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Abstract

We examine the problem of simulating single and multiphase flow in porous medium
systems at the pore scale using the lattice Boltzmann (LB) method. The LB method
is a powerful approach, but one which is also computationally demanding; the res-
olution needed to resolve fundamental phenomena at the pore scale leads to very
large lattice sizes, and hence substantial computational and memory requirements
that necessitate the use of massively parallel computing approaches. Common LB
implementations for simulating flow in porous media store the full lattice, making
parallelization straightforward but wasteful. We investigate a two-stage implemen-
tation consisting of a sparse domain decomposition stage and a simulation stage
that avoids the need to store and operate on lattice points located within a solid
phase. A set of five domain decomposition approaches are investigated for single
and multiphase flow through both homogeneous and heterogeneous porous medium
systems on different parallel computing platforms. An orthogonal recursive bisection
method yields the best performance of the methods investigated, showing near linear
scaling and substantially less storage and computational time than the traditional
approach.

1 Introduction

Over the last two decades, the Lattice Boltzmann (LB) method has emerged as a power-

ful technique for simulating computational fluid dynamics. The LB method approximates

fluid properties at the micro-kinetic scale and can handle complex boundary conditions

in a relatively straightforward way. LB models are particularly successful for modeling

complex systems, such as flow through porous geometries [1, 2, 3, 4], which is difficult to

model using conventional macroscopic approaches. However, the LB method is computa-
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tionally very expensive in terms of both the floating point operations and storage needed

to simulate real systems. As a result, parallel computing is a prerequisite for most LB

simulations, and computational limitations will continue to be a significant constraint for

the foreseeable future for a wide range of porous medium systems. Therefore, achieving

improved parallel performance for LB models is an important area of scholarly pursuit.

Furthermore, the small time scale of the LB method necessitates many timesteps to ob-

serve steady-state macroscopic flow behavior. Consequently a high-performance imple-

mentation must be able to utilize a large number of processors efficiently to minimize

the time per step; it is not sufficient to gain high performance only for large simulations

with low update rates. Rapid updates for modest lattice sizes using a large number of

processors is a challenging implementation problem.

To our knowledge, all previously published implementations of LB methods to simulate

flow in porous media are based on a full lattice representation (FLR) in which both fluid

and solid lattice sites are stored and computed in a regular computational grid. This

approach leads to straightforward parallel processing implementations but is wasteful in

floating point operations and storage. This is so because lattice points that fall within a

solid phase are not needed to resolve the flow field—one need only know their existence

and geometric distribution. Using a FLR approach, parallelization can be implemented

using one of three standard approaches corresponding to the dimensionality of the de-

composition: a one-dimensional (1D) slice decomposition, a two-dimensional (2D) shaft

decomposition, or a three-dimensional (3D) cubic decomposition. 1D slice and 2D shaft

decompositions can be advantageous at small processor counts and in the presence of

periodic boundary conditions. These decompositions result in equivalent-sized portions of

the lattice distributed among each processor, but they do not account for the pore distri-

butions of the specific porous medium. Therefore, these regular decompositions can cause

a serious load imbalance for cases in which a large number of processors are required or

the porous medium is highly heterogeneous. Identification and analysis of the performance

of decomposition approaches for modeling single and multiphase flow in complex porous

medium systems is an open issue. In a non-porous-medium LB application, Kandhai et

al. [5] applied the orthogonal recursive bisection (ORB) method to generate approximately
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balanced subdomains for single-phase flow simulations in a chamber with a varying cross

section.

The objectives of this work are (1) to develop an approach for separating domain de-

composition approaches suitable for parallelization from LB simulation approaches; (2)

to investigate a range of domain decomposition approaches for parallel processing per-

formance; (3) to compare the performance of the new approaches to the performance of

standard approaches; and (4) to investigate the sensitivity of the approaches’ performance

to the type of flow (single-phase or multiphase), the nature of the porous medium, and

the characteristics of the parallel machine.

