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Abstract
Protein local structure comparison aims to recognize structural similarities be-
tween parts of proteins. It is an active topic in bioinformatics research, integrating
computer science concepts in computational geometry and graph theory with
empirical observations and physical principles from biochemistry. It has impor-
tant biological applications, including protein function prediction. In this chapter,
we provide an introduction to the protein local structure comparison problem
including challenges and applications. Current approaches to the problem are
reviewed. Particular consideration is given to the discovery of local structure
common to a group of related proteins. We present a new algorithm for this
problem that uses a graph-based representation of protein structure and finds re-
curring subgraphs among a group of protein graphs.
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1. Introduction

A protein is a chain of amino-acid molecules. In conditions found within a living
organism, the chain of amino acids folds into a relatively stable three-dimensional
arrangement known as the native structure. The native structure of a protein is a key
determinant of its function [21,62,68,76]. Exactly how protein function is determined
by protein structure is the central question in structural biology, and computational
methods to compare the structures of proteins are a vital part of research in this area.

Starting from the 3D coordinates of the atoms in a protein (as obtained by a num-
ber of experimental techniques described later), global structure comparison can
determine the similarity of two complete protein structures. Global structure com-
parison is widely used to classify proteins into groups according to their global
similarity [35].

However, a protein’s global structure does not always determine its function. There
are well known examples of proteins with similar global structure but different func-
tions. Conversely, there are also examples of proteins with similar function but quite
different global structure. For this reason there has been increased interest in local
structure comparison to identify structural similarity between parts of proteins [23].

This chapter provides an introduction to the protein structure comparison prob-
lem, focusing on recent research on local structure comparison. Work in this area
combines computational geometry and graph theory from computer science with
empirical observations and physical principles from biochemistry. The protein struc-
ture comparison problem has important applications in classification and function
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prediction of proteins, and is also of use in protein folding research and rational drug
design [49].

The chapter is organized as follows. In the remainder of this section we describe
the factors driving the need for protein structure comparison and present the structure
comparison problem, and our area of focus. Section 2 outlines the necessary biolog-
ical background, including a high-level introduction to protein sequence, structure,
and function. Readers with limited knowledge of proteins and protein structure may
wish to read this section before proceeding further. In Section 3 we present a taxon-
omy of current algorithms for the problem of protein local structure comparison. In
Section 4, we give an introduction to graph representations of protein structure, and
describe how discovering common local structure may be viewed as a data mining
problem to identify frequent subgraphs among a collection of graphs. In Section 5,
we introduce an efficient subgraph mining algorithm. Results obtained using graph-
based local structure comparison on various key problems in protein structure are
presented in Section 6. Finally we conclude in Section 7 with some thoughts on
future directions for work in this area. This chapter also includes an extensive bibli-
ography on protein structure comparison.

1.1 Motivation

This section describes the factors that underscore the need for automated protein
structure comparison methods.

1.1.1 Rapidly Growing Catalogs of Protein Structure Data

Recognizing the importance of structural information, the Protein Structure Ini-
tiative (PSI, http://www.nigms.nih.gov/psi/) and other recent efforts have targeted
the accurate determination of all protein structures specified by genes found in se-
quenced genomes [13,94]. The result has been a rapid increase in the number of
known 3D protein structures. The Protein Data Bank (PDB) [6], a public on-line
protein structure repository, contained more than 30,000 entries at the end of year
2005. The number of structures is growing exponentially; more than 5000 struc-
tures were deposited to the PDB in 2005, about the same as the total number of
protein structures added in the first four decades of protein structure determina-
tion [52].

Along with individual protein structures, the structure of certain complexes of in-
teracting proteins are known as well. While the structures of relatively few complexes
have been completely determined, there is rapidly growing information about which
proteins interact. Among the proteins in yeast alone, over 14,000 binary interactions
have been discovered [83]. The IntAct database records 50,559 binary interactions

http://www.nigms.nih.gov/psi/
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involving 30,497 proteins [32] from many species. Experts believe that many more
interactions remain to be identified. For example, among the proteins in yeast it is
estimated that there are about 30,000 binary interactions [100].

Additional types of data whose relation to protein structure is of interest are being
accumulated as well, such as the cellular localization of proteins, the involvement of
proteins in signaling, regulatory, and metabolic pathways, and post-translation struc-
tural changes in proteins [1,73]. The rapidly growing body of data call for automatic
computational tools rather than manual processing.

1.1.2 Structure Comparison Aids Experiment Design
Protein structure comparison is part of a bioinformatics research paradigm that

performs comparative analysis of biological data [84]. The overarching goal is to aid
rational experiment design and thus to expedite biological discovery. Specifically,
through comparison, the paradigm endeavors to transfer experimentally obtained
biological knowledge from known proteins to unknown ones, or to discover com-
mon structure among a group of related proteins. Below we review some of the
applications of structure comparison including structure classification, functional site
identification, and structure-based functional annotation. A comprehensive review
can be found in [49].

1.1.2.1 Structure Classification. Classification of protein structures is
vital to providing easy access to the large body of protein structures, for studying
the evolution of protein structures, and for facilitating structure prediction. For ex-
ample, through global structure classification, domain experts have identified many
sequences that have low pairwise sequence identity yet have adopted very similar 3D
structures. Such information helps significantly in structure prediction [51].

Traditionally, protein structure classification is a time consuming manual task, for
example as used to construct the Structure Classification of Protein (SCOP) data-
base [62]. SCOP is maintained using visual examination of protein structures by
domain experts. With the development of automated global structure comparison
methods such as CATH [68] and DALI [35], structure classification has become
more automated.

In DALI and CATH, the units of classification are protein domains. Domains
are organized hierarchically based on their similarity at the sequence, structure, and
function level. Classification systems such as DALI and CATH utilize three common
steps to derive a hierarchical grouping of protein structures. The first step is to select
from all known structures a subset of “representative” structures among which (pair-
wise) sequence similarity is low. The second step is to compare the set of structures to
compute an all-by-all similarity matrix. Based on this matrix, the third step is to per-
form a hierarchical clustering to group similar structures together. How to compute
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the similarity between a pair of structures and how to perform hierarchical clustering
are the two key components in protein classification. For example, in DALI, proteins
are classified at 4 levels according to class, fold, functional families, and sequence
family and in CATH, proteins are classified into 5 levels according to class, archi-
tecture, topology, homology superfamilies, and sequence families. Though different
methods may lead to different classifications, careful comparison of classification
systems has revealed that existing systems (DALI, CATH, and SCOP) overlap sig-
nificantly [21].

1.1.2.2 Functional Site Identification. A functional site is a group of
amino acids in a protein that participate in the function of the protein (e.g. catalyzing
chemical reactions or binding to other proteins). Identifying functional sites is critical
in studying the mechanism of protein function, predicting protein-protein interaction,
and recognizing evolutionary connections between proteins when there is no clear
clue from sequence or global structure alignment [3,19,60,99]. See [95] for a recent
review of known functional sites in protein structures.

Traditionally, functional sites are derived through expensive experimental tech-
niques such as site-directed mutagenesis. This technique creates a modified protein
in which one or more amino acids are replaced in specific locations to study the
effect on protein function. However, site-directed mutagenesis studies are both la-
bor intensive and time consuming, as there are many potential functional sites. In
search of an alternative approach, more than a dozen methods based on the analysis
of protein structure have been developed [95]. All are based on the idea that func-
tional sites in proteins with similar function may be composed of a group of specific
amino acids in approximately the same geometric arrangement. The methods differ
from each other in algorithmic details as described in Section 3. The essence of the
approach is to identify local structure that recurs significantly among proteins with
similar function.

1.1.2.3 Structure-Based Functional Annotation. There is no ques-
tion that knowing the function of a protein is of paramount importance in biological
research. As expressed by George and his coauthors [26], correct function prediction
can significantly simplify and decrease the time needed for experimental valida-
tion. However incorrect assignments may mislead experimental design and waste
resources.

Protein function prediction has been investigated by recognizing the similarity of
a protein with unknown function to one that has a known function where similarity
can be determined at the sequence level [105], the expression level [18], and at the
level of the gene’s chromosome location [70].
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In structure based function annotation, investigators focus on assigning function
to protein structures by recognizing structural similarity. Compared to sequence-
based function assignment, structure-based methods may have better annotation
because of the additional information offered by the structure. Below, we discuss
a recent study performed by Torrance and his coauthors [95] as an example of using
local structure comparison for function annotation.

Torrance et al. first constructed a database of functional sites in enzymes [95].
Given an enzyme family, the functional sites for each protein in the family were
either manually extracted from the literature or from the PSI-Blast alignment [95].
With the database of functional sites, Torrance et al. then used the JESS method [5]
to search for occurrences of functional sites in the unknown structure. The most
likely function was determined from the types of functional sites identified in the un-
known structure. Torrance’s method achieves high annotation accuracy as evaluated
in several functional families.

In summary, the potential to decrease the time and cost of experimental techniques,
the rapidly growing body of protein structure and structure related data, and the large
number of applications necessitate the development of automated comparison tools
for protein structure analysis. Next, we discuss the challenges associated with struc-
ture comparison.

1.2 Challenges

We decompose the challenges associated with structure comparison into three cat-
egories: (1) the nature of protein structure data and structure representation methods,
(2) the tasks in structure comparison, and (3) the computational components of struc-
ture comparison methods.

1.2.1 The Nature of Protein Structure

In order to compare protein structures automatically, it is necessary to describe
protein structure in a rigorous mathematical framework. To that end, we adopt the
three-level view of protein structures used by Eidhammer and his coauthors in [21],
which is a popular view in designing structure comparison algorithms. Another com-
monly used biological description of protein structure is introduced in Section 2.

Following Eidhammer’s view, a protein is described as a set of elements. Common
choices for the elements are either atoms or amino acids (or more precisely amino
acid residues). Other choices are possible, see Section 4.2. Once the elements are
fixed, the protein geometry, protein topology, and element attributes are defined. We
illustrate definitions for these using amino acid residues as the protein elements.
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• Geometry is given by the 3D coordinates of the amino acid residues, for exam-
ple as represented by the coordinates of the Cα atom, or by the mean coordi-
nates of all atoms that comprise the amino acid residue.

• Attributes are the physico-chemical attributes or the environmental attributes of
the amino acid residues. For example, the hydrophobicity is a physico-chemical
attribute of the residue. The solvent accessible surface area of an amino acid
residue is an environmental attribute of the residue.

• Topology describes physico-chemical interactions between pairs of amino acid
residues. A typical example is to identify pairs of amino acid residues that may
interact through the van der Waals potential.

1.2.1.1 Structure Representations. The choice of mathematical frame-
work for representation of a protein structure varies considerably. We review three
common choices below.

• Point sets. A protein is represented as a set of points, each point represents the
3D location of an element in the protein structure. In addition, each point may
be labeled with the attributes of the represented element, such as the charge, the
amino acid identity, the solvent accessible area, etc.

• Point lists. A protein is represented by an ordering of elements in a point set
that follows their position in the primary sequence.

• Graphs. A protein is represented as a labeled graph. A node in the graph repre-
sents an element in the protein structure, usually labeled by the attributes of the
element. An edge connecting a pair of nodes represents the physico-chemical
interactions between the pair of elements and may be labeled with attributes of
the interaction.

All the methods are element-based methods since they describe a protein structure
using elements in the structure. Though not commonly used, there are methods that
describe a protein structure without breaking the structure into a set of elements.
See [21] for further details.

1.2.2 Tasks in Structure Comparison
To outline the challenges associated with structure comparison, it is convenient

to group current structure comparison methods into common tasks, according to the
final goal of the comparison. The categorization we use is not unique, further division
is possible, and we expect that new tasks will emerge to augment the list in the
future. However, our current categorization summarizes well all the methods that we
will describe in this chapter and is useful as a starting point for the introduction of
structure comparison algorithms.
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• Global structure comparison
– Computing the alignment of a group of two or more structures.

– Computing the overall similarity between two structures.

– Searching a set of proteins to find those that are similar to a given protein
structure.

• Local structure comparison
– Identifying common substructures among a group of proteins.

– Searching a set of proteins for occurrences of a particular substructure.

– Searching a database of substructures for the substructures that appear in a
particular protein structure.

The tasks within a specific type of structure comparison (global or local) are
closely related. For example, the computation of the pair-wise global structure sim-
ilarity is usually done after aligning the two structures. Tasks in different types of
structure comparison can also be related. For example, in computing the global
alignment of two structures, one way is to first compute the shared substructures
as “seeds” and then to select and connect such set of seeds to produce the global
alignment [35].

1.2.3 Components of Structure Comparison Tasks

The tasks listed in the previous section can be decomposed into a number of com-
ponents. These include a basic notion of similarity between structures, or between a
structure pattern and a structure. A scoring function measures the quality of the simi-
larity, and a search procedure uses the scoring function to search a space of potential
solutions. Finally the results of a task must be displayed in a meaningful fashion. In
this section, we elaborate each of these concepts.

1.2.3.1 Defining Pattern or Structure Similarity. A structure pat-
tern is a geometric arrangement of protein elements, for example four specific amino
acids placed at the vertices of a tetrahedron of specified dimensions. We list three
considerations in defining similarity between structures or between a pattern and a
structure.

• Level of Structure Representation
We may choose atoms, amino acid residues, or secondary structure elements
(SSE), as the elements for protein structure comparison. The choice of elements
are made according to the specific goal of the comparison and the preference
of the investigators. The general concern in choosing a detailed representation
where elements are atoms or amino acid residues is that the coordinates of such
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elements in protein structures are subject to experimental noise and hence any
comparison algorithms should have a certain level of robustness to perturba-
tion of the geometry of the structure. In addition, a detailed representation often
leads to a more extensive computation than a coarse representation such as SSE.
On the other hand, by choosing SSEs as structure elements, we may miss valu-
able information about a protein structure. Early structure comparison used SSE
as elements extensively, mainly for the purpose of efficient computation. Recent
research tends to use amino acid residues or atoms because of the detailed rep-
resentation.

• Sequence Order in Structure Comparison
In sequence-order dependent structure comparison, the primary sequence or-
der of the structure elements must be preserved in a pattern or an alignment.
Otherwise, we carry out a sequence-independent structure comparison.

• Pair-Wise or Multi-Way Structure Comparison
In pair-wise comparison, we find the similarity of a pair of structures, or find
a pattern in common to two structures. A generalization of pair-wise structure
comparison is a multi-way comparison that involves more than two structures.

As a few examples, most structure alignment algorithms, such as DALI [35], com-
pute the pairwise alignment of two structures that preserves the sequence order
of structure elements and hence are sequence dependent, pair-wise global struc-
ture comparison methods. In contrast to structure alignment, most of the structure
pattern discovery methods, such as those based on graphs [39], search for com-
mon local structure patterns without enforcing the sequence order and hence are
sequence independent, multi-way (or pair-wise) local structure comparison meth-
ods.

