interconnection networks

» BUT functional portability ≠ performance portability !

38MPICOMP 790-033 - Prins

MPI Example (C + MPI)
#include <mpi.h>

main(int argc, char **argv) {

int nproc, myid;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &nproc);

MPI_Comm_rank (MPI_COMM_WORLD, &myid);

printf("Hello World! Here is process %d of %d.\n",

myid, nproc);

MPI_Finalize ();

}

At UNC, the dogwood cluster implements MPI

39MPICOMP 790-033 - Prins

MPI return codes
#include <mpi.h>

#include <stdio.h>

#include <err.h>

main(int argc, char **argv) {

int nproc, myid, ierr;

ierr = MPI_Init(&argc, &argv);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Init\n", ierr);

ierr = MPI_Comm_size (MPI_COMM_WORLD, &nproc);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_size\n", ierr);

ierr = MPI_Comm_rank (MPI_COMM_WORLD, &myid);

if (ierr != MPI_SUCCESS) err(4, "Error %d in MPI_Comm_rank\n", ierr);

printf("Hello World! Here is process %d of %d.\n", myid, nproc);

ierr = MPI_Finalize();

if (ierr != MPI_SUCCESS) err(4, "Error %d in mpi_finalize\n", ierr);

}

40MPICOMP 790-033 - Prins

Point-to-point communication
• Specification of message to receive

» communicator – identifies logical set of processors
• intracommunicator vs. intercommunicator

» sending process rank (= proc id)
» tag

– details of received message via status parameter
» wildcard specifications may result in non-deterministic programs

• Type Specification
– must provide types of transmitted values

» predefined types & user-defined types
» implicit conversions in heterogeneous* systems

• Protocol specification
– send

» blocking / non-blocking / repeated / …
• standard / buffered / synchronous / “ready”

41

• no deadlock

• two sequential transfers

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

Process 0:

MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_Recv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD);

Process 1:

MPI_Recv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);

MPICOMP 790-033 - Prins

Simple message exchange

Addr of data to send

Number of elements

Element type

Destination rank

42MPICOMP 790-033 - Prins

Non-blocking message exchange
• no deadlock

• possibility of concurrent transfer
#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request request;
MPI_Status status;

Process 0:

MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD);
MPI_Wait(&request, &status);

Process 1:

MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request);
MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD);
MPI_Wait(&request, &status);

43MPICOMP 790-033 - Prins

Overlapping communication and computation
Process 0 and 1:

#define MYTAG 123
#define WORLD MPI_COMM_WORLD

MPI_Request requests[2];
MPI_Status statuses[2];

// p is process id of the partner in a pairwise exchange

MPI_Irecv(B, 100, MPI_DOUBLE, p, 0, WORLD, &request[1]);
MPI_Isend(A, 100, MPI_DOUBLE, p, 0, WORLD, &request[0]);

.... do some useful work here

MPI_Waitall(2, requests, statuses);

• no deadlock

• concurrent transfer

• communication and computation may be overlapped on some machines
– requires hardware communication support

44MPICOMP 790-033 - Prins

Communicators
• MPI_COMM_WORLD is a communicator

– group of processes numbered 0 ... p-1
– set of logical communication channels between them

• Message sent with one communicator cannot be received in another
communicator

– all communication is intra-communicator
– enables development of safe libraries
– restricting communication to subgroups is useful

• Creating new communicators
– duplication
– splitting

• Intercommunicators
– orchestrate communication between two different communicators

45MPICOMP 790-033 - Prins

Collective Communication
• Operations involve all processes in an (intra)communicator

– encapsulate important communication patterns (cf. BSP)
» broadcast
» total exchange (transpose)
» reduction + scan
» barrier

– operations do not necessarily imply a barrier synchronization
» however, all processes must issue the same collective communication operations

in the same order

• Type specification
– predefined or user-defined types
– predefined or user-defined associative operation for reduction & scan

• Distinguished process
– for broadcast or reduction operations

46MPICOMP 790-033 - Prins

Collective communication operations
• classified by

– source of values
» one/all processor(s)

– target of result
» one/all processors(s)

– operation
» broadcast
» exchange
» accumulate (reduce)

– size of values
» 1 or n

• duality of communication operations
– communication patterns are related
– broadcast & reduction are duals
– exchange is its own dual

Ex:
one-to-all broadcast (1)

source target

operation size of value

47MPICOMP 790-033 - Prins

Broadcast: single source, single value

Processors

Memory

R0

Processors

Memory

A0 B0 C0 D0

Processors

Memory

A0

Processors

Memory

A0 A0 A0 A0
one-to-all broadcast (1)

MPI_Bcast(…1…)

all-to-one sum (1)

MPI_Reduce(…1…)