2 Formulation of lattice Boltzmann methods

The LB method approximates a solution to the Boltzmann equation on a regular lattice

using a set of distribution functions. It is necessary to consider some of the details of this

formulation in order to understand the parallel implementation aspects of this work, which

are the focus of this effort. Following our previous work [6], we use the so-called d3q15

lattice structure, where “d3” indicates three dimensions, and “q15” indicates that each

lattice point has 15 velocity vectors, ei (i = 1, 2, · · · , 15), where |ei| = 1 for i = 1, . . . 6,

|ei| =
√

3 for i = 7, . . . , 14, and |e15| = 0.

2.1 Single-phase flow

The primary variables are particle distribution functions fi(x, t), which represent the

probability of finding a fluid particle with velocity ei at location x and time t. Macroscopic

parameters are determined by the integration of the distribution functions. For example,

the fluid density is given by ρ =
∑

i fi and the velocity by v =
∑

i fiei/ρ. The evolution

of fi(x, t) in time is defined by the LB equation:

fi(x + ei, t+ 1) − fi(x, t) =
1

τ

[

f
(eq)
i − fi(x, t)(x, t)

]

, (1)
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where τ is the relaxation time. Equation (1) indicates that the fluid particle evolution

involves two steps, namely traveling and collision steps. At the traveling step, each particle

propagates to a neighboring lattice site in the direction of ei, as shown on the left-hand side

of the equation. The right-hand side represents the collision term, which is simplified by the

so-called BGK (Bhatnagar-Gross-Krook), or the single-time, relaxation approximation to

the equilibrium distribution function f
(eq)
i [7]. The functional form of f

(eq)
i = f(ρ,v(eq)) can

be chosen (see, e.g. [8]), such that the fluid obeys the isothermal Navier-Stokes equation in

the limit of incompressible flow, where the kinematic viscosity is given by ν = (2τ − 1)/6

[9].

We implement the no-slip boundary condition at a solid surface by a bounce-back scheme

[10]. The bounce-back scheme assumes the wall with the no-slip boundary condition is

located midway between the solid node and the fluid node. At the inlet and outlet of

the medium, we apply constant pressures by implementing the pressure boundary condi-

tions as described in [9, 11]; the flow field driven by the pressure difference can then be

simulated.

Note that in the single-phase LB scheme, because of inherent spatial locality during the

collision step, information exchange between processors is only required between neigh-

boring particles at the traveling step. This has clear implications for parallel processing

implementations.

2.2 Multiphase flow

More fluid components can be added to the LB model by the addition of fluid particles

that possess different fluid properties. Similar to the single-phase LB equation, the LB

equation for the kth fluid is given by [8]:

fk
i (x + ei, t+ 1) − f k

i (x, t) =
1

τk

[

f
k(eq)
i (x, t) − f k

i (x, t)
]

, i = 1, 2, · · · , 15 (2)
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where τ k is the relaxation time of the kth fluid. Fluid density of the kth component ρk,

fluid velocity vk, and common velocity v are obtained by

ρk(x, t) =
∑

i

fk
i (x, t); vk(x, t) =

∑

i f
k
i (x, t)ei

ρk(x, t)
; v(x, t) =

∑

k(ρ
kvk/τ k)

∑

k(ρk/τ k)
(3)

To simulate multiphase flow in porous media, long-range interactions Fk = Fk
f−f + Fk

f−s

must be included, where Fk
f −f is the fluid-fluid interaction force and Fk

f−s is the fluid-solid

interaction forces. The momentum change due to the interaction forces is included in the

equilibrium function f
k(eq)
i = f(ρk,vk(eq)), where ρkvk(eq) = ρkv + τ kFk.