1.2.3.2 Scoring Functions. A scoring function quantifies the fitness of
a structure pattern or an alignment to the observed data. Choosing the right scor-
ing function involves a certain level of art. Ideally, the right scoring function should
correlate precisely with the desired consequence of the analysis, e.g. the evolution-
ary connection of a pair of structures in an global alignment. Practically, such ideal
scoring functions are very difficult to obtain due to the limited knowledge we have.
Therefore, investigators often resort to “generic” scoring functions. For example,
the root-mean-squared-deviation (RMSD) [21] is usually used to compute the close-
ness of two structures with a known 1–1 correspondence of structure elements in the
two protein structures. In computing RMSD, we superimpose one structure onto the
other such that the sum of the squared distances between corresponding elements is
minimized. A closed-form definition of this scoring function can be found in [50,
36].
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1.2.3.3 Search Procedures. In protein structure comparison with a
given scoring function, a search procedure is often utilized to identify the best so-
lution. One of the most widely used search procedures is the subgraph matching
algorithm that determines whether a pattern (specified by one graph) matches a struc-
ture (specified by another graph) (see Section 5 for further details). Computational
efficiency is the major concern for designing a search procedure.

1.2.3.4 Results Presentation. Usually the final step of structure com-
parison is to present the results to end-users. One commonly used presentation
method is visualization. An equally popular one is to form a hypothesis for a bio-
logical experiment. For example, recognizing the occurrence of a functional sites in
a protein offers information about the possible function of the protein. Usually, both
presentation methods are used after structure comparison.

1.3 Our Focus in Structure Comparison
We focus on protein local structure comparison and present an overview of the

frontier of the research, balancing algorithmic developments and biological appli-
cations. We single out local structure comparison because it has become popular in
recent structure comparison research. The transition from global structure compari-
son to local structure comparison is well supported by a wide range of experimental
evidence.

• Protein function is usually carried out by a small region of the protein. It is
well known that in a protein there are a few key residues, that if mutated, inter-
fere with the structural stability or the function of the protein. Those important
residues usually are in spatial contact in the 3D protein structure and hence form
a “cluster” in the protein structure. On the other hand, much of the remaining
protein structure, especially surface area, can tolerate mutations [15,81]. For
example, in a model protein T4 Lysozyme, it was reported that single amino
acid substitutions occurring in a large fraction of a protein structure (80% of
studied amino acids) tend not to interrupt the function and the folding of the
protein [58].

Biology has accumulated a long list of sites that have functional or structural
significance. Such sites can be divided into the following three categories:
– catalytic sites of enzymes;

– the binding sites of ligands;

– the folding nuclei of proteins.
Local structure similarity among proteins can implicate structurally conserved
amino acid residues that may carry functional or structural significance [14,103,
20,53].
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• Similar global structure may not correlate with similar function. For example, it
is well known that the TIM barrels are a large group of proteins with a remark-
ably similar fold, yet widely varying catalytic function [63]. A striking result
was reported in [65] showing that even combined with sequence conservation,
global structure conservation may still not be sufficient to produce functional
conservation. In this study, Neidhart et al. first demonstrated an example where
two enzymes (mandelate racemase and muconate lactonizing enzyme) catalyze
different reactions, yet the structure and sequence identities are sufficiently high
that they are very likely to have evolved from a common ancestor. Similar cases
have been reviewed in [28].

It has also been noticed that similar function does not require similar struc-
ture. For example, the most versatile enzymes, hydro-lyases and the O-glycosyl
glucosidases, are associated with 7 folds [31]. In a systematic study using
the structure database SCOP and the functional database Enzyme Commis-
sion (EC), George et al. estimated 69% of protein function (at EC sub-subclass
level) is indeed carried by proteins in multiple protein superfamilies [27].

• Local similarity detection can offer evidence for protein evolution. There are
two putative mechanisms to explain similarity between protein structures. One
is convergent evolution, a process whereby proteins adopt similar structure and
function through different evolutionary paths [77]. Convergent evolution has
been studied in the serine protease family, porphyrin binding proteins [77],
and the ATP/GTP binding proteins [99]. Another one is divergent evolution,
a process where proteins from the same origin become so diverse that their
structure and sequence homology falls below detectable level [57]. Though the
exact evolutionary mechanism is still debated, studying local structure similar-
ity can help in understanding how protein structure and function evolve.

Various other interesting topics such as structure database search and structure-
based functional inference are beyond the scope of this chapter and have been
omitted. Topics in local structure comparison that are not covered in this chapter
may be found in related books such as [21].

2. Background

Genome sequencing projects are working to determine the complete genome se-
quence for several organisms. The sequencing projects have produced significant im-
pact on bioinformatics research by stimulating the development of sequence analysis
tools such as methods to identify genes in a genome sequence, methods to predict
alternative splicing sites for genes, methods that compute the sequence homology
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among genes, and methods that study the evolutionary relation of genes, to name a
few.

Proteins are the products of genes and the building blocks for biological function.
Below, we review some basic background on proteins, protein structure, and protein
function. See [10] for topics that are not covered here.

2.1 Protein Structure

2.1.1 Proteins are Chains of Amino Acids
Proteins are chains of α-amino acid molecules. An α-amino acid (or simply an

amino acid) is a molecule with three chemical groups and a hydrogen atom cova-
lently bonded to the same carbon atom, the Cα atom. These groups are: a carboxyl
group (–COOH), an amino group (–NH2), and a side chain with variable size (sym-
bolized as R) [10]. The first carbon atom in a side chain (one that is connected to the
Cα atom) is the Cβ atom and the second one is the Cγ atom and so forth. Figure 1
illustrates an example of amino acids.

Different amino acids have different side chains. There are a total of 20 amino
acids found in naturally occurring proteins. At physiological temperatures in a sol-
vent environment, proteins adopt stable three-dimensional (3D) organizations of
amino acid residues that are critical to their function.

2.1.2 Protein Structure is Described in Four Levels
The levels are as follows:

• Primary structure describes the amino acid sequence of a protein.

FIG. 1. Left: A schematic illustration of an amino acid. Right: The 3D structure of an amino acid
(Alanine) whose side chain contains a single carbon atom. The atom types are shown; unlabeled atoms
are hydrogens. The schematic diagram is adopted from [10] and the 3D structure is drawn with the VMD
software.
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• Secondary structure describes the pattern of hydrogen bonding between amino
acids along the primary sequence. There are three common types of secondary
structures: α-helix, β-sheet, and turn.

• Tertiary (3D) structure describes the protein in terms of the coordinates of all
of its atoms.

• Quaternary structure applies only to proteins that have at least two amino acid
chains. Each chain in a multi-chain protein is a subunit of the protein and the
spatial organization of the subunits of a protein is the quaternary structure of the
protein. A single-subunit protein does not have a quaternary structure.

2.1.2.1 Primary Structure. In a protein, two amino acids are connected
by a peptide bond, a covalent bond formed between the carboxyl group of one amino
acid and the amino group of the other with elimination of a water molecule. After
the condensation, an amino acid becomes an amino acid residue (or just a residue,
for short). The Cα atom and the hydrogen atom, the carbonyl group (CO), and the
NH group that are covalently linked to the Cα atom are the main chain atoms; the
rest of the atoms in an amino acid are side chain atoms.

In Fig. 2, we show the primary sequence of a protein with three amino acid
residues. At one end of the sequence (the left one), the residue contains the full
amino group (–NH3) and is the N terminal of the sequence. The residue at the op-
posite end contains the full carboxyl group (–COOH) and is the C terminal of the
sequence. By convention a protein sequence is drawn left to right from its N terminal
to its C terminal.

Various protein sequencing techniques can determine the primary sequence of a
protein experimentally.

FIG. 2. A schematic illustration of a polypeptide with three residues: Met, Gly and Ala. The peptide
can also be described as the sequence of the three residues: Met-Gly-Ala.
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FIG. 3. A schematic illustration of the α-helix and the β-sheet secondary structures. (a) The ribbon
representation of the α-helix secondary structure (on the left) and the ball-stick representation showing
all atoms and their chemical bonds in the structure (on the right). We also show the same representations
for the parallel β-sheet secondary structure (b) and the anti-parallel β-sheet secondary structure (c). The
α-helix is taken from protein myoglobin 1MBA at positions 131 to 141 as in [22]. The parallel β-sheet
secondary structure is taken from protein 2EBN at positions 126 to 130 and 167 to 172. The anti-parallel
β-sheet secondary structure is taken from protein 1HJ9 at positions 86 to 90 and 104 to 108.

2.1.2.2 Secondary Structure. A segment of protein sequence may fold
into a stable structure called secondary structure. Three types of secondary structure
are common in proteins:

• α-helix;

• β-sheet;

• turn.

An α-helix is a stable structure where each residue forms a hydrogen bond with
another one that is four residues apart in the primary sequence. We show an example
of the α-helix secondary structure in Fig. 3.

A β-sheet is another type of stable structure formed by at least two β-strands
that are connected together by hydrogen bonds between the two strands. A parallel
β-sheet is a sheet where the two β-strands have the same direction while an anti-
parallel β-sheet is one that does not. We show examples of β-sheets in Fig. 3.

A turn is a secondary structure that usually consists of 4–5 amino acids to connect
α-helices or β-sheets.

Unlike the protein primary sequence, protein secondary structure is usually ob-
tained after solving the 3D structure of the protein.

2.1.2.3 Tertiary Structure and Quaternary Structure. In condi-
tions found within a living organism, a protein folds into its native structure. The
tertiary structure refers to the positions of all atoms, generally in the native struc-
ture. The process of adopting a 3D structure is the folding of the protein. Protein 3D
structure is critical for a protein to carry out its function.
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FIG. 4. Left: The schematic representation (cartoon) of the 3D structure of protein myoglobin. Right:
The schematic representation (cartoon) of the 3D structure of protein HIV protease. HIV protease has two
chains.

In Fig. 4, we show a schematic representation of a 3D protein structure (myo-
globin). In the same figure, we also show the quaternary structure of a protein with
two chains (HIV protease).

Two types of experimental techniques are used to determine the 3D structure of
a protein. In X-ray crystallography, a protein is first crystallized and the structure of
the protein is determined by X-ray diffraction. Nuclear Magnetic Resonance spec-
troscopy (NMR) determines the structure of a protein by measuring the distances
among protons and specially labeled carbon and nitrogen atoms [72]. Once the inter-
atom distances are determined, a group of 3D structures (an ensemble) is computed
in order to best fit the distance constraints.

2.1.3 Protein Structures are Grouped Hierarchically

2.1.3.1 Domains. A unit of the tertiary structure of a protein is a domain,
which is the whole amino acid chain or a (consecutive) segment of the chain that can
fold into stable tertiary structure independent of the rest of the protein [10]. A domain
is often a unit of function i.e. a domain usually carries out a specific function of
a protein. Multi-domain proteins are believed to be the product of gene fusion i.e.
a process where several genes, each which once coded for a separate protein, become
a single gene during evolution [72].

2.1.3.2 Structure Classification. The protein structure space is the set
of all possible protein structures. Protein structure space is often described by a hi-
erarchical structure called protein structure classification, at the bottom of which are
individual structures (domains). Structures are grouped hierarchically based on their



192 J. HUAN ET AL.

secondary structure components and their closeness at the sequence, functional, and
evolutionary level [72].

Here we describe a structure hierarchy, the SCOP database (Structure Classi-
fication of Proteins) [62]. SCOP is maintained manually by domain experts and
considered one of the gold standards for protein structure classification. For other
classification systems see [68].

In SCOP, the unit of the classification is the domain (e.g. multi-domain proteins are
broken into individual domains that are grouped separately). At the top level (most
abstract level), protein in SCOP are assigned to a “class” based on the secondary
structure components. The four major classes in SCOP are:

• α domain class: ones that are composed almost entirely of α-helices;

• β domain class: ones that are composed almost entirely of β-sheets;

• α/β domain class: ones that are composed of alpha helices and parallel beta
sheets;

• α + β domain class: ones that are composed of alpha helices and antiparallel
beta sheets.

These four classes cover around 85% of folds in SCOP. Another three infrequently
occurring classes in SCOP are: multi-domain class, membrane and cell surface do-
main class, and small protein domain class.

Proteins within each SCOP class are classified hierarchically at three additional
levels: fold, superfamily, and family. In Fig. 5, we show a visualization developed
by the Berkeley Structural Genomics Center, in which globally similar structures are
grouped together and globally dissimilar structures are located far away from each
other. This figure shows segregation between four elongated regions corresponding
to the four SCOP protein classes: α, β, α/β, and α+β. Further details about protein
structure classification can be found in [62].

2.2 Protein Function

Proteins are the molecular machinery that perform the function of living organ-
isms. Protein function can be described by the role(s) that the protein plays in an
organism. Usually, protein function description is made at the molecular level, e.g.
the role a protein plays in a chemical reaction. Protein function can also be described
at a physiological level concerning the whole organism, e.g. the impact of a protein
on the functioning of an organism. We describe protein function at 3 different levels
according to [69]:
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FIG. 5. The top level structural classification of proteins based on their secondary structure compo-
nents. Source: http://www.nigms.nih.gov/psi/image_gallery/structures.html. Used with permission.

• Molecular function: A protein’s molecular function is its catalytic activity, its
binding activity, its conformational changes, or its activity as a building block
in a cell [72].

• Cellular function: A protein’s cellular function is the role that the protein per-
forms as part of a biological pathway in a cell.

• Phenotypic function: A protein’s phenotypic function determines the physiolog-
ical and behavioral properties of an organism.

We need to keep in mind that protein function is context-sensitive with respect
to many factors other than its sequence and structure. These factors include (but
are not limited to) the cellular environment in which a protein is located, the post-
translation modification(s) of the protein, and the presence or absence of certain
ligand(s). Though often not mentioned explicitly, these factors are important for pro-
tein function.

http://www.nigms.nih.gov/psi/image_gallery/structures.html
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In this chapter, we concentrate on the molecular function of a protein. We do
so since (1) it is generally believed that native structure may most directly be re-
lated to the molecular function [26], (2) determining the molecular function is the
first step in the determination of the cellular and phenotypic function of a pro-
tein.

3. A Taxonomy of Local Structure Comparison
Algorithms

The goal of local structure comparison is to recognize structure patterns in proteins
where the patterns may be known a priori or not. When patterns are known, the
recognition problem is a pattern matching problem in which we determine whether
a pattern appears in a protein. When patterns are unknown, the recognition problem
is a pattern discovery problem in which we find structure patterns that appear in all
or many of the protein structures in a group.

As discussed in Section 1, a structure pattern is a geometric arrangement of el-
ements, usually at the amino acid residue level. Some other terminology also used
for structure patterns includes structure templates [95], and structure motifs [21].
A typical pattern matching algorithm contains the following components:

• a definition of structure patterns;

• a scoring function that determines the fitness of a pattern to a structure;

• a search procedure that recognizes patterns in a protein or a group of proteins,
based on pattern definition and the scoring function.