R0 = A0 ⊕ B0 ⊕ C0 ⊕ D0

⊕

48MPICOMP 790-033 - Prins

Processors

Memory

A0 A0 A0 A0

A1 A1 A1 A1

A2 A2 A2 A2

A3 A3 A3 A3

Processors

Memory

A0

A1

A2

A3

Broadcast: single source, multiple values

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0

R1

R2

R3

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

one-to-all broadcast (n)

MPI_Bcast(…n…)

all-to-one sum (n)

MPI_Reduce(…n…)

49MPICOMP 790-033 - Prins

Broadcast: multiple source, single value

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

all-to-all broadcast (1)

MPI_Allgather(…n…)

all-to-all sum (1)

MPI_Reduce_scatter(…n…)

Processors

Memory

A0 A0 A0 A0

B0 B0 B0 B0

C0 C0 C0 C0

D0 D0 D0 D0

Processors

Memory

A0 B0 C0 D0

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0 R1 R2 R3

50MPICOMP 790-033 - Prins

Exchange: single source or single target
• One-to-all exchange (n)

MPI_Scatter(…)

• All-to-one exchange (1)
MPI_Gather(…)

Processors

Memory

A0 A1 A2 A3

Processors

Memory

A0

A1

A2

A3

scatter

gather

51MPICOMP 790-033 - Prins

Exchange: multiple source, multiple values
• all-to-all exchange (n)

MPI_Alltoall(…)

– BSP “total exchange” or transpose

Processors

Memory

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

alltoall

52MPICOMP 790-033 - Prins

Reductions: multiple source, multiple values
Processors

Memory

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

Processors

Memory

R0

R1

R2

R3

⊕

Ri = Ai ⊕ Bi ⊕ Ci ⊕ Di

all-to-one sum (n)
MPI_Reduce(…n…)

all-to-all sum (1)
MPI_Reduce_scatter(…n…)

Processors

Memory

R0 R1 R2 R3

Processors

Memory

R0 R0 R0 R0

R1 R1 R1 R1

R2 R2 R2 R2

R3 R3 R3 R3

all-to-all sum (n)
MPI_Allreduce(…n…)

⊕
⊕

53MPICOMP 790-033 - Prins

MPI: All-pairs N-body problem
• Problem

– 𝑛𝑛 bodies
• each body position occupies 𝑑𝑑 words

– for each body 𝑖𝑖
» accumulate total force 𝑓𝑓𝑖𝑖

• each pairwise interaction requires 𝑐𝑐1 FLOPS
» update velocities and positions

• each body update requires 𝑐𝑐2 FLOPS

– half-pairs optimization: 𝑓𝑓𝑖𝑖𝑖𝑖 = −𝑓𝑓𝑖𝑖𝑖𝑖

• MPI solution strategies
– ring communication pattern

» all-pairs
» half-pairs

– collective communication
» all-pairs
» half-pairs

∑
≠

∈
=

ij
nj ij

ijji
i

r

rmGm
f

,:1
3

54

Running your projects
• Shared memory

– use phaedra.cs.unc.edu
» p = 20 primary cores, 20 secondary cores

• Distributed memory
– use dogwood.unc.edu (requires a cluster account)

• GPUs
– use departmental GPUs
– use SNP nodes on longleaf.unc.edu

MPICOMP 790-033 - Prins

	COMP 790-033 - Parallel Computing��Lecture 12�November 2, 2022��Interconnection Networks�and � MPI: Message Passing Interface
	Topics
	Topics
	Kinds of networks
	Components of a network
	Four characteristics of networks
	Network topology
	Indirect networks
	Multistage Butterfly indirect network (p = 8)
	Routing in butterfly networks
	Multistage Omega network (p = 8)
	Network Topology: Graph-theoretic measures
	Linear array
	Ring
	Binary Tree
	d-dimensional mesh
	k-ary d-cubes
	(Boolean) Hypercube
	Butterfly (Indirect)
	Fat-tree (Indirect)
	Crossbar
	Networks in current parallel computers
	Routing and flow control
	Communication cost model
	Store-and-forward routing
	Cut-through routing
	Basic Interprocess Communication
	Synchronous Message Passing
	Asynchronous Message Passing
	Asynchronous Message Passing
	Deadlock in message passing
	Non-determinism in Message Passing
	Safe communication
	Destination naming
	Data Representation
	Message Selection
	Message Passing Interface (MPI)
	MPI Example (C + MPI)
	MPI return codes
	Point-to-point communication
	Simple message exchange
	Non-blocking message exchange
	Overlapping communication and computation
	Communicators
	Collective Communication
	Collective communication operations
	Broadcast: single source, single value
	Broadcast: single source, multiple values
	Broadcast: multiple source, single value
	Exchange: single source or single target
	Exchange: multiple source, multiple values
	Reductions: multiple source, multiple values
	MPI: All-pairs N-body problem
	Running your projects