We follow the Shan-Chen model [12, 13, 14], in which nearest neighbor interactions are

used to define the interparticle forces: i.e., the fluid-fluid interaction force Fk
f−f on fluid k

at site x is the sum of the forces between the fluid k particle at x and the fluid k′ particles

at neighboring sites x′

Fk
f −f (x) = −ψk(x)

∑

k′

∑

x′

Gkk′(x,x′)ψk′

(x′)(x′ − x), (4)

where ψk(ρk) is a function of the local fluid density. In Eq. (4), Gkk′ = Gk′k is a symmetric

matrix defined by Green’s function. By choosing Gk′k properly, fluids can separate so that

immiscible multiphase flow behavior results [14]. Fk
f−s between the fluid k at site x and

the solid at site x′ was suggested by Martys and Chen [3]:

Fk
f−s(x) = −ρk(x)

∑

x′

Gks(x,x
′)(x′ − x). (5)

To simulate multiphase flow, we add non-wetting phase (NWP) and wetting phase (WP)

reservoirs consisting of two lattice layers at both horizontal ends of the medium geometry

and enforce fixed-pressure boundary conditions at the ends of these reservoir layers. Ad-

ditional details regarding multiphase simulation methods are available in our earlier work

[15].

Two aspects of LB simulations of multiphase flow in porous media warrant consideration

from a parallel processing perspective. First, more communication work is required for
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the multiphase case than for the single-phase case. This is because information exchange

between processors is required not only at the traveling step for each fluid component,

but also during the calculations of the interaction forces Fk
f−f , for which fluid densities

in the neighboring lattice sites are required. Second, the fluid boundary layers added to

implement boundary conditions changed the geometry of the simulation domain compared

to the original porous medium geometry. As a result, multiphase LB models present a

separate, distinct, and more challenging application for parallel processing decomposition

and simulation than single-phase LB models in porous medium systems.

3 Approach

3.1 High-level design

The standard LB implementation stores both fluid and solid nodes in a full lattice, which

is usually decomposed into a number of equal-sized, regular-shaped subdomains for par-

allel processing. By adding ghost layers of lattice points to each of the subdomains, the

traveling step can be accomplished by sending values to the ghost layers of the neighbor-

ing processors. Neighbor relationships between processors are readily known due to the

lattice’s simple structure.

However, for many porous medium problems of practical interest, there are two serious

drawbacks involved in this approach. First, memory is wasted by storing information for

solid phase nodes. For many of these problems, we can assume that the solid phase is

immobile. The solid nodes do not participate in calculations of LB equations, so all the

variables (e.g. distribution functions, density and velocity) at solid nodes are simply zero.

For a typical unconsolidated natural porous medium whose porosity is 0.3–0.4, up to 70%

of the memory is wasted storing zero in real numbers, and the porosity of a fractured

porous medium can be less than 5%. This results in a severe waste of memory that limits

the range and scale of the LB applications that can be addressed. In addition, part of

computational time can be wasted either on executing logical operations to distinguish

fluid and solid nodes, or on non-productive computation on solid nodes if they are not
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singled out.

The second drawback of the standard LB approach is the potential load imbalance problem

caused by typical domain decomposition approaches. One of the main advantages of the

LB method is its suitability for a large class of different geometries and porous medium

types, no matter whether the solid phase is homogeneously or heterogeneously distributed

over the grid of the geometry. Obviously, for a heterogeneously distributed solid phase,

regular domain decomposition approaches can result in a severe load imbalance. Hence the

efficiency of the parallel program decreases significantly due to the idle synchronization

time.

For a homogeneous porous medium, some researchers suggest that the load imbalance

among different processors is negligible [5, 16, 17]. However, due to the fact that homo-

geneity exists only at a sufficiently large scale for certain types of media, we contend that

this assertion is not the case if a large number of processors are used. To demonstrate

this point, we show a simple calculation on a medium comprised of a homogeneous sphere

pack, labeled as GB1b, the geometry of which is shown in Fig. 1. The porosity of the GB1b

is 0.36 and the relative standard deviation of the diameter of the grain size is 4.7%; more

properties of GB1b are given in [15]. We discretize the domain with 643 lattice points and

decompose the lattice into equal-sized cubic subdomains. Ni, the number of fluid nodes

distributed to processor i is computed, denoting the work assigned to the processor. If

8 processors are employed, the largest workload Max(Ni) is 4.8% more than the aver-

age workload 〈Ni〉, which indicates an acceptable balance. When we use 64 processors,

Max(Ni) is 39.7% larger than 〈Ni〉; when using 512 processors, Max(Ni) is 138.9% larger

than 〈Ni〉, which means on the average each processor is idle 60% of the time waiting

for the slowest processor. We conclude from this example that even for simulations of a

homogeneous porous geometry, substantial load imbalance can occur if a large number of

processors is used.