The scoring function is also called a matching condition [21]. An instance of a struc-
ture pattern S in a protein P is a group of amino acid residues in P that matches with
S under a certain matching condition.

Before we proceed to details of individual algorithms, Fig. 6 presents a taxonomy
of protein local structure comparison algorithms, together with sample algorithms
in each category. Our categorization is not unique but it serves two purposes: (1) it
offers an overview of the algorithms that are discussed in this chapter and (2) it
simplifies the presentation since we find that algorithms in the same category often
involve the same set of design issues.

At the top level of our taxonomy, we distinguish between pattern matching and
pattern discovery algorithms. Our discussion of pattern discovery is further divided
into two parts based on whether the primary sequence order of amino acid residues is
significant in the pattern or not. The first group is termed sequence-dependent pattern
discovery and the second is sequence-independent pattern discovery. For the more
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FIG. 6. A taxonomy of local structure comparison algorithms.

challenging sequence-independent pattern discovery, we subdivide the algorithms
into two groups: one that detects patterns that are shared by two protein structures
and one that detects patterns that occur frequently among an arbitrary group of pro-
tein structures. The following sections survey algorithms in each category of the
taxonomy.

3.1 Pattern Matching

There are three types of subproblems in pattern matching [21]:

• occurrence pattern matching determines whether a pattern occurs in a protein
structure,

• complete pattern matching finds all occurrences of a pattern in a protein struc-
ture,

• probabilistic pattern matching calculates the probability that a pattern appears
in a protein structure.

The solution of the complete pattern matching problem can be used to answer
the occurrence pattern matching problem, but sometimes the latter can be computed
directly more efficiently. In the following discussion, we present two algorithms
for the complete pattern matching problem: one based on subgraph isomorphism
and the other one based on geometric hashing. For probabilistic pattern matching,
see [2].
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3.1.1 ASSAM

The algorithm ASSAM is one of the most successful pattern matching algorithms
in local structure comparison of proteins [3]. ASSAM recognizes a predefined pat-
tern in a protein structure by transforming both the pattern and the structure to graphs
and using subgraph matching to determine a possible matching(s). Below, we discuss
the details of the ASSAM in graph construction and subgraph matching.

3.1.1.1 Pattern Definition. ASSAM uses a graph to represent a structure
pattern where

• A node in the ASSAM graph represents an amino acid residue and is labeled by
the identity of the residue.

• Two nodes are connected by an edge labeled by the distance vector (to be de-
fined) between the two residues.

In ASSAM, an amino acid residue is represented as a two-element tuple (p1, p2)

where p1 and p2 are two points in a 3D space. These two points are selected to
specify the spatial location and the side chain orientation of the residue and are called
the “pseudo atoms” in ASSAM.1 One of the two pseudo atoms in a residue R is
designated as the “start” atom, denoted by S(R), and the other is the “end” atom,
denoted by E(R).

The distance vector VR,R′ between two amino acid residues R and R′ is a sequence
of four distances

VR,R′ = d
(
S(R), S(R′)

)
, d

(
S(R),E(R′)

)
, d

(
E(R), S(R′)

)
, d

(
E(R),E(R′)

)
where d(x, y) is the Euclidian distance of two points x and y. The distance vector is
used as an edge label in the graph.

ASSAM represents structure patterns in the same way that it represents full protein
structures.

3.1.1.2 Graph Matching. Distance vector VR1,R2 matches distance vector
VR′
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1 They are pseudo atoms since they may be located at positions that do not correspond to a real atom.
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where dss , dse, des , dee are bounds on the allowed variation in distances. These in-
equalities help make the matching robust in the presence of experimental errors in
the determination of element coordinates.

A structure pattern U matches a protein structure V , if there exists a 1–1 mapping
between vertices in U and a subset of vertices in V that preserves node labels and
for which the edge labels in the pattern match the corresponding edge labels in V .

ASSAM adapts Ullman’s backtracking algorithm for subgraph isomorphism [97]
to solve the pattern matching problem. We discuss the details of Ullman’s algorithm
in Section 4.3.

3.1.2 TESS

In TESS both protein structures and structure patterns are represented as point
sets, and the elements of the set are individual atoms. TESS determines whether a
pattern matches a structure using geometric hashing [101]. Specifically, the matching
is done in two steps. In the preprocessing step, TESS builds hash tables to encode the
geometry of the protein structure and the structure pattern. In the pattern matching
step, TESS compares the contents of the hash tables and decides whether the pattern
structure matches the protein structure.

With minor modifications, TESS can be extended to compare a structure pattern
with a group of structures. See [71] for other pattern matching algorithms that also
use geometric hashing.

3.1.2.1 Pattern Definition. TESS represents a structure pattern as a set of
atoms P = {a1, . . . , an} where n is the size of P . Each atom is represented by a
two-element tuple ai = (pi, idi ) where pi is a point in a 3D space and idi is the
identity of the atom.

3.1.2.2 Preprocessing in TESS. To build a hash table encoding the
geometry of a protein structure, TESS selects three atoms with their coordinates
from each amino acid residue and builds a 3D Cartesian coordinate system for each
selection. A 3D Cartesian coordinate system is also called a reference frame in TESS.
For each reference frame, the associated amino acid residue is its base and the three
selected atoms are the reference atoms of the frame. Predefined reference atoms exist
for all 20 amino acid types [101].

Given three reference atoms p1, p2, p3 where each atom is treated as a point,
TESS builds a reference frame Oxyz in the following way:

• the origin of the Oxyz system is the midpoint of the vector −−−→p1p2,

• the vector −−−→p1p2 defines the positive direction of the x-axis,
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• point p3 lies in the xy plane and has positive y coordinate,

• the positive direction of z-axis follows the right-hand rule.

Given a reference frame for an amino acid, TESS recomputes the coordinates of
all atoms in the protein relative to this reference frame. The transformed coordinates
of an atom are discretized into an index that is mapped to a value using a hash table.
The associated value of an index is a two-element tuple (r, a) where r is the identifier
of the base of the reference frame and a is the identifier of the corresponding atom.

TESS builds a reference frame for each amino acid residue in a protein structure
and enters every atom in the protein structure into the hash table relative to this
reference frame. For a protein with a total of R residues and N atoms, there are a
total of R × N entries in the TESS hash table since each reference frame produces a
total of N entries and there are a total of R frames.

A structure pattern in TESS is treated like a protein structure; TESS performs the
same preprocessing step for a structure pattern as for a protein.

3.1.2.3 Pattern Matching. For a pair of reference frames, one from a pro-
tein structure and the other one from a structure pattern, TESS determines whether
there is a hit between the protein structure and the structure pattern. A hit occurs
when each atom in the structure pattern has at least one corresponding atom in the
protein structure. TESS outputs all pairs of reference frames where a hit occurs.

TESS has been successfully applied to recognize several structure patterns, in-
cluding the Ser-His-Asp triad, the active center of nitrogenase, and the active center
of ribonucleases, in order to predict the function of several proteins [101].

3.2 Sequence-Dependent Pattern Discovery

Discovering common structure patterns from a group of proteins is more chal-
lenging than matching a known pattern with a structure. Here we introduce two
algorithms: TRILOGY [9] and SPratt [48,47] that take advantage of sequence order
(and separation) information of amino acid residues in a protein structure to speed
up pattern discovery. Patterns identified by these methods are sequence-dependent
structure patterns.2

3.2.1 TRILOGY

TRILOGY identifies sequence-dependent structure patterns in a group of protein
structures [9]. There are two phases in TRILOGY: initial pattern discovery and pat-

2 Amino acid residues in sequence-dependent patterns are in sequence order but not necessarily consec-
utive in the sequence.
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tern growth. Before we discuss the two phases in details, we present the pattern
definition and matching condition used in TRILOGY.

3.2.1.1 Pattern Definition. In TRILOGY, a three-residue pattern (a triplet)
P is a sequence of amino acid residues and their primary sequence separations such
that

P = R1d1R2d2R3

where Ri (i ∈ [1, 3]) is a list of three amino acid residues sorted according to primary
sequence order in a protein and di (i ∈ [1, 2]) is the number of residues located
between Ri and Ri+1 along the primary sequence (the sequence separation).

Each residue R in TRILOGY is abstracted by a three-element tuple (p, v, id)

where p is a point representing the Cα atom in R, v is the vector of CαCβ atoms,
and id is the identity of the residue.

3.2.1.2 Pattern Matching. A triplet P = R1d1R2d2R3 matches a protein
structure if there exists a triplet P ′ = R′

1d
′
1R

′
2d

′
2R

′
3 in the structure such that

• (1) the corresponding amino acid residues (Ri and R′
i , i ∈ [1, 3]) have similar

amino acid types,

• (2) the maximal difference between the corresponding sequence separations
|di − d ′

i |, i ∈ [1, 2], is no more than a specified upper-bound (e.g. 5),

• (3) the geometry of two triplets matches. This suggests that:
– the difference between the related Cα–Cα distances is within 1.5 Å,

– the angle difference between two pairs of matching Cα–Cβ vectors is always
within 60◦.

If a protein satisfies condition (1) and (2) but not necessarily (3) it is a sequence
match of the triplet P . If a protein satisfies condition (3) but not necessarily (1) or (2)
it is a geometric match of the triplet P . By definition, a protein matches a triplet P if
there is a sequence match and a geometric match to P .

The pattern definition and matching condition for larger patterns with d amino
acids are defined similarly to the above, but use 2d − 1 element tuples instead of
triples.

3.2.1.3 Triplet Discovery. TRILOGY takes as inputs a group of protein
structures and produces a sequence alignment of the structures using information
provided in the HSSP database [78].

After sequence alignment, all possible triplets are discovered. For each triplet,
TRILOGY collects two pieces of information: the total number of sequence matches
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and the number of structure matches, and assigns a score to the triplet according to a
hypergeometric distribution. Only highly scored triplets are used to generate longer
patterns.

3.2.1.4 Pattern Growth. If a highly scored triplet shares two residues with
another triplet, the two patterns are “glued” together to generate a larger pattern with
four amino acid residues in the format of RidiR4 where {Ri}, i ∈ [1, 4], and di ,
i ∈ [1, 3], are defined similarly to ones in triplets. Longer patterns in TRILOGY are
generated similarly.

3.2.2 SPratt

Like TRILOGY, the SPratt algorithm also uses the primary sequence order infor-
mation to detect common structure patterns in a group of protein structures [48,47].
Unlike TRILOGY, SPratt discards the requirement that the sequence separation be-
tween two residues should be conserved. In the following discussion, we present the
details of the SPratt algorithm.

3.2.2.1 Pattern Definition. In SPratt, a pattern P is a list of amino acid
residues

P = p1, . . . , pn

where n is the length of P . Each residue in SPratt is abstracted as a two-element
tuple (p, id) where p is a point representing the Cα atom in R and id is the identity
of the residue. Additional information such as the secondary structure information
and the solvent accessible area may be included to describe a residue.

3.2.2.2 Pattern Matching. A pattern P of length n matches with a protein
structure Q if we can find a sequence of amino acid residues S = s1, . . . , sn sorted
according to the primary sequence order in Q such that

• the residue identity of si matches with the residue identify of pi , i ∈ [1, n].
• the root-mean-squared-deviation (RMSD) value of the corresponding locations

in P and S is below some threshold.

3.2.2.3 Pattern Discovery. Pattern discovery in SPratt is done in three
steps. First, SPratt picks an amino acid residue and selects all neighboring residues
within a cutoff distance. It converts the set of neighboring amino acid residues into
two strings, called neighbor strings: one that includes all residues that precede the
target residue in the sequence and the second that includes all residues that follow.
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Both strings are sorted according to the primary sequence order. For each amino
acid residue and each protein structure in a data set, SPratt computes the neighbor
strings and puts all the strings together. Encoding neighboring residues in this way,
the neighbor strings reflect the primary sequence order but not the separation between
any residues.

Second, the Pratt string matching algorithm [46] is used to identify all sequence
motifs that occur in a significant part of the data set.

Third, for each sequence motif, the geometric conservation of the motifs (mea-
sured by the pairwise RMSD distance between all the instances of the sequence
motif) is evaluated. SPratt selects only those with significant geometric conservation.

3.3 Sequence-Independent Pattern Discovery

3.3.1 Discovering Sequence-Independent Structure Patterns
in a Pair of Structures

In the previous section, we discussed algorithms that identify sequence-dependent
structure patterns. In this section, we discuss algorithms that identify structure pat-
terns without the constraint of sequence order, or sequence-independent structure
patterns.

We divide sequence-independent structure pattern discovery algorithms into two
groups according to whether they work on a pair of structures or on an arbitrary
collection of structures. In this section, we review pairwise sequence-independent
pattern discovery methods and in the next section we show how pairwise comparison
can be extended to multiway comparison of protein structures. Pairwise sequence-
independent pattern discovery methods include:

• Geometric hashing methods that represent protein structures as point sets and
use geometric matching to find structure patterns [67,23].

• Graph matching methods that model protein structures as labeled graphs and
perform subgraph matching to detect conserved patterns [30,61,92,89,104].

3.3.2 Geometric Hashing
This class of methods model a protein structure as point sets and use the geometric

hashing technique to obtain common point subset from two structures. There is no
fundamental difference in applying geometric hashing for pairwise structure pattern
identification and that of pattern matching as exemplified by the TESS algorithm in
Section 3.1.2. Below, we present the pattern definition used in geometric hashing.
Rather than repeating the discussion of preprocessing and geometric matching that
are common to almost all geometric hashing based methods, we present an analysis
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of computational complexity. We also show how different techniques may reduce the
asymptotic complexity of the computation.

3.3.2.1 Pattern Definition. A structure is represented as a set of amino
acid residues P = {a1, . . . , an} where n is the size of P . Each residue is represented
by a two-element tuple ai = (pi, idi ) where pi is a point in a 3D space that represents
the spatial location of the residue (e.g. its Cα atom) and idi is the identity of the
residue.

This definition was originally used by Nussinov and Wolfson [67]. The complexity
of preprocessing a single protein structure with n residues is bounded by O(n4). This
is because there are a total of

(
n
3

)
triplets in a protein. For each triplet we build one

reference frame. For each reference frame, we compute the new coordinates of all n

residues in the protein according to the frame. The complexity of this preprocessing
step is hence n · O

(
n
3

) = O(n4).
At the matching stage, two structures are preprocessed and the results are stored

in a single hash table. After preprocessing, we scan the hash table once to report the
shared structure patterns. Clearly, the post processing step is bounded by the total
number of entries in the hash table which is itself bounded by O(n4). Therefore the
overall computational complexity is O(n4).

Nussinov and Wolfson present an algorithm to speed up the computation from
O(n4) to O(n3). In the improved version, rather than using a triplet to build a ref-
erence framework, two points are used to build a reference framework. There are a
total of O(n2) point pairs in a data set with n points and hence the overall complexity
is reduced to O(n3).