To avoid these drawbacks, we have developed an improved LB implementation, which

on one hand maintains most of the advantages of a full lattice, while on the other hand

reduces the run time and memory requirement, and improves the parallel performance.
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(a) (b)

Fig. 1. Geometry of the homogeneous sphere-packed medium GB1b: (a) 3D isosurface view; and
(b) 2D cross section view. Blue and white areas stand for solid and fluid spaces, respectively.

To minimize memory requirements, instead of representing the full lattice, we employ a

sparse lattice representation (SLR), which uses an indirect addressing (IA) data structure

to store only the fluid node information. Our new LB simulator, the diagram of which

is shown in Fig. 2, consists of three parts: (1) a pre-processing routine, (2) a parallel LB

simulator, and (3) a post-processing routine. The focus of the study is on the first two

parts. The pre-processing routine converts the regular 3D porous medium input to the

SLR and decomposes the domain with respect to the number of processors being applied

in the parallel LB simulator. The post-processing routine writes the SLR back to a regular

3D lattice output for purposes of flow visualization. It is important to notice that by using

the SLR, the natural coordinates of each node in the lattice are hidden, so we can develop

generic LB models that are independent of decomposition strategies.

3.2 Sparse representation

The pre-processing routine reads in the full representation of the porous medium, and

generates a 1D array V . Each element of V is of derived type node info, which provides

a collection of related pieces of data for each fluid site. Fig. 3 shows a simple example in

which a 2D 4×4 porous medium domain is distributed into four processors. In Fig. 3, the

grey and white blocks stand for the solid and fluid nodes, respectively. Hence, V in this
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(3D porous medium,
Full lattice input

initial variables)

Pre−Processing 

Convert back to

and visualization
full lattice for ouput

Post−Processing

Decompose
the domain

representation
Convert to sparse

Parallel LB
model

Fig. 2. High-level design of the new LB simulation system.

example consists of 11 elements of node info, each of which provides the following data

for a fluid node:

(1) integer indices corresponding to the x, y and z coordinates of the node in the regularly

spaced lattice;

(2) the processor index to which the node is distributed; and

(3) node and processor indices for the 14 neighboring lattice points.

We now describe item (3) in more detail. Having lost the natural ordering, neighboring

nodes are no longer immediately known, so the neighboring information has to be added

locally. For each node, there are three types of neighbors: (a) a solid node, so the bounce-

back scheme applies; (b) a fluid node located inside the same processor; and (c) a fluid

node located at a different processor, so message passing between processors is required.

For example, the fluid node marked with velocity vectors at the bottom of Fig. 3 has

neighbors along directions 6, 7 and 8 that are solid nodes, assuming periodic boundary

conditions are applied; neighbors along directions 1, 2 and 5 belong to the second type,

and those along directions 3 and 4 belong to the third type.

In order to avoid expensive sorting and searching operations to locate the neighboring

fluid nodes in the topologically unstructured grid, the location of the fluid nodes has to

be added. For example, as shown in Fig. 3, we need to know that the indices of neighbors

along directions 1, 2 and 5 of the marked node in processor (PE) 01 are 3, 2 and 4,

respectively, and the neighbors along direction 3 and 4 are correspondingly the second
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node in PE 03, and the second node in PE 00. That is to say, for each of 14 neighboring

nodes, a maximum of 7 bytes of integer storage is required, including a 1-byte indicator

to distinguish the above-mentioned three types of neighbors, a 4-byte integer showing the

index of the node if it is a fluid node of the second type, and an additional 2-byte integer

showing the processor index if it is a fluid node of the third type.

21

1 1

22

3 3

2

4

PE 00 PE 01 PE 02 PE 03

1 2 3
1 2 3 4

1 2
1 2

5

6
3

7

8
1

37

PE 00

PE 02 PE 03

PE 01

4 2

6

Array V

derived type Node_info

Fig. 3. Conversion from the full lattice structure of the porous medium to the sparse represen-
tation. Grey and white areas stand for solid and fluid spaces, respectively.