A more efficient algorithm with complexity O(n2) has been proposed by Fischer
et al. [23]. For a protein structure with n residues, rather than building a total of
O(n3) (or O(n2), if using residue pairs) reference frames, Fischer’s method builds a
total of n reference frames. This is done by always picking up three residues that are
consecutive in the primary sequence and building one reference frame for each such
triplet. There are a total of O(n) such triplets so the overall complexity is O(n2).

Geometric hashing has been applied to recognize local structure similarity for
proteins even if they have globally different structures [23].

3.3.3 Graph-Based Methods

This group of methods utilizes graph theory to model protein structure and uses
subgraph isomorphism to detect recurring patterns among a pair of protein structures
[91,61,79]. In this group of algorithms, a protein structure is modeled by a graph
where each node models an amino acid residue, labeled by the residue identity and
an edge connects a pair of residues, labeled by a variety of information related to
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the geometry of the protein as well as the possible physico-chemical interactions
between the pair of residues. Below we review PINTS [77,93] in detail. For related
methods, see [24,61,79,107].

3.3.3.1 PINTS. PINTS takes as input two protein structures and identifies all
structure patterns common to the two structures [91].

Pattern Definition. PINTS uses a graph to represent a structure pattern where

• A node in the PINTS graph represents an amino acid residue and is labeled by
the identity of the residue.

• Two nodes are connected by an edge labeled by the distance vector (to be de-
fined) between the two residues.

In PINTS, an amino acid residue R is a three-element tuple (p1, p2, p3) that rep-
resents the Cα atom, the Cβ atom, and a functional atom in the residue R. One
functional atom is defined for each of the 20 amino acid residue types.

A distance vector between two residues R1, R2 in PINTS is a three-element tuple
(dR1,R2

α , d
R1,R2
β , d

R1,R2
f ) where d

R1,R2
α , d

R1,R2
β , d

R1,R2
f are the (Euclidian) distances

between the Cα, Cβ, and functional atoms in the side chain of the two residues.

Graph Matching. The distance vector VR1,R2 matches the distance vector VR′
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where dα, dβ, df are predefined tolerances. PINTS uses values 7.5, 6.6, and 6 Å,
respectively.

A structure pattern P matches a structure Q if there exists 1–1 mapping of residues
in P to a set of residues in Q such that corresponding nodes have identical node
labels and corresponding edges are labeled by matching distance vectors.

Pattern Discovery. PINTS uses a modified Ullman’s subgraph isomorphism test
to identify all shared subgraphs of two graphs. An overview of the Ullman’s subgraph
isomorphism algorithm can be found in Section 4.3.

The statistical significance of identified patterns is estimated using a sophisticated
model [93], which involves the RMSD between the two instances of the patterns,
the number of residues in the pattern, the abundance of those residues, and their
connectivity along the sequence.
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Many interesting patterns have been identified by the PINTS method including the
serine protease active center, the NAD binding motif in NAD binding proteins, and
binding pockets of chorismate mutases.

3.3.4 Discovering Sequence-Independent Structure Patterns
in Multiple Structures

In this section, we present a review of sequence-independent pattern discovery
methods that work on a group of two or more structures. These methods are:

• Delaunay tessellation;

• Geometric hashing;

• Frequent subgraph mining.

3.3.4.1 Delaunay Tessellation. This class of methods [54,12,96] identi-
fies local structural patterns based on the Delaunay Tessellation technique.

Delaunay tessellation partitions a structure into an aggregate of non-overlapping,
irregular tetrahedra that identify the nearest neighbor residue quadruplets for any
protein. The decomposition is unique and can be made robust in the presence of
uncertainty of the residue positions [4]. Recurring structural patterns can be iden-
tified from tetrahedra recurring in multiple structures. Studies have explored the
hypothesis that four-residue packing motifs can be defined as structure and sequence
specific residue signatures and can be utilized in annotation of structural and func-
tional classes of both protein structures (if available) and genomic sequences [96].
Earlier studies identified residue packing patterns based on the analysis of protein
structures in a family represented as a network of residue contacts obtained by De-
launay tessellation [12,42].

3.3.4.2 Geometric Hashing. Recently geometric hashing has been ap-
plied to perform multiple structure alignment [56] and to identify functional sites in
protein structures [87,85]. It has been also applied to atom-level representations of
protein structures [85].

The extension of geometric hashing methods to find common structural patterns
among multiple structures [87,85] and similarly for an extension based on PINTS
[104] suffer from limited scalability since they may have exponential running time
in the total number of structures.

3.3.4.3 Frequent Subgraph Mining. In frequent subgraph mining, a
protein structure is represented by a graph. Given a group of graphs and a matching
condition (usually specified as subgraph isomorphism), the goal of frequent subgraph
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mining is to discover all frequent subgraphs in the collections of graphs [108,40]. We
discuss frequent subgraph mining algorithms in detail in the next two sections. These
methods have excellent scaling behavior as the number of structures increases.

4. Pattern Discovery Using Graph Mining

Graphs have been utilized in many application domains as a rigorous representa-
tion of real data. Such data include the topology of communication networks, social
networks, citation networks, chemical 2D structures, protein 3D structures, RNA
structures, gene phylogeny data, protein-protein interaction data, and signaling, reg-
ulatory, and metabolic pathways. For example, the 2D structure of a chemical can
be modeled as an undirected labeled graph where each node corresponds to an atom
in the chemical, labeled by the atom type, and an edge corresponds to a chemical
bond, labeled by the bond type. With graph representations, automated classifiers
have been built to identify the toxic chemicals among a mix of toxic and non toxic
chemicals [8].

Graphs have also been widely utilized for representing protein structure in pro-
tein structure comparison [3]. In the following discussion, we first give a formal
definition of labeled graphs (graphs with node and edge labels) and then discuss two
methods that use graphs to represent protein structures. A more sophisticated method
developed in our recent research, which combines existing graph representations of
protein structures, is discussed in Section 6.

4.1 Labeled Graphs

4.1.1 Labeled Simple Graphs

We define first labeled simple graphs and then labeled multigraphs and pseudo-
graphs.

Definition 4.1. A labeled simple graph (graph) is a four-element tuple G =
(V ,E,Σ, λ) where V is a set of vertices or nodes and E ⊆ V × V is a set of edges
joining two distinct nodes. Σ is the set of nodes and edge labels and λ : V ∪ E → Σ

is a function that assigns labels to nodes and edges.

The size of a graph G, denoted by |G| is the cardinality of its node set. The degree
of a node v is the number of edges incident with v. We use V [G] and E[G] to denote
the set of nodes and edges for a graph G, respectively. We usually assume node
labels and edge labels are disjoint and a total ordering is defined for the label set Σ .
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A graph database is a list of labeled graphs where each graph is assigned an integer
identifier called graph id. A simple graph G is undirected, if the binary relation
E[G] ⊂ V × V is symmetric, otherwise, G is directed. Unless stated otherwise, all
graphs are undirected in our discussion.

4.1.2 Multigraphs and Pseudographs

A multigraph is a graph where there may exist at least two edges between the
same pair of nodes. A graph loop is a degenerate edge which joins a node to it-
self. A simple graph can have neither loops nor multiple edges, but a pseudograph
can have both. We define a labeled multigraph and pseudograph in the following
way.

Definition 4.2. A labeled multigraph is a four-element tuple G = (V ,E,Σ, λ)

where λ : V ∪ E → 2Σ is a function that assigns (multiple) labels to nodes and
edges. 2Σ is the powerset of a set Σ . The interpretations of V , E, and Σ are the
same as those of simple graphs. If a labeled multigraph contains graph loops, it is a
labeled pseudograph.

Example 1. In Fig. 7, we show a graph database with three graphs P , Q, and S

with graph id 10, 20, and 30, respectively. The edge (p2, p5) in graph P has multi-
ple labels {x, y} and hence P is a multigraph. Graphs Q and S are simple graphs.
Throughout our discussion, we use capital letters to represent graphs and lower case
letters with subscripts to denote nodes in graphs. The order of nodes in a graph is
arbitrary.

4.1.3 Paths, Cycles, and Trees

We also use the following graph-related terms:

FIG. 7. A database G of three labeled graphs. The labels of nodes and edges are specified within the
nodes and along the edges.
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• A simple path (path) is an n-node undirected graph L where V [L] = {li},
i ∈ [1, n] and E[L] = {(li , li+1)}, i ∈ [1, (n − 1)]. n > 0 is the length of
the path L.

• A graph G is connected if for each pair of distinct nodes (u, v), there exists a
path L ⊆ G such that l1 = u and ln = v where n is the length of L.

• A cycle O is an n-node path L with one additional edge connecting l1 and ln. n

is the length of O.

• A acyclic graph is a graph with no cycle.

• A tree is a connected acyclic graph.

4.2 Representing Protein Structures

Graphs have been widely used to represent protein structures. In general at the
amino acid residue level, a node in a graph represents an amino acid residue, and an
edge represent the binary relation between a pair of residues. Depending on the ap-
plications, the binary relation may be distances between pairs of amino acid residues
(distance matrix) or the physico-chemical contacts between residues (contact maps).
We discuss the details of distance matrices and contact maps in protein structure
representation below.

4.2.1 Protein Distance Matrix

A matrix (xi,j ) (1 � i, j � n) is the distance matrix for a protein P with n el-
ements, if the entry xi,j is the (Euclidian) distance of the ith and j th element in
protein P . For each protein structure, there is exactly one distance matrix but the
reserve is not true. Given a distance matrix X, there are at most two structures cor-
responding to the matrix. This is because inter-element distances are the same for a
mirror image of a structure. To be efficiently handled by computer algorithms, dis-
tances in a distance matrix are discretized.

Using a distance matrix at the residue level, a protein structure is represented by a
graph where a node represents an amino acid residue and an edge connecting a pair
of amino acid residue is labeled by the discretized distance between the two residues.

4.2.2 Protein Contact Maps

A protein contact map is the same as the protein distance matrix representation,
except each xi,j is not a distance but rather a Boolean indicating whether the pair
of amino acid residues are in “contact” or not. There are many ways to define the
“contact” relation. The most common way is a distance based method where a pair
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of residues are in contact if their distance is below a certain distance threshold and
not otherwise [37]. More sophisticated methods such as Delaunay Tessellation and
almost-Delaunay are also used to define the contact relation [42].

4.3 Subgraph Isomorphism

A fundamental part of recurring subgraph identification is to decide whether a pat-
tern G occurs in a graph G′. To make this more precise, we use the follow definition.

Definition 4.3. A graph G is subgraph isomorphic to another graph G′ if there exists
a 1–1 mapping f : V [G] → V [G′] such that:

• ∀u ∈ V [G], (λ(u) ⊆ λ′(f (u))),

• ∀u, v ∈ V, ((u, v) ∈ E[G] ⇒ (f (u), f (v)) ∈ E[G′]), and

• ∀(u, v) ∈ E[G], (λ(u, v) ⊆ λ′(f (u), f (v))).

G′ in the above definition is a supergraph of G. The bijection f is a subgraph
isomorphism from G to G′ and the node image f (V [G]) of V is an occurrence of
G in G′. With a slight abuse of notation, we use the term “subgraph” to refer to a
“subgraph isomorphic” relation. Two graphs G and G′ are isomorphic, denoted by
G = G′ if they are mutually subgraphs of each other. Non-isomorphic subgraph G of
G′ is a proper subgraph of G′, denoted by G ⊂ G′. A proper supergraph is defined
similarly.

An induced subgraph is one that preserves all edges in the larger graph. In other
words, a graph G is induced subgraph isomorphic to another graph G′ if G ⊆ G′
with a bijection f : V [G] → V ⊆ V [G′] such that E = (V × V ) ∩ E[G′]. We call
a graph G an induced subgraph of G′ if G is induced subgraph isomorphic to G′.

Example 2. In Fig. 8, we show three graphs that are duplicated from Fig. 7 for
the readers’ convenience. The function f : q1 → p2, q2 → p1, and q3 → p3 is

FIG. 8. A database G of three labeled graphs duplicated from Fig. 7. The label(s) of nodes/edges are
specified within the nodes/along the edges.
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a subgraph isomorphism from graph Q to P and hence Q occurs in P . The set
{p1, p2, p3} is an occurrence (and the only one) of graph Q in P . We notice that Q

is also an induced subgraph of P since Q preserves all edges of P in the node image
{p1, p2, p3}. Similarly, S occurs in P but S is not an induced subgraph of P .

4.3.1 Ullman’s Algorithm

Ullman’s algorithm is one of the most widely used algorithms to solve the sub-
graph isomorphism problem [97]. Though Ullman originally developed the algo-
rithm for unlabeled and undirected graphs, this algorithm is so flexible that it can
be used for virtually all types of graphs with little extra effort regardless of whether
these graphs are labeled or unlabeled, have multiple edges or not, have graph loops
or not, and are directed or undirected. In the following discussion, we present the ba-
sic form of Ullman’s subgraph isomorphism algorithm for unlabeled and undirected
graphs. See [38] if interested in subgraph isomorphism in other types of graphs.

In Ullman’s algorithm, the pattern graph and graph to be matched with (the parent
graph) are represented by standard adjacency matrices A(n, n) and B(m,m) where n

and m are the total numbers of nodes in graph A and B respectively and ai,j equals 1
if the ith node and the j th node of A are connected and 0 otherwise. Throughout
this section, we use ai,j to refer to the entry of a matrix A at the ith row and the j th
column.

Ullman used a specially designed n × m binary matrix M , referred to as the per-
mutation matrix, where each row has exactly one 1 and each column has at most a
single 1, to encode a 1–1 mapping from nodes of A to those of B. To see that M

stands for a 1–1 mapping, we interpret an entry mij = 1 in M as a match between
the ith node in A and the j th node in B. Since each row of M has exactly one 1,
each node in A maps to exactly one node in B; since each column of M has at most
a single 1, no two nodes in A can match to the same node in B. In other words, M

encodes a 1–1 mapping from nodes of A to those of B.
Using linear algebra, we obtain C = M(MB)T where XT is the transpose of ma-

trix T . One important theorem about graph matching is that M stands for a subgraph
isomorphism from A to B, if and only if:

(1)∀(i, j : 1 � i, j � n, aij = 1 ⇒ cij = 1).

To search for all successful matches, Ullman’s algorithm enumerates the space
of all possible permutation matrices M using a backtrack method. The proof the
theorem and the algorithmic details of the backtrack search can be found in [97].
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4.4 A Road Map of Frequent Subgraph Mining
Because graphs are ubiquitous data types in many application domains including

protein structure analysis [40,39], identifying recurring patterns of graphs has at-
tracted much recent research interest. Recurring subgraph patterns provide insights
of the underlying relationships of the objects that are modeled by graphs and are
the starting point for subsequent analysis such as clustering and classification. Suc-
cessful applications of recurring subgraph pattern identification include improving
storage efficiency of databases [17], efficient indexing [29,86], and web information
management [110,75]. With no surprise, algorithms for graph based modeling and
analysis are going through a rapid development [39].