3.3 Memory requirements

Array V is constructed only once and written into an output file by the pre-processing

routine, then in the LB simulation model each processor reads in the corresponding part

of the output file to obtain its subdomain information. It is clear that by using the SLR,

each processor needs more memory per fluid node to store the medium information, but

no memory is allocated for solid nodes. We now compare the total memory requirements

for the standard FLR and the SLR. For the FLR approach, the required memory MFLR

for a single-phase flow LB model is estimated, assuming a single processor is used, as

MFLR = N [1 + 8 + (15 × 8 × 2)] = 249N, (6)

where N is the total number of nodes in the lattice. The first term on the right-hand

side (RHS) represents a 1-byte fluid/solid indicator per lattice site. The next term on the
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RHS represents the memory used for the density (8-byte real), and the last represents the

distribution functions at 15 directions (8-byte real) for the current and next time steps.

The required memory for the SLR is

MSLR = Nφ{[(3 × 2) + (14 × 7)] + [8 + (15 × 8 × 2)]} = 352Nφ, (7)

where φ is the porosity of the porous medium. The first term on the RHS stands for the

memory used to store medium information per fluid lattice site, including x, y, z coordi-

nates indices (2-byte integer each) and 14 neighboring data (7-byte each, as explained in

previous section). The second term on the RHS is for storage of real number density and

distribution functions.

From Eq. (6) and Eq. (7), one can see that the SLR achieves memory advantage at

φ ≤ 0.71, which means for a typical unconsolidated porous medium, the porosity of which

ranges from 0.3 to 0.4, approximately half of the memory is reduced for a single-phase LB

application. For multiphase LB models, the amount of the saved memory is even more

significant, since much more real number storage is required for multiple fluid components,

and interaction forces among them. The storage of these real number variables can exceed

that of the medium structure information, so consequently MSLR/MFLR approaches the

porosity φ.

3.4 Domain decomposition strategies

Kandai et al.[5] pointed out that in LB simulations, minimizing the computational load

imbalance is more important than minimizing the communicational imbalance. In LB

problems, the workload distribution is proportional to the number of fluid nodes. This

distribution distribution is static because the solid phase is immobile in our applications.

Therefore, to circumvent the workload imbalance induced by the solid phase, we have

examined the following non-uniform domain decomposition methods.

(1) Rectilinear partitioning. The grid is split into rectilinear-shaped subdomains such

that the workload is balanced, as shown in Fig. 4(a), where the labels identify pro-
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(a) 00 01 03
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2120

3130 33

23

32

02

22

(b)
0100 02

1312

22 23

33
3130

03

32

2120

10 11

Fig. 4. Two-dimensional examples of the non-uniform domain decompositions on 16 processors:
(a) rectilinear partitioning; and (b) orthogonal recursive bisection (ORB) decomposition.

cessors in a 4 × 4 grid, to which the respective fraction of the domain is mapped.

The method has the advantage of being simple to code, and the subdomain bound-

aries maintain a similar shape as they do in the standard domain decomposition

approaches. This partitioning can generate subdomains, the number of which is not

necessarily an integer divisor of the lattice size. In other words, the choice of the

number of processors employed is less restricted than in the standard decomposi-

tions.

(2) Orthogonal recursive bisection (ORB) [18]. ORB techniques partition the domain by

subdividing it into equal parts of work by successively subdividing along orthogonal

coordinate directions. ORB reduces the higher dimensional partitioning into a set

of recursive one-dimensional partitioning problems, with the cutting direction varied

at each level of the recursion. ORB partitioning is restricted to p = 2k processors.

Fig. 4(b) illustrates the ORB strategy on a 2D grid, where for p = 24 processors,

recursively subdividing the domain four times yields 16 partitions. There are several

other ORB techniques available based on different ways of subdividing the domain:

for example, the hierarchical ORB (ORB-H) splits the problem into p > 2 parts

and recurses on each part, and the ORB-median of medians (ORB-MM) releases the

constraints of straight-edged cuts so that highly irregular partitions are generated.