Here, we introduce an efficient algorithm for mining graph databases: Fast Fre-
quent Subgraph Mining (FFSM) [40]. With minor modifications, this same algorithm
can be used to mine trees, cliques, quasi-cliques from a graph database or tree pat-
terns in a tree database [40]. Before we introduce the details of our algorithm, we
define the frequent subgraph mining problem, followed by an introduction to related
work.

4.4.1 The Frequent Subgraph Mining Problem
Given a set Σ , the graph space G∗ is all possible simple connected graphs with

labels from Σ . Given a group of graphs G ⊆ G∗, the support of a simple graph G,
denoted by s(G), is the fraction of G in which G occurs.

The frequent subgraph mining problem is defined as:

Definition 4.4. Given a graph database G and a parameter 0 < σ � 1, the frequent
subgraph mining problem is to identify all simple graphs G ∈ G∗ such that the
support of G is at least σ .

An algorithm that solves the frequent subgraph mining problem is referred to as a
frequent subgraph mining algorithm. We consider only connected graphs in a graph
space since unconnected graphs can be viewed as a group of connected graphs. Once
connected frequent subgraphs are identified, unconnected ones can be obtained using
frequent item set mining techniques, as observed in [55].

4.4.2 Overview of Existing Algorithms
Since frequent subgraph mining is computationally challenging, early research

focused on either approximation techniques such as SUBDUE [34] or methods that
are only applicable for small databases like Inductive Logic Programming [16].

Recent research in frequent subgraph mining focuses on the efficiency of the algo-
rithms because most of the algorithms solve exactly the same problem and produce
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the same answer. All scalable algorithms take advantage of the anti-monotonicity of
frequency, which asserts that any supergraph of an infrequent subgraph pattern re-
mains infrequent. The algorithms contain three components that are discussed in the
sequel:

• Searching for initial seeds: preprocessing the input graph database and identi-
fying a set of initial frequent subgraph patterns as “seeds.” Graph topology of
seeds is usually simple, e.g. frequent single node, single edge, or paths.

• Proposing candidate subgraphs: for each seed, a new set of patterns are pro-
posed that are supergraphs of the seed and are likely to be frequent.

• Validating candidate subgraphs: for each proposed candidate, the support value
is computed. Only frequent ones are left as seeds for the next iteration.

Components (2) and (3) may be utilized repeatedly in order to obtain all frequent
subgraphs.

Below, we divide existing frequent subgraph mining methods into three groups
based on how candidates are proposed:

• Edge based methods: generate new subgraphs by adding one edge to existing
frequent subgraphs.

• Path based methods: decompose a graph into a set of paths and enumerate
graphs by adding a path at a time.

• Tree based methods: first identify all frequent tree patterns and then discover
cyclic graph patterns.

There are other types of graph mining algorithms that focus on mining a smaller
subset of frequent subgraphs. For example, maximal frequent subgraph mining [41]
identifies only those frequent subgraphs for which none of their supergraphs are
frequent. Coherent subgraph mining uses mutual information to select subgraphs that
may be infrequent in an overall data set [42]. For a more recent review of different
subgraph mining algorithms, see [41].

4.4.3 Edge Based Frequent Subgraph Mining
4.4.3.1 Level-wise Search: The FSG Algorithm. FSG (Frequent
Subgraph Mining) [55] identifies all frequent patterns by a level-wise search pro-
cedure. At the first step, FSG preprocesses the input graph database and identifies
all frequent single edge patterns. At a subsequent step, e.g. at step k, FSG identifies
the set of frequent subgraphs with edge size (i.e. number of edges) k. This set is
denoted as Ck . The task at step k is subdivided into two phases: candidate subgraph
processing and candidate subgraph validation, with the details covered below (see
Algorithm 1).
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1: F1 ← {e | s(e) � σ } # all frequent edges
2: k ← 2
3: while Fk−1 �= ∅ do
4: Ck ← FSG-join(Fk−1, k)
5: Fk ← FSG-validation(Ck,G, σ )
6: k ← k + 1
7: end while
8: F ← ⋃

i∈[1,k] Fi

ALGORITHM 1. FSG(G, σ ): Frequent subgraph mining.

Candidate Subgraph Proposing. Given a set of frequent graphs with edge size
k − 1 (number of edges), denoted by Fk−1, FSG constructs candidate frequent sub-
graphs with edge size k by “joining” two frequent subgraphs with size k − 1. Two
graphs are “joinable” if they have the same edge size l > 0 and they share a common
subgraph of edge size l − 1. The “join” between two joinable graphs G1,G2 with
edge size k − 1 produces a set of graphs that are supergraphs of both graphs with
edge size k. In other words, in FSG, the join operation is defined as:

FSG_ join(G1,G2) =
⎧⎨
⎩

{G | G1 ⊆ G,G2 ⊆ G, |E[G]| = k}
if G1 and G2 are joinable,

∅ otherwise.

We use |E[G]| to denote the edge size of a graph G.
FSG applies the join operation for every pair of joinable graphs in Fk−1 to produce

a list of candidate k edge patterns Ck . The join operation is illustrated in Fig. 9 and
the pseudo code is presented in Algorithm 2.

Candidate Subgraph Validation. FSG determines the true frequent subgraphs
with edge size k from the set Ck by computing the support value of each member

FIG. 9. An example of the join operation in FSG.
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1: Ck ← ∅
2: for each G1,G2 ∈ Fk−1 do
3: if there exists e1 ∈ E[G1] and e2 ∈ E[G2] such that G1 − e1 = G2 − e2
4: Ck = {G | G1 ⊂ G, G2 ⊂ G, |E(G)| = k} # joinable
5: end if
6: end for
7: return Ck

ALGORITHM 2. FSG-join(Fk−1, k): Join pairs of subgraphs in Fk−1.

1: Fk ← ∅
2: for each G ∈ Ck do
3: s(G) ← 0
4: for each G′ ∈ G do
5: if G ⊆ G′ then s(G) ← s(G) + 1 end # computing support value
6: end for
7: if s(G) � σ then Fk ← Fk ∪ {G} end
8: end for
9: return Fk

ALGORITHM 3. FSG-validation(Ck,G, σ ): Validate frequent subgraphs.

in the set Ck . To compute the support value of a graph G, FSG scans the database of
graphs and for each graph G′ in the graph database, FSG uses subgraph isomorphism
test to determine whether G is a subgraph of G′ and updates the support value of G if
it is. As the results of the validation phase, the set of frequent subgraph with edge size
k is computed. The pseudo code of the FSG-validation is presented in Algorithm 3.

Putting It All Together. Algorithms 1–3 present the pseudo code for the FSG
algorithm, which identifies all subgraphs F in a graph database G with support
threshold 0 < σ � 1. We simplified the FSG algorithm to explain its basic structure;
see [55] for details of performance improvements in FSG.

4.4.3.2 Depth-First Search: The gSpan Algorithm. gSpan utilizes
a depth-first algorithm to search for frequent subgraphs [108]. gSpan, like FSG, also
preprocesses a graph database and identifies all frequent single edges at the beginning
of the algorithm. gSpan designed a novel extension operation to propose candidate
subgraphs. In order to understand the extension operation developed by gSpan, we
will introduce the depth-first code representation of a graph, developed in gSpan.
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Depth-First Code of Graphs. Given a connected graph G, a depth-first search S

of G produces a chain of nodes in G and we denote the nodes in V [G] as 1, 2, . . . , n

where n is the size of the graph G. Node n is the rightmost node and the path from
root to n is named the rightmost path.

Each edge in G is represented by a 5-element tuple e = (i, j, λ(i), λ(i, j), λ(j))

where i, j are nodes in G (i < j ) and λ is the labeling function of G that assigns
labels to nodes and edges.

We define a total order � of edges in G such that e1 � e2 if i1 < i2, or (i1 = i2
and j1 � j2).

Given a graph G and a depth-first search S, we may sort edges in a graph G

according to the total order � and concatenate such sorted edges together to produce
a single sequence of labels. Such a sequence of labels is a depth first code of the graph
G. There may be many depth first codes for a graph G and the smallest one (using
lexicographical order of sequences) is the canonical DFS form of G, denoted by
DFS(G). The depth first tree that produces the canonical form of G is its canonical
DFS tree.

Candidate Subgraph Proposing. In gSpan, a frequent subgraph G is extended
to a candidate frequent subgraph G′ by choosing a node v in the rightmost path
of a canonical DFS tree in G and adding an edge (v,w) to G where w is a node
in G or not. The restriction that we only introduce an edge into the rightmost path
looks strange at the first glance but an important observation of gSpan is that it is
guaranteed that we can still enumerate all frequent subgraphs with this extension.
See [108] for the detailed proof.

Candidate Subgraph Validation. gSpan uses the same procedure used by FSG
(a scan of a graph database and use subgraph isomorphism to determine the support
value) to select frequent subgraphs from a set of candidates.

Comparing to level-wise search algorithm FSG, gSpan has better memory utiliza-
tion due to the depth-first search, which leads to an order of magnitude speedup in
several benchmarks [109].

Putting It All Together. Algorithms 4–6 present the gSpan algorithm.

Other Edge-Based Depth-First Algorithms. Instead of enumerating all the sub-
graph isomorphisms, the method proposed by Borgelt and Berhold [8] also uses an
edge-based depth-first scheme to discover all frequent subgraphs. Different from
gSpan, the method keeps a list of all subgraph isomorphisms (“embedding”) of a
frequent subgraph G. The intuition is to avoid subgraph isomorphism testing, which
generally becomes the performance limiting factor of gSpan when dealing with large
and complex graphs (dense graphs with few distinct labels). Another edge-based
depth first search method FFSM [40] also keeps embedding and frequent subgraph.
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1: F1 ← {e | s(e) � σ } # all frequent edges
2: F ← F1
3: k ← 1
4: for each G ∈ F1 do
5: F ← F ∪ gSpan-search(G, k,G, σ )
6: end for

ALGORITHM 4. gSpan(G, σ ): Frequent subgraph mining.

k ← k + 1
Ck ← gSpan-extension(G, k)
Fk ← gSpan-validation(C,G, σ )
for each G′ ∈ Fk do

F ← F ∪ gSpan-search(G′, k,G, σ )
end for
return F

ALGORITHM 5. gSpan-search(G, k,G, σ ).

1: Ck ← {G′ | G ⊂ G′, |E[G′]| = k, DFS(G) � DFS(G′)}
2: return Ck

ALGORITHM 6. gSpan-extension(G, k).

FFSM has developed a hybrid candidate proposing algorithm with both a join and
an extension operation with improved efficiency. We cover details of FFSM in Sec-
tion 5.

4.4.3.3 Path-Based Frequent Subgraph Mining. Below we intro-
duce the algorithm proposed by Vanetik et al. that discovers all frequent subgraphs
using paths as a building block [98]. We name this algorithm PGM (Path-based
Graph Mining).

Path Cover and Path Number of Graphs. A path cover of a graph G is set of
edge-disjoint paths that cover edges in G exactly once. A minimal path cover of a
graph G is a path cover of G with the minimal number of paths. The cardinality of a
minimal path cover of a graph G, denoted by p(G), is the path number of G.
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FIG. 10. A graph G and two of its path covers.

The computation of a path number is straightforward. For a connected graph G =
(V ,E), the path number is p(G) = |{v | v ∈ E, d(v) is odd }|/2 where d(v) is the
degree of a node v [98].

In Fig. 10, we show a graph G and two of its path covers P = {P1, P2} and
Q = {Q1,Q2}. Since G has four nodes with odd degree, the path number of G is
p(G) = 4/2 = 2. Therefore both path cover P and Q are minimal path covers of G.

Representing Graphs by Paths. In PGM, each graph is represented in a novel
way as a set of paths and a relation among the set of paths. More specifically,
PGM represents a graph G as a three-element tuple G = (V , P, π) where

• V is the set of nodes in G,

• P is a path cover of G, and

• π :P → V is a 1–1 mapping of nodes in path cover P to V where P = ⋃
p∈P p

is the set of all nodes in the path cover P .

The function π is named the composition relation in PGM. We can prove that
with a node set V , a path cover P of a graph G, and a composition relation that maps
nodes in P to V , we can reconstruct the graph G exactly. The proof is given in [98].

Candidate Subgraph Proposing. In PGM, each graph is represented as a set of
paths P , a set of nodes V , and the composition relation of V to nodes in P . Two
n-path represented graphs G1 = P11 , P12 , . . . , P1n and G2 = P21 , P22 , . . . , P2n are
“joinable” if they differ from each other by at most one path. In other words, G1 and
G2 are joinable if |G1 ∩ G2| � n − 1.
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For two joinable graphs G1,G2, PGM produces a set of graphs that are super-
graphs to both G1 and G2 and selects those that are frequent in a graph database.
PGM follows the general approach of Algorithm 1, using this definition of joining.

4.4.3.4 Tree-Based Frequent Subgraph Mining: the GASTON
Algorithm. We describe the algorithm GASTON [66], which introduced a new
frequent subgraph enumeration method by first identifying all frequent trees and then
constructing cyclic graphs. The two steps are covered in the following discussions.

Frequent Tree Identification. GASTON discovers all frequent trees using a sim-
ilar strategy to that used by the edge-based depth-first algorithms. First all frequent
edges are discovered. Second, single edges are extended to trees with two edges, in-
frequent trees are pruned, and the same search goes on until no more frequent trees
are identified. GASTON uses a novel tree normalization scheme that can be com-
puted incrementally in constant time. Using this tree normalization scheme, GAS-
TON guarantees that each frequent tree is enumerated once and only once efficiently.

Frequent Cyclic Graph Identification. For a frequent tree T , GASTON con-
structs a set of frequent graphs that use T as their spanning tree. Let’s denote set
CE as the set of unconnected node pairs in a tree T , i.e. CE = {(i, j) | i < j ,
(i, j) /∈ T } (we require i < j to avoid redundant pairs in an undirected tree). GAS-
TON uses a “close” operation which introduces an edge to an pair of unconnected
nodes in a tree or a graph. By applying the close operation repeatedly, GASTON
enumerates all frequent cyclic graphs in which T is a spanning tree.

As a final comment for GASTON, as pointed out by Nijssen and Kok, the task of
constructing frequent cyclic graphs from a tree T is similar to the frequent item set
mining problem [11] if we treat each edge in CE as an “item.” In fact, any algorithms
that solves the frequent item set problem can potentially be adapted to solve the
problem of constructing frequent cyclic graphs from a tree in GASTON.

5. FFSM: Fast Frequent Subgraph Mining

Here, we introduce an efficient algorithm for mining frequent subgraphs in graph
databases: Fast Frequent Subgraph Mining (FFSM). With little effort, this same al-
gorithm can be used to mine trees, cliques, quasi-cliques from a graph database or
tree patterns in a tree database [40].

5.1 New Definitions
5.1.1 Graph Automorphism

One of the critical problems in graph mining is the graph automorphism problem:
given two graphs P and Q, determine whether P is isomorphic to Q. We solve the
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graph automorphism problem by graph normalization, i.e. assigning unique ids for
graphs. To that end, we introduce the following definitions.