For simplicity, we only use the ORB in this study.
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3.5 Parallel implementation issues

In the LB parallel model each processor independently reads in its subdomain, i.e., each

processor i stores an array Vi, consisting of Ni (number of fluid nodes in the subdomain)

elements, as shown in Fig. 5. Quantities that characterize the LB state, for example, the

density Den and distribution functions Dist in single-phase models, are defined for each

node in the fluid phase. The size of the array Dist is 15Ni because our LB model has 15

fixed velocity vectors, ei. In this section, we will restrict our description to the single-phase

flow case for a clear demonstration. The parallel implementation for the multiphase LB

model follows essentially the same communication pattern described here, but involves

additional information that must be exchanged.

As mentioned previously, there are three situations that occur during the traveling step, in

which each fluid particle hops to a neighboring lattice site in the direction of its velocity ei.

Interprocessor communications are only incurred for the third type, where the neighboring

fluid nodes lie in different processors. Due to the symmetry of the lattice structure, the

number of messages sent out from processor i is identical to the number received by

the same processor Nci. Note that the variation of Nci among processors is a parameter

indicating how well the communicational work load is balanced.

Even though the array Vi provides the complete neighboring information needed for mes-

sage passing between subdomains during the traveling step, these values are scattered

throughout the array Dist. To reduce the communication overhead, they must be packed

into contiguous messages for transmission, and unpacked on the receiving side. We allo-

cate a small amount of memory for a send buffer and receive buffer to each subdomain.

Values required to send to other processors are copied into Send Dist, a real number array

including Nci distribution functions extracted from Dist. Some care must be taken here.

In Send Dist, values sent to the same neighboring processor should be arranged contigu-

ously. Thus, Send Dist consists of a number of messages, each of which is sent to the

corresponding part of the destination processors. The number of messages, equivalent to

the number of the neighboring processors, is named Npi. Each processor also receives Nci

messages from other processors, held in the receive buffer Recv Dist, which is partitioned
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Send to PE n
Np

Send to PE n
Np

Dist

1 2 3

derived type

Pack the communicating messages

V

Recv_Dist

Send to PE n2

Recv_info

Send_info
(2 x Nc)

Send to PE n Send to PE n1 2

2

2Receive from PE n Receive from PE nReceive from PE n1 Np

Receive from PE n Receive from PE nReceive from PE n1 Np

(N)
N

(15 x N)

1

Send_Dist

Send to PE n

(Nc)

(Nc)

(2 x Nc)

Fig. 5. Message passing implementation for each processor using the the indirect addressing data
structure.

to the same sizes as its counterpart Send Dist.

Having lost the natural coordinates of lattice nodes by using the IA structure, each pro-

cessor needs to know where to back up the messages from Recv Dist to the corresponding

locations of Dist. Therefore, we add an array Send info, a two by Nci integer array, to give
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the auxiliary information for each sending message. This array holds the direction j of the

particle velocity ej(1 ≤ j ≤ 14). The second is the index of the node at the neighboring

processor, to which the message is sent. As shown in Fig. 5, Send info also consists of Nci

messages, and each message is sent to corresponding part of Recv info at the destination

processor. Moreover, Recv info and Recv Dist must be in the corresponding order so that

after message transfer, Recv Dist can correctly update Dist, given the location information

provided in Recv info.

Constructing Send info and generating Recv info by point-to-point communications need

only be done one time because of the fixed communication pattern once the porous

medium is known. The cost is usually negligible when amortized over multiple LB time

step iterations, and only a small amount of additional memory is required. By constructing

and receiving messages in buffers Send Dist and Recv Dist, the communication overhead

is reduced at each time step. It also allows the overlapping of the data exchange pro-

cess between subdomains and internal computation, so one can apply the asynchronous

non-blocking message passing routines to achieve good parallel efficiency.