Definition 5.1. A graph normalization function is a 1–1 mapping ψ from G∗ to an
arbitrary set Γ , i.e. ψ(G) = ψ(G′) ⇒ G = G′ where G∗ is a graph space (i.e. all
possible graphs with vertex and edge labels chosen from a fixed set).

We work on a subclass of normalization procedures that maps a graph to
a sequence of labels. The label sequence ψ(G) is the canonical form of the
graph G.

5.1.2 Canonical Adjacency Matrix of Graphs

In FFSM, we represent each graph by an adjacency matrix M such that every
diagonal entry of M is filled with the label of a node and every off-diagonal entry
is filled with the label of the corresponding edge, or zero if there is no edge. In the
sequel with no confusion of graphs, we use capital letters to denote matrices and use
the corresponding lower case letters with subscripts to denote an individual entry of
a matrix. For instance, we use mi,j to denote the entry on the ith row and j th column
of an n × n matrix M , where 0 < j � i � n.

5.1.2.1 Code. In general there are many valid adjacency matrix for a sin-
gle graph. For example, any permutation of the node set corresponds to a (possibly
different) adjacency matrix, if we layout the nodes along the diagonal line of the
adjacency matrix accordingly. Therefore, there may be up to n! different adjacency
matrices for a graph of n nodes. The right part of Fig. 11 shows three adjacency ma-
trices for the labeled graph P shown in the same figure. When we draw a matrix, we
assume that the rows are numbered 1 through n from top to bottom, and the columns
are numbered 1 through m from left to right for an n × m matrix M . For simplicity,
we only show the lower triangular part of an adjacency matrix since the upper half is
a mirror image of the lower one. In order to select a unique representation, we define
a total order of all adjacency matrices for a graph.

Definition 5.2. Given an n × n adjacency matrix M of a graph G with n nodes, we
define the code of M , denoted by code(M), as the sequence s formed by concatenat-
ing lower triangular entries of M (including entries on the diagonal) where s = mi,j

where 1 � j � i � n.

For an adjacency matrix M , each diagonal entry of M is referred to as a node entry
and each off-diagonal none-zero entry in the lower triangular part of M is referred
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to as an edge entry. We order edge entries according to their relative positions in the
code of the matrix M in such way that the first edge entry of M as the leftmost one
in code(M) and the last edge entry as the rightmost one in code(M).

Example 3. In Fig. 11, we show three adjacency matrices for a graph P in the same
figure. For adjacency matrix M1, the edge entry set is {m2,1,m3,1,m3,2,m4,2,m4,3}
where m2,1,m4,3, and m4,2 are the first, last, second-to-last edge entries of M , re-
spectively.

5.1.2.2 Canonical Form. We use standard lexicographic order on se-
quences to define a total order of two arbitrary codes p and q. Given a graph
G, its canonical form is the maximal code among all its possible codes. The ad-
jacency matrix M which produces the canonical form is the canonical adjacency
matrix (CAM) of graph G′, denoted by M(G). For example, after applying the to-
tal ordering, we have code(M1) = “axbxyb0yyb” � code(M2) = “axb0ybxyyb”
� code(M3) = “bybyyb0xxa.” Therefore the adjacency matrix M1 shown in Fig. 11
is the CAM of the graph P it represents, and code(M1) is the canonical form
of P .

Notice that we use maximal code rather than the minimal code used by [55,45]
in the above canonical form definition. This definition provides important properties
for subgraph mining, as explained below.

FIG. 11. Left: A labeled graph P . Upper right: Three adjacency matrices for the graph P . Lower right:
Examples of maximal proper submatrices. Matrix (a) is the proper maximal submatrix of matrix (b), which
itself is the proper maximal submatrix of (c) and so forth.
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5.2 Organizing a Graph Space by a Tree

A graph space is the set of all possible graphs that draw labels from a fixed label
set. In the following, we introduce a partial order on graphs and show that with the
partial order we can define a tree on any graph space.

5.2.1 A Partial Order of Graphs

In order to define a partial order, we first define the maximal proper submatrix of
a CAM.

Definition 5.3. Given a CAM M with at least two edge entries in the last row, a
matrix N is the maximal proper submatrix of M if N is obtained by replacing the
last edge entry (and the corresponding entry of upper triangular part) of M by the
value “0.” Similarly, if M has only one edge entry in the last row, N is the maximal
proper submatrix of M if N is obtained from M by removing the last row (column)
of M .

Since M represents a connected graph, it is not necessary to consider a case such
that there is no edge entry in the last row of M . Several examples of the maximal
proper submatrices are given at the bottom of Fig. 11. We notice that the empty
string is a prefix of any string, and hence an empty matrix is the maximal proper
submatrix of any matrix with size 1.

Definition 5.4. Given a graph space G∗, we define a binary relation � on graphs
in G∗ such that G � G′ if one of the following three conditions is true:

• G = G′;
• M(G) is a maximal proper submatrix of M(G′);
• there exists a G′′ such that G � G′′ � G′.

Example 4. In Fig. 12, we have that A � B � C � D � E � F because of the
maximal proper submatrix relation they have.

Theorem 1. � is a partial order.

Proof. To prove that � is a partial order, we need to prove the following three prop-
erties:

• reflective: G � G for all graphs G,
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FIG. 12. Examples of the partial order �. Upper: A group of graphs. Lower: The related CAM repre-
sentations.

• anti-symmetric: G � G′ and G′ � G implies that G = G′,
• transitive: G � G′ and G′ � G′′ imply that G � G′′.

All the three properties are the direct results of the definition of the binary relation �
and maximal proper submatrix. �

5.2.2 CAM Tree

Given a graph space G∗, we define a directed graph D according to the partial
order �.

• Each node in D is a distinct connected graph in G∗, represented by its CAM;

• An ordered edge (G′,G) connecting two graphs G and G′ if G is the minimal
one such that G′ � G.

We notice that each graph can have at most one maximal proper submatrix and
hence has only one incoming edge. In other words, the directed graph we defined
is acyclic. In the following, we show that D is a tree, which is denoted as the CAM
tree of the graph space. Before we do that, in Fig. 13 we show the CAM tree of all
subgraphs of the graph P from Fig. 11.

The following theorem guarantees that the directed acyclic (DAG) graph D we
constructed is a rooted tree.

Theorem 2. The graph D we constructed in Section 5.2 is a rooted tree with the
empty graph as its root.
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FIG. 13. The CAM Tree of all subgraphs of the graph P in Fig. 11. Every matrix obtained by a join
operation is specified by a label starting with c. and then the type of the join operation e.g. c.3a stands
for join case3a. A CAM obtained by an extension operation is labeled with e. The join and extension
operations are discussed in Sections 5.3 and 5.4, respectively. CAMs (size � 3) without label are explained
in Section 5.3 where suboptimal CAMs are discussed. CAMs with up to one edge are obtained by an initial
step (discussed in Section 5.4) which involves directly scanning nodes/edges labels in a graph database.

Proof. We already have shown that D is a DAG. To prove that a DAG is a tree, all
we need to do is to prove that for any graph G, there exists a sequence of graphs
G1,G2, . . . ,Gn such that G1 is an empty graph, Gn = G and Gi � Gi+1 for 1 �
i < n. This is proved by the following theorem. �
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Theorem 3. Given a CAM M of a connected graph G and M’s submatrix N , N rep-
resents a connected subgraph of G.

Proof. Since N must represent a subgraph of G, it is sufficient to show the subgraph
N represents is connected. To prove this, it is sufficient to show that in N there is
no row i (with the exception of the first row) that contains no edge entry. We prove
this claim by contradiction. We assume that in the matrix M , there exists at least one
such row i that it does not contain any edge entry. Then we claim that we can find
another row j (j > i) such that j contains an edge entry connecting the j th node
and one of the nodes in the first i − 1 rows (if not, the graph M corresponds to is not
connected). If we perform a swap of row i and j and we claim that the code of the
newly obtained adjacency matrix is lexicographically greater than that of M . This
fact contradicts to the definition of CAM, which asserts the CAM of a graph has the
largest code. �

5.3 Exploring the CAM Tree

The current methods for enumerating all the subgraphs might be classified into
two categories: one is the join operation adopted by FSG and AGM [45,55]. A join
operation takes two “joinable” frequent k-edge graphs G1 and G2 and produces a
(k + 1)-edge graph candidate G such that both G1 and G2 are subgraphs of G. Two
k-edge graphs are joinable if they share a common (k − 1)-edge subgraphs. The
join operation is expensive, as shown in [55], in that a single join operation might
generate many graph candidates and one candidate might be redundantly proposed
by many distinct join operations.

On the other hand, [8,108] use an extension operation to grow a frequent graph.
An extension operation produces a (k + 1)-edge graph candidate from a frequent
k-edge graph G by adding one additional edge to G (with or without introducing an
additional node). This operation is also costly since for a given graph, there are many
nodes in the graph that an additional edge might be attached to.

In order to derive a hybrid method with improved efficiency, we list some of the
key challenges to achieve:

• Can we interleave join and extension operation to achieve maximal efficiency?

• Can we design a join operation such that every distinct CAM is generated only
once?

• Can we improve a join operation such that only a few graphs can be generated
from a single operation (say at most two)?

• Can we design an extension operation such that all the edges might be attached
to only a single node rather than many nodes in a graph?
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In order to meet these challenges, we have introduced two new operations, FFSM-
Join and FFSM-Extension, we have augmented the CAM tree with a set of sub-
optimal canonical adjacency matrices, and designed an embedding based subgraph
enumeration method. Experimental evidence demonstrates our method can achieve
an order of magnitude speed up over the current state-of-the-art subgraph mining
algorithm gSpan [108]. Further details are discussed in the following sections.

5.3.1 FFSM-Join
The purpose of the join operation is “superimposing” two graphs to generate a

new candidate graph. Depending on the different characteristics of the graphs, the
join operation in our algorithm might produce one or two graph candidates.

Given an adjacency matrix A of a graph G, we define A as an “inner” matrix if
A has at least two edge entries in the last row. Otherwise, A is an “outer” matrix.
Given two adjacency matrices A (m × m) and B (n × n) sharing the same maximal
proper submatrix, let A’s last edge be am,f and B’s last edge be bn,k , and we define
join(A,B) by the following three cases:

join case 1: both A and B are inner matrices
1: if f �= k then
2: join(A,B) = {C} where C is a m × m matrix such that

ci,j =
{
ai,j , 0 < i, j � m, i �= n or j �= k,

bi,j , otherwise.

3: else
4: join(A,B) = ∅
5: end if

join case 2: A is an inner matrix and B is an outer matrix join(A,B) = {C}
where C is a n × n matrix and

ci,j =
{
ai,j , 0 < i, j � m,

bi,j , otherwise.

join case 3: both A and B are outer matrices
1: let matrix D be a (m + 1) × (m + 1) matrix where (case 3b)

di,j =

⎧⎪⎪⎨
⎪⎪⎩

ai,j , 0 < i, j � m,

bm,j , i = m + 1, 0 < j < m,

0, i = m + 1, j = m,

bm,m, i = m + 1, j = m + 1.
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2: if (f �= k, am,m = bm,m) then
3: C is m × m matrix where (case 3a)

ci,j =
{
ai,j , 0 < i, j � m, i �= n or j �= k,

bi,j , otherwise.

4: join(A,B) = {C,D}
5: else
6: join(A,B) = {D}
7: end if

In join case 3, when joining two outer matrices M1 and M2 (both with size m), we
might obtain a matrix with the same size. We refer this join operation as case3a. It is
also possible that we obtain a matrix having size (m + 1) and this case is referred as
case3b.

We notice that the join operation is symmetric with respect to A and B with the
only exception of join case 3b. In other words, join(A,B) = join(B,A) for join
case 1, 2 and 3a and join(A,B) �= join(B,A) in join case3b. In order to remove
the potential duplications resulting from this symmetry, we require that code(A) �
code(B) in all join cases except join case 3b. Equality is permitted since self-join
is a valid operation. If the inequality is not satisfied (code(A) < code(B)), a join
operation produces an empty set.

Figure 14 shows examples for the join operation for all four cases. At the bottom
of Fig. 14, we show a case where a graph might be redundantly proposed by FSG(6

2

)
= 15 times (joining of any pair of distinct five-edge subgraphs G1, G2 of the

graph G will restore G by the join operation proposed by FSG). As shown in the
graph, FFSM-Join completely removes the redundancy after “sorting” the subgraphs
by their canonical form.

However, the join operation is not “complete” in the sense that it may not enumer-
ate all the subgraphs in the CAM tree. Interested readers might find such examples
in the CAM tree we presented in Fig. 13. Clearly we need another operation, which
is discussed below.

5.3.2 FFSM-Extension

Another enumeration technique in the current subgraph mining algorithms is the
extension operation that proposes a (k + 1)-edge graph candidate G from a k-edge
graph G1 by introducing one additional edge. In these algorithms, the newly intro-
duced edge might connect two existing nodes or connect an existing node and a node
introduced together with the edge. A simple way to perform the extension operation
is to introduce every possible edge to every node in a graph G. This method clearly
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FIG. 14. Examples of the join/extension operation.

has complexity of O(ΣV × ΣE × |G|) where ΣV ,ΣE stand for the set of available
vertex and edge labels for a graph G, respectively for a single extension. It suffers
from the large size of graph candidates as well as the large amount of available
node/edge labels.

gSpan [108] developed an efficient way to reduce the total number of nodes that
need to be considered. In gSpan, the extension operation is only performed on nodes
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1: if (A is an outer adjacency matrix) then
2: for (nl, el) ∈ ΣV × ΣE do
3: S ← ∅
4: create an n × n matrix B = (bi,j ) such that
5:

bi,j =

⎧⎪⎪⎨
⎪⎪⎩

ai,j , 0 < i,j � n,

0, i = n + 1, 0 < j < n,

el, i = n + 1, j = n,

nl, i = n + 1, j = n + 1.

6: S ← S ∪ {B}
7: end for
8: else
9: S ← �

10: end if

ALGORITHM 7. FFSM-Extension(A).

on the “rightmost path” of a graph. Given a graph G and one of its depth first search
trees T , the rightmost path of G with respect to T is the rightmost path of the tree T .
gSpan chooses only one depth first search tree T that produces the canonical form
of G for extension. Here, we refer to [108] for further details about the extension
operation.

In FFSM, we further improve the efficiency of the extension operation by choosing
only a single node in a CAM and attaching an newly introduced edge to it together
with an additional node. As proved by Theorem 4, this extension operation, com-
bined with the join operation, unambiguously enumerates all the nodes in the CAM
tree.

The pseudo code presenting the extension operation is shown in Algorithm 7.

5.3.3 Suboptimal CAM Tree

Using the CAM tree of the graph P in Fig. 13, we can verify that the join and ex-
tension operations, even combined together, can not enumerate all subgraphs in P .
We investigated this and found this problem can be solved by introducing the subop-
timal canonical adjacency matrices, as defined below.