In summary, the algorithm for the parallel LB model is as follows:

(1) Each processor i reads the subdomain decomposed by the pre-processing routine,

array Vi with Ni elements generated;

(2) Each processor constructs the integer array Send info from array Vi corresponding to

messages needed to be passed to other processors,;

(3) Each processor exchanges corresponding information about communication sizes and

locations with its Npi neighboring processors;

(4) The distribution functions are initialized by the collision step, and the appropriate

pressure boundary condition is applied;

(5) Then the LB time iterations proceed until the equilibrium state is reached. At each

iteration, the following steps are performed:

(a) Traveling step starts. Each processor updates Send Dist from array Dist;

(b) Asynchronous non-blocking send from Send Dist and non-blocking receive to

Recv Dist are initialized;
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(c) Then computation is performed on the interior nodes, including the bounce-back

and traveling between internal nodes;

(d) A wait barrier is issued for the completion of the non-blocking send-receive op-

eration;

(e) Guided by Recv info, each processor updates Dist from Recv Dist, which indicates

the completion of the travel step;

(f) The collision step is applied to all nodes and the pressure boundary condition is

re-applied.

4 Results and discussion

4.1 Computational environments

The new simulators for both single-phase and multiphase flow are written in Fortran 90

using the Message Passing Interface (MPI standard) library. The codes have been tested

on a variety of parallel computer platforms, including an IBM RS/6000 SP, IBM p690, SGI

Origin 2400, and a Linux Beowulf cluster. The characteristics of these machines are shown

in Table 1. Because we need to simulate sufficiently large systems for the performance

measurements with a large number of processors, the parallel machine we primarily use

is the IBM-SP system. Unless indicated otherwise, results in next sections are obtained

on the IBM-SP.

4.2 Sequential performance results

More important than reducing memory consumption, the use of the SLR leads to less

computational and communication work than the standard FLR approach. The reason is

because all the work related to solid nodes is eliminated, i.e. for a typical porous medium,

the simulation work is then limited to 30–40% of the entire lattice sites. We have performed

sequential performance tests to compare the run time achieved using each of the two

approaches. In Fig. 6, we plot for single-phase and two-phase LB simulations, the average
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Table 1
Characteristics of parallel machines used in the work

Machine IBM RS 6000 SP IBM p690 SGI Origin 2400 AMD Beowulf Cluster

Configuration 180 4-way single 32-way single 48-way 64 2-way

SMP nodes SMP node SMP node SMP nodes

Processor Power-3 II Power-4 MIPS R12000 Athlon MP 1900

375 MHz 1.3 GHz 400 MHz 1.6 GHz

Memory per node/
total memory

2 GB / 360 GB 128 GB 24 GB 2 GB / 128 GB

L1 Cache I/D 32 KB / 32 KB 32 KB / 32 KB 32 KB / 32 KB 64 KB / 64 KB

L2 (/ L3) Cache 8 MB 1.5 MB / 128 MB 8 MB 256 KB

Peak FLOPS (64-
bit)

1.5 GF 5.2 GF 0.8 GF 3.2 GF

CPU time for 100 time steps and varying problem sizes. Note that the largest lattices

used for the multiphase simulations were slightly smaller than the single-phase case due

to memory limitations on a single processor of the IBM-SP. Two media are used in the test:

the GB1b porous medium and a full-fluid medium without a solid phase. In the porous

medium test case, we clearly see that the SLR results in significantly faster execution

times for both single-phase and two-phase simulations. For single-phase simulations on

problem sizes 323 and 643, the ratio of CPU time between the SLR and FLR is close to

0.36, which is the analytical limit of φ.