Definition 5.5. Given a graph G, a suboptimal Canonical Adjacency Matrix (simply,
suboptimal CAM) of G is an adjacency matrix M of G such that its maximal proper
submatrix N is the CAM of the graph N represents.
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FIG. 15. The suboptimal CAM Tree for the graph P shown in Fig. 11. Matrices with solid boundary
are CAMs and those with dashed line boundary are proper suboptimal CAMs. The label on top of an
adjacency matrix M indicates the operation by which M might be proposed from its parent. The labeling
follows the same conventions used in Fig. 13.

By definition, every CAM is a suboptimal CAM. We denote a proper suboptimal
CAM as a suboptimal CAM that is not the CAM of the graph it represents. Sev-
eral suboptimal CAMs (the matrices with dotted boundaries) are shown in Fig. 15.
Clearly, all the suboptimal CAMs of a graph G could be organized in a tree in a
similar way to the construction of the CAM tree. One such example for the graph P

in Fig. 11 is shown in Fig. 15.
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With the notion of suboptimal CAM, the suboptimal CAM tree is “complete” in
the sense that all vertices in a suboptimal CAM tree can be enumerated using join
and extension operations. This is formally stated in the following theorem.

Theorem 4. For a graph G, let Ck−1(Ck) be set of the suboptimal CAMs of all
the (k − 1)-vertex (k-vertex) subgraphs of G (k � 3). Every member of set Ck

can be enumerated unambiguously either by joining two members of set Ck−1 or by
extending a member in Ck−1.

Proof. Let A be a m×m suboptimal CAM in set Ck . We consider the following five
cases according to the edge entries in A’s last row and second-to-last row:

• TypeA M has three or more edge entries in the last row;

• TypeB M has exactly two edge entries in the last row;

• TypeC M has exactly one edge entry in the last row and more than one edge
entries in the second-to-last row;

• TypeD M has exactly one edge entry em,n in the last row and one edge entry in
the second-to-last row and n �= m − 1;

• TypeE M has exactly one edge entry em,n in the last row and one edge entry in
the second-to-last row and n = m − 1.

As shown in the appendix in [40], a TypeA suboptimal CAM can be produced by
two suboptimal CAMs following join case1. Similarly, a TypeB suboptimal CAM
corresponds to the join case3a, a TypeC suboptimal CAM corresponds to join case2,
a TypeD suboptimal CAM corresponds to join case3b, and a TypeE suboptimal CAM
corresponds to the extension operation. �

5.4 Mining Frequent Subgraphs

In the above discussions, we introduced a novel data structure (CAM tree) for
organizing all connected subgraphs of a single connected undirected graph. This,
however, can be easily extended to a set of graphs (connected or not), denoted as
a graph database. A single CAM tree can be built for such a graph database. If we
have such a tree built in advance (regardless of the required space and computational
complexity), any traversal of the tree reveals the set of distinct subgraphs of the
graph database. For each such subgraph, its support can be determined by a linear
scan of the graph database, frequent ones can be reported subsequently. This method
clearly suffers from the huge number of available subgraphs in a graph database and
therefore is very unlikely scale to large graph databases.
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1: P ← {M(e) | e is an edge, s(e) � σ }
2: F ← FFSM-Explore(P, P )

3: return F

ALGORITHM 8. FFSM(G, σ ).

1: for each X ∈ P do
2: if (X.isCAM) then
3: F ← F ∪ {X}, C ← ∅
4: for each Y ∈ P do
5: C ← C ∪ FFSM-Join(X, Y )

6: end for
7: C ← C ∪ FFSM-Extension(X)

8: C ← {G | G ∈ C, G is frequent, G is suboptimal}
9: F ← F ∪ FFSM-Explore(C, F )

10: end if
11: end for
12: return F

ALGORITHM 9. FFSM-explore(P, F ).

In the following pseudo code, we present an algorithm which takes advantage of
the following simple fact: if a subgraph G is not frequent (support of G is less than a
user posted threshold), none of its supergraphs is frequent. This suggest that we can
stop building a branch of the tree as soon as we find that the current node does not
have sufficient support in a graph database.

In the pseudo code of Algorithms 8 and 9, symbol M(G) denotes the CAM of the
graph G. X.isCAM is a Boolean variable indicate whether the matrix X is the CAM
of the graph it represents. s(G) is the support value of a graph G (or its CAM M(G)).

5.5 Performance Comparison of FFSM

We have evaluated the performance of the FFSM algorithm with various types of
graphs. The experimental study was carried out using a single processor of a 2 GHz
Pentium PC with 2 GB memory, running RedHat Linux 7.3. The FFSM algorithm
was implemented using the C++ programming language and compiled using g++
with O3 optimization. We compared our algorithm to gSpan, which is the state-of-
the-art algorithm for graph mining. The gSpan executable, compiled in a similar
environment, was provided by X. Yan and J. Han [108].
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5.5.1 Chemical Compound Data Sets

5.5.1.1 Data Sets. We use three chemical compound data sets to evaluate
the performance of the FFSM algorithm. The first data set is the PTE data set [90] that
can be downloaded from http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
PTE/. This data set contains 337 chemical compounds each of which is modeled by
an undirected graph. There are a total of 66 atom types and four bond types (single,
double, triple, aromatic bond) in the data set. The atoms and bonds information are
stored in two separate files and we follow exactly the same procedure described
in [108] to construct the graph representations of chemical structures.

The next two data sets are derived from the DTP AIDS Antiviral Screen
data set from National Cancer Institute. Chemicals in the data set are classi-
fied into three classes: confirmed active (CA), confirmed moderately active (CM)
and confirmed inactive (CI) according to experimentally determined activities
against HIV virus. There are a total of 423, 1083, and 42,115 chemicals in the
three classes, respectively. For our own purposes, we formed two data sets con-
sisting of all CA compounds and of all CM compounds and refer to them as
DTP CA and DTP CM respectively. The DTP datasets can be downloaded from
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

5.5.1.2 Performance Comparison. We evaluate the performance of
FFSM using various support thresholds. The result is summarized in Figs. 16 and 17.
We find that FFSM has a maximal 7 fold speedup over gSpan on the DTP CM data

FIG. 16. Left: Performance comparison of FFSM and gSpan with different support values for the DTP
CM data set. Right: The total number of frequent patterns identified by the algorithms.

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PTE/
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PTE/
http://dtp.nci.nih.gov/docs/aids/aids_data.html
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FIG. 17. Performance comparison of FFSM and gSpan with different support values for the DTP CA
data set (left) and PTE (right).

set. For DTP CA and PTE data set, FFSM usually has a 2 to 3 fold speedup from
gSpan.

5.5.2 Synthetic Data Sets

5.5.2.1 Data Sets. We used a graph generator offered by M. Kuramochi
and G. Karypis [55] to generate synthetic graph databases with different characteris-
tics. There are six parameters to control the set of synthetic graphs:

• |D|, total graph transactions generated,

• |T |, average graph size for the generated graphs, in terms of number of edges,

• |L|, the total number of the potentially frequent subgraphs,

• |I |, the size of the potentially frequent subgraphs, in terms of number of edges,

• |V |, total number of available labels for vertices, and

• |E|, total number of available labels for edges.

We use a single string to describe the parameter settings, e.g.

“D10kT 20L200I9V 4E4”

represents a synthetic graph database which contains a total of |D| = 10k (10,000)
graph transactions. Each graph on average contains |T | = 20 edges with up to |V | =
4 vertex labels and |E| = 4 edge labels. There are total of |L| = 200 potential
frequent patterns in the database with average size |I | = 9.
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5.5.2.2 Performance Comparison. In Fig. 18, we show how the FFSM
algorithm scales with increasing support. The total number of identified frequent
subgraphs is also given.

At the left part of Fig. 19, we show performance comparison between FFSM and
gSpan with different average graph sizes (left) or different number of node/edge

FIG. 18. FFSM and gSpan performance comparison under different support values. Parameters used:
D10kT20I9L200E4V4.

FIG. 19. FFSM and gSpan performance comparison under different graph sizes (|T |) ranging from 20
to 100 (left) or different total labels (|V | + |E|) ranging from 3 to 18 (right). The ratio of the |V | to |E|
is fixed to 2 : 1 for any given total number of labels. For example, if there are total 15 labels, we have 10
vertex labels and 5 edge labels. Other parameters setting: D10kI7L200E4V4 (left) and D10kT20I7L200
(right). The support threshold is fixed at 1% in both cases.
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labels (right). For almost all circumstances, FFSM is faster than gSpan though the
value of the speedup varies from data set to data set.

5.5.3 Mining Protein Contact Graphs

5.5.3.1 Data Sets. We collect a group of serine proteases from the Struc-
ture Classification of Proteins database [62] with SCOP id 50514 (eukaryotic serine
proteases). For each protein, we map it to a graph, known as the “contact map” of
the protein, in the following way:

• A node represents an amino acid residue in a protein, labeled by the residue
identity.

• An edge connects two residues as long as the two residue are in “contact.” Edges
are not labeled.

In our representation, an amino acid residue is abstracted as two element tuple
(p, id) where p is a point representing the Cα atom of the residue and id is the
identity of the residue. Given a set of points in a 3D space (each point represents a
Cα atom in a protein), we compute all possible Delaunay tessellations of the point
set (in the format of point pairs), with the condition that each point may move away
from its location by up to ε > 0 Å. The result is known as the almost-Delaunay edges
for the point set [4]. We define that two residues are in contact if they are connected
by an almost-Delaunay edges with ε = 0.1 Å and with length up to 8.5 Å. The same
data set and the way we represent proteins as graphs are discussed in detail in [39]
and the data set is downloadable from http://www.cs.unc.edu/~huan/FFSM.shtml.

5.5.3.2 Performance Comparison. The current gSpan is specifically
developed for small graphs (with no more than 200 edges in any graphs in a data set).

TABLE I
PERFORMANCE COMPARISON BETWEEN FFSM AND FSG

σ FFSM(s) FSG(s)

100 0.0433 0.433
95 0.2 1.633
90 0.537 3.6
85 2.243 14.1
80 11.64 61.433
75 104.58 700.217
70 1515.15 17643.667

σ support threshold (percentage). Performance of FFSM and
FSG are measured in seconds.

http://www.cs.unc.edu/~huan/FFSM.shtml
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We compare FFSM with another graph mining algorithm FSG [55]. FFSM always
an order of magnitude faster than FSG. Table I summarizes the results.

So far, we show the performance comparison between different graph mining al-
gorithms. In the next section, we show how graph mining may be applied to protein
structures to derive common structure patterns.

6. Applications

In this section we describe the use of the FFSM algorithm presented in Section 5
to identify family-specific structural motifs for a number of protein families.

6.1 Identifying Structure Motifs

6.1.1 Representing Protein Structure As a Labeled Graph

We model protein structure as a labeled graph where a node represents an amino
acid residue, labeled by the amino acid identity, and an edge joins a pair of amino
acids, labeled by the Euclidian distance between two Cα atoms. To reduce complex-
ity, we eliminate edges with distances larger than 12.5 Å [23,107]. We partition the
one-dimensional distance space into bins in order to tolerate position uncertainty.
The width of such bins is referred to as the distance tolerance and popular choices
are 1 Å [61], 1.5 Å [9], and 2 Å [79]. We use 1.5 Å exclusively in our experimental
study.

Given the graph representation, a recurring pattern may be composed of points
with no possible physical and chemical interactions among them. This distributed
set of points, though geometrically conserved, is hard to assign any biological in-
terpretation to and is usually considered uninteresting by domain experts. To avoid
spending computational resources on such patterns, we designate a subset of edges
as contacts where a contact is an edge joining a pair of points (amino acids) that we
believe may interact with each other (as described below). We require that each pat-
tern is a connected component with respect to the contact edges. Similar strategies
are used to derive structural patterns with high quality by others [59].

6.1.1.1 Defining Contacts of Amino Acid Residues. There are
many ways to define whether two amino acids are in contact or not. In our study, two
points are in contact if they can be connected by a Delaunay edge [88] with point
coordinates perturbation up to ε � 0. Such Delaunay edges (with point coordinate
perturbations) are extensions of the commonly used Delaunay edges that are defined
on static points [4]. We further restrict the contact edges to have distances no greater
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than some upper limit ranging from 6.5 to 8.5 Å; this value represents an upper limit
on the distance over which there can be significant interaction between amino acid
residues.

The graph model presented here is similar to that used by other groups [77,104].
The major difference is that in our representation, geometric constraints such as dis-
tances between amino acids are part of the graph representation in order to obtain
geometrically conserved patterns rather than using a loosely constrained graph, to
reduce the number of spurious patterns.

6.1.2 Graph Database Mining
We apply the FFSM algorithm to find recurring patterns from protein structures.

To enforce maximal geometric constraints, we only report fully connected subgraph
(i.e. cliques) with all inter-residue distances specified. In graph matching, we require
that matching nodes have the same label and matching edges have the same label
and type (contact or not). Enforcing these, we guarantee that the structural patterns
reported by our system have well defined composition of amino acid identity and
three dimensional shape.

6.1.3 Statistical Significance of Motifs
We derived an empirical evaluation of the statistical significance of structural pat-

terns. We randomly sampled proteins from the protein structure space and applied
our pattern mining algorithm to search for patterns. The experiments were repeated
many times to estimate the probability that we observe at least one pattern using
randomly selected proteins. The lower this probability is, the higher confidence we
have about the significance of any structural patterns that are found among a group
of proteins.

6.1.3.1 Estimating Significance by Random Sampling. In our
experimental study, we randomly sampled 20 proteins (without replacement) from
an non-redundant PDB list [102] and applied our algorithm to search for patterns
with support � 15 and with pattern size of at least 4 amino acid residues. These
parameters were set up to mimic a typical size and search of a SCOP family. We
repeated the experiment 100,000 times, and did not find a single recurring geometric
pattern. Limited by the available computational resources, we did not test the system
further; however, we are convinced that the chance of observing a random spatial
motif in our system is rather small.

6.1.3.2 Estimating Significance using the Hyper-Geometric
Distribution. We estimate the statistical significance of a structural motif m by
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computing the P -value associated with its occurrences in an existing protein family.
To that end, we used the structures in the Culled PDB list [102], as a set of structures
M that sample the entire protein structure population (all possible protein structures,
crystallized or not).

Our null hypothesis H0 is that the pattern m randomly occurs in the protein struc-
ture population. Given an existing protein family F ⊂ M , a set of proteins S ⊆ M

where m occurs, the probability of observing a set of at least k proteins in F contain
m under the null hypothesis is given by the following hyper-geometric distribu-
tion [9]:

(2)P -value = 1 −
k−1∑
i=0

(|F |
i

)(|M|−|F |
|T |−i

)
(|M|
|T |

)
where |X| is the cardinality of a set X. For example, if a pattern m occurs in every
member of a family F and never outside F (i.e. F = S) for a large family F , we
estimate that this pattern is statistically specifically associated with the family; the
statistical significance of the case is measured by a P -value close to zero.

We adopt the Bonferroni correction for multiple independent hypotheses [82]:
0.001/|C|, where |C| is the set of categories. The correction is used as the threshold
for significance of the P -value of an individual test. Since the total number of SCOP
families is 2327, a significant P -value is � 10−7.

6.2 Case Studies

As a proof-of-concept, we applied the method to identify family-specific mo-
tifs, i.e. structural patterns that occur frequently in a family and rarely outside it.
In Table II, a group of four SCOP families are listed which have more than twenty
members. This group of families has been well studied in literature and hence com-
parison of our results with experimental data is feasible.

6.2.1 Eukaryotic Serine Proteases
The structural patterns identified from the ESP family were documented at the top

part of Table II. The data indicated that the patterns we found are highly specific to
the ESP family, measured by P -value � 10−82. We further investigated the spatial
distribution of the residues covered by those patterns, by plotting all residues covered
by at least one pattern in the structure of a trypsin: 1HJ9, shown in Fig. 20. Interest-
ingly, as illustrated by this figure, we found that all these residues are confined to the
vicinity of the catalytic triad of 1HJ9, namely: HIS57-ASP102-SER195, confirming
a known fact that the geometry of the catalytic triad and its spatially adjacent residues
are rigid, which is probably responsible for functional specificity of the enzyme.
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TABLE II
STRUCTURAL PATTERNS IDENTIFIED IN THE EUKARYOTIC SERINE PROTEASE, PAPAIN-LIKE

CYSTEINE PROTEASE, AND NUCLEAR BINDING DOMAINS

Pattern Composition κ δ − log(P ) Pattern Composition κ δ − log(P )

Eukaryotic Serine Protease (ID: 50514) N : 56 σ : 48/56, T : 31.5

1 DHAC 54 13 100 20 AGGG 50 58 85
2 ACGG 52 9 100 21 ACGAG 49 4 100
3 DHSC 52 10 100 22 SCGA 49 6 100
4 DHSA 52 10 100 23 DACS 49 7 100
5 DSAC 52 12 100 24 DGGS 49 8 100
6 DGGG 52 23 100 25 SACG 49 10 98
7 DHSAC 51 9 100 26 DSGC 49 15 98
8 SAGC 51 11 100 27 DASC 49 20 92
9 DACG 51 14 100 28 SAGG 49 31 90

10 HSAC 51 14 100 29 DGGL 49 53 83
11 DHAA 51 18 100 30 DSAGC 48 9 99
12 DAAC 51 32 99 31 DSSC 48 12 97
13 DHAAC 50 5 100 32 SCSG 48 19 93
14 DHAC 50 6 100 33 AGAG 48 19 93
15 HACA 50 8 100 34 SAGG 48 23 88
16 ACGA 50 11 100 35 DSGS 48 23 94
17 DSAG 50 16 100 36 DAAG 48 27 89
18 SGGC 50 17 100 37 DASG 48 32 87
19 AGAG 50 27 95 38 GGGG 48 71 76

Papain-like cysteine protease (ID: 54002) N : 24, σ : 18/24, T : 18.4

1 HCQS 18 2 34 4 WGNS 18 4 44
2 HCQG 18 3 34 5 WGSG 18 5 43
3 WWGS 18 3 44

Nuclear receptor ligand-binding domain (ID: 48509) N : 23, σ : 17/23, T : 15.3

1 FQLL 20 21 43 3 DLQF 17 8 39
2 DLQF 18 7 42 4 LQLL 17 40 31

FAD/NAD-linked reductase (ID: 51943) N : 20 σ : 15/20, T : 90.0

1 AGGG 17 34 34 2 AGGA 17 91 27

N : Total number of structures included in the data set. σ : The support threshold used to obtain recur-
ring structural patterns, T : processing time (in unit of seconds). Composition: the sequence of one-letter
residue codes for the residue composition of the pattern, κ: the actual support value of a pattern in the fam-
ily, δ, the background frequency of the pattern, and P : the functional enrichment defined by Eq. (2). The
packing patterns were sorted first by their support values in descending order, and then by their background
frequencies in ascending order. The two patterns from FAD/NAD-linked reductase show functional en-
richment in NAD(P)-binding Rossman fold protein with − log(P ) value 8 and 6, respectively. This is
further discussed in Section 6.2.



LOCAL STRUCTURE COMPARISON OF PROTEINS 239

FIG. 20. Left: Spatial distribution of residues found in 38 common structural patterns within protein
1HJ9. The residues of catalytic triad, HIS57-ASP102-SER195, are connected by white dotted lines. Right:
Instances of ESP structural patterns occurring in proteins outside the ESP data set. The top 7 proteins,
where more than ten structural patterns occur, were found to be eukaryotic serine proteases not annotated
in SCOP.

We found that there are five patterns that occur significantly (P -value < 10−7) in
another SCOP family: Prokaryotic Serine Protease (details not shown). This is not
surprising since prokaryotic and eukaryotic serine proteases are similar at both struc-
tural and functional levels and they share the same SCOP superfamily classification.
None of the patterns had significant presence outside these two families.

The SCOP classification (v1.65) used in this chapter was released in December
2003. The submissions to PDB since that time offer a good test of our method to see if
we would annotate any new submissions as ESPs. We searched all new submissions
for occurrences of the 32 structural patterns we had extracted from the ESP family
and found seven proteins: 1pq7a, 1os8a, 1op0a, 1p57b, 1s83a, 1ssxa, and 1md8a, that
contain quite a few patterns, as shown in Fig. 20. All of these proteins are confirmed
to be recently published eukaryotic serine proteases as indicated by the headers in
corresponding PDB entries.

Finally, we observed that if we randomly sample two proteins from the ESP family
and search for common structural patterns, we obtain an average of 2300 patterns per
experiment for one thousand runs. Such patterns are characterized by poor statistical
significance and are not specific to known functional sites in the ESP. If we require a
structural pattern to appear in at least 24 of a 31 randomly selected ESP proteins and
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repeat the same experiment, we obtain an average of 65 patterns per experiment with
much improved statistical significance. This experiment demonstrates that obtaining
structural patterns from a group of proteins helps improve the quality of the result,
as observed by [104].

6.2.2 Papain-Like Cysteine Protease and Nuclear Binding
Domain

We applied our approach to two additional SCOP families: Papain-Like Cysteine
Protease (PCP, ID: 54002) and Nuclear Receptor Ligand-Binding Domain (NB, ID:
48509). The results are documented in the middle part of Table II.

For the PCP family, we have identified five structural patterns which covered the
catalytic CYC-HIS dyad and nearby residues ASN and SER which are known to
interact with the dyad [14], as shown in Fig. 21. For the NB family, we identified four
patterns3 which map to the cofactor binding sites [103], shown in the same figure. In
addition, four members missed by SCOP: 1srv, 1khq, and 1o0e were identified for

FIG. 21. Left: Residues included in the patterns from PCP family in protein 1CQD. The residues
in catalytic dyad CYS27-HIS161 are connected by a white dotted line and two important surrounding
residues ASN181 and SER182 are labeled. Right: Residues included in patterns from the NB family in
protein 1OVL. The labeled residue GLN 435 has direct interaction with the cofactor of the protein.

3 Structural patterns 2 and 3 have the same residue composition but they have different residue contact
patterns and therefore are regarded as two patterns. They do not map to the same set of residues.
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the PCP family and six members 1sj0, 1rkg, 1osh, 1nq7, 1pq9, 1nrl were identified
for the NB family.

6.2.3 FAD/NAD Binding Proteins

In the SCOP database, there are two superfamilies of NADPH binding proteins,
the FAD/NAD(P)-binding domains and the NAD(P)-binding Rossmann-fold do-
mains, which share no sequence or fold similarity. This presents a challenging test
case for our system to check whether we are able to find patterns with biological
significance across the two groups.

We applied the FFSM to the largest family in the SCOP FAD/NAD(P)-binding do-
main: FAD/NAD-linked reductases (SCOPID: 51943). With support threshold 15/20,
we obtained two recurring structural patterns from the family, and both showed
strong statistical significance in the NAD(P)-binding Rossmann-fold superfamily as
shown in bottom part of Table II.

In Fig. 22, we show a pattern that is statistically enriched in both families; it has
conserved geometry and is interacting with the NADPH molecule in two proteins
belonging to the two families. Notice that we do not include any information from
NADPH molecule during our search, and we identified this pattern due to its strong
structural conservation among proteins in a SCOP superfamily. The two proteins
have only 16% sequence similarity and adopt different folds (DALI z-score 4.5).
The result suggest that significant common features can be inferred from proteins
with no apparent sequence and fold similarity.

FIG. 22. The pattern appears in two proteins 1LVL (belongs to the FAD/NAD-linked reductase family
without Rossman fold) and 1JAY (belongs to the 6-phosphogluconate dehydrogenase-like, N-terminal
domain family with Rossman fold) with conserved geometry.
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7. Conclusions and Future Directions

7.1 Conclusions

Structure comparison of proteins is a major bioinformatics research topic with var-
ious biological applications including structure classification, function annotation,
functional site identification, protein design, and protein engineering.

In studying structure comparison, new computational techniques have been iden-
tified and some of these techniques are applicable to domains outside bioinformatics.

In the future, we expect to witness the successes of structure comparison in both
algorithmic improvements and new applications. Our optimistic view is based on the
following two factors:

• Computers are becoming more powerful.

• The recently started proteomics research efforts will rapidly produce a large
volume of structure and structure-related data.

Below, we review plausible future directions that we think are important for struc-
ture comparison.

7.2 Future Directions

Here we review the possible future direction of structure comparison in two sub-
directions: (1) identifying applications in the biological/biomedical domain, (2) de-
veloping new computational techniques.

7.2.1 Future Applications of Structural Comparison

Three future applications of structure comparison are discussed.

7.2.1.1 Understanding Dynamic Protein Structures. There is no
question that understanding the dynamics of proteins structures offers great informa-
tion for biological research. For example, enormous insights can be gained if we can
directly observe the process of protein folding using experimental techniques [106].

Currently, the Nuclear Magnetic Resonance spectroscopy (NMR) is the major
experimental technique to measures a protein’s native structure in a solvent envi-
ronment. NMR determines the average protein structure by measuring the distances
among protons and specially labeled carbon and nitrogen atoms [72]. NMR has been
applied to obtain protein structure, protein–protein complexes, and protein-ligand
complexes which account for approximately 10% of the overall structures in PDB.
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There are also several specialized methods that have been developed to report the dy-
namic structure of proteins in specialized biological processes such as protein folding
and domain movement in multi-domain proteins [106,44].

Protein dynamics brings significant opportunities to the current structure com-
parison method because of the rich information stored in the trajectory of protein
structures. We envision two types of comparisons: intra-structure comparison, which
analyzes the protein structure motion and detects important features for a single pro-
tein, and inter-structure comparison, which compares dynamics data for multiple
protein structures and identifies common features.

Though techniques to collect structure dynamics data are in their infancy, we
believe that such techniques, as well as computational methods for molecular dy-
namics, will mature rapidly and be successful in helping domain experts gain useful
insights into various biological processes.

7.2.1.2 Predicting Protein–Protein Interaction. Protein–protein in-
teraction refers to the ability of proteins to form complexes. Protein–protein inter-
action data is usually formed as an undirected graph whose nodes are proteins and
edges connect two protein if the proteins can form a stable/transient complex [1].

Protein–protein interaction data bring new challenges for structure comparison. In
order to elucidate common structural motifs involved in protein–protein interaction
and finally to predict the interaction computationally, we need to compare multiple
protein complexes rather than single structures. We also need to be able to define the
boundary of the interaction, based on the structure of the complexes.

7.2.1.3 Predicting Protein Subcellular Localization. Knowledge
about where a protein may be located in a cell is of paramount importance for bi-
ological research and pharmaceutical companies. For example, an outer membrane
protein is one that is transported to the outer membrane after its synthesis. Know-
ing a protein is an outer membrane protein simplifies the drug design process since
outer membrane proteins can be accessed easily by drugs [25]. As another example,
knowing the localization of a protein offers important information for assembling
metabolic pathways [80].

Predicting the subcellular localization is one of the active research topics in bioin-
formatics research [25,64,80]. Protein subcellular localization has been investigated
in two ways. The first approach relies on sequence motifs as descriptors to assign
subcellular localization for protein sequences. This approach is based on the obser-
vation that continuous stretches of amino acid residues may encode the signal that
guides a protein to a specific location. The second approach utilizes the amino acid
composition of proteins to predict the possible localization. This technique is moti-
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vated by the observation that residue composition of a protein highly correlates with
the localization of the proteins [64].

Recently there is evidence showing that protein structure is also important for pre-
dicting the related subcellular localization. For example, the β-barrel is known as a
signature for outer membrane proteins. This observation has resulted in significant
improvement of the prediction accuracy, as reported in [25]. As another example, the
FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) is a large group of proteins
with 4 possible subcellular localizations. As reported by Himukai et al., the subcel-
lular localization of these proteins is correlated with the conserved structure domain
around the active sites of the protein [33]. As shown in this preliminary study, incor-
porating structure comparison can improve the accuracy of the protein subcellular
prediction.

7.2.2 New Computational Techniques in Structure
Comparison

Facing the challenges of handling large and complex structure data, we believe
new computational techniques will be invented for structure comparison. The possi-
ble directions are

(1) developing approximate matching in pattern discovery,
(2) inventing efficient index structures to speed up pattern matching in a structure

database,
(3) devising new data visualization techniques for structure comparison,
(4) integrating data from different sources for structure comparison, and
(5) statistical structure comparison.

We conclude this chapter with a brief description of statistical structure compari-
son.

7.2.2.1 Comparison Based on Statistical Analysis. As shown
in sequence analysis methods, statistical models such as Hidden Markov Model
(HMM) are useful for recognizing sequence similarity that is not easily detectable by
straightforward alignment methods. Given the success of statistical tools in sequence
comparison, it is natural to consider extending those tools (and possibly to introduce
new ones) for structure comparison of proteins.

Here we review a recently developed algorithm 3dHMM [2] whose goal is to
build a rigorous description of protein 3D structure family using HMM. In outline,
3dHMM takes a group of aligned 3D structure and a query structure as inputs and
computes the best alignment of the query structure to the structure group in the fol-
lowing way:
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(1) estimating the 3D Gaussian for each position (the Cα atom in each amino acid
residue) of the aligned structures,

(2) estimating the deletion probability for each position using the aligned struc-
tures (assuming the alignment is not gap-free),

(3) using a modified Viterbi algorithm [74] to find the best alignment of the query
structure to the HMM model, and

(4) using the Forward algorithm [74] to calculate the probability that the query
structure was generated from the HMM model.

The 3dHMM method has been applied to several protein families and has achieved
better results in terms of identifying structure homology than the traditional RMSD
calculation.

There are many other types of statistical analysis tools, such as Markov Random
Field [7], Hidden Markov Random Field, and Bayesian Networks [43]. It will be
interesting to see their applicability in protein structure comparison.
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