In the full-fluid test case, we find that, despite its more complicated addressing system

which is anticipated to slow down the execution, the SLR is still slightly faster than

the FLR, especially for larger problem sizes and two-phase simulations. We hypothesize

that during the traveling steps in the FLR, a certain amount of time is spent evaluating

the conditional expressions to determine if the neighboring sites are fluid or solid. For

multiphase models, in addition to the traveling steps, more time is required during the

calculations of nearest neighbor fluid-solid interaction forces. However, these conditional

statements are unnecessary in the SLR approach because the neighboring information

is analyzed by the pre-processor routine and known locally. To further verify this, we

eliminated the bounce-back operations for the FLR approach during the traveling step in

the single-phase full-fluid medium simulations. As illustrated with the unfilled squares at
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Fig. 6. Comparison of sequential performance using the sparse lattice representation and the full
lattice representation on: (a) single-phase flow simulations; and (b) two-phase flow simulations.
Media used in the test are, respectively, the GB1b sphere-packed medium with lattice sizes
varying from 323 to 803 (φ = 0.34–0.36), and a full-fluid case with lattice sizes varying from 163

to 803 (φ = 1.0).

problem size 643 and 803 in Fig. 6(a), we find that the FLR approach then runs around

20% faster than the SLR approach, which is consistent with our hypothesis.

4.3 Memory hierarchy

In the above implementations, fluid nodes in array V are inserted from the 3D full lattice

in a Cartesian order, i.e., starting from x direction and then y and z. To improve locality

of reference in multidimensional lattices, we consider an ordering originally presented by

Morton in 1966 [19], who defined the indexing of a 2D array as in Fig. 7. Much recent

work has shown that for many matrix problems, Morton-order (or Z-order) offers higher

locality over the classic Cartesian order and enables algorithms to reduce cache misses

(e.g. [20, 21]).

To explore how Morton-order influences LB applications, we performed a comparison

experiment. We entered the fluid nodes into array V following the Morton-order enumer-

ation of their indices. We compare the running time on a single processor with the time

obtained when V is filled in row-major order. Running time results are reported on three

machines: SGI Origin, Beowulf Cluster and IBM-SP. Single-phase LB simulations using a
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Fig. 7. Row-major indexing (left) and Morton-order indexing (right) of a two-dimensional 8 ×
8 matrix.

single processor are carried out on both the GB1b porous medium and the full-fluid with

different lattice sizes. The run time ratio between the algorithms using Morton-order and

row-major order are shown in Table 2.

Results in Table 2 show that Morton-order processing of the fluid sites provides some

performance advantage in all cases. However, for several reasons, the advantage is not

dramatic. First, the sparsity of the fluid sites decreases the amount of data reuse available

under any ordering of references. Second, the large caches in the IBM and SGI processors

decrease the penalty for reference patterns with lower reuse, and the pre-fetch engine on

the IBM system decreases the cost of Cartesian ordering in the full-fluid case. However, in

the case of a commodity processor like the AMD processor used in the Beowulf cluster, the

value of Morton-order references becomes more pronounced, and we expect this behavior

to become more prevalent in future commodity processors. Finally, the computational

intensity of the LB simulation (i.e., the number of arithmetic operations per memory

reference) is sufficiently large to hide the latency of cache misses in the lowest cache

levels.

For the remainder of the results reported, the Morton-order evaluation is not used. How-

ever, the Morton-order evaluation is independent of the framework of the new implemen-

tation and can be applied when needed. Additional work is required to adapt the Morton

order to domains whose sizes are not a power of two.
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Table 2
Run time ratio between algorithms using Morton-order and row-major order on three machines
for sequential single-phase LB simulations performed on the GB1b porous medium and a full
fluid system for a range of lattice sizes.

SGI Beowulf Cluster IBM-SP

643 (GB1b) 87.3% 93.0% 98.8%

1283 (GB1b) 89.2% 91.8% –

2563 (GB1b) – 89.5% –

643 (Full-fluid) 73.5% 78.8% 95.2%

1283 (Full-fluid) 74.3% 77.3% –

4.4 Parallel performance results

Computational speedup and efficiency are the two typical measurements for parallel per-

formance evaluation. The speedup s is calculated as the ratio of CPU time taken for a

parallel algorithm to run on a single processor T1 and CPU time taken to run on p pro-

cessors Tp. The efficiency ε is a measure of the scalability for a parallel program, defined

as the ratio between the speedup s and the number of processors p, i.e.,

s=
T1

Tp

(8)

ε=
s

p
. (9)

In our evaluation of parallel performance, running times Tp are relative to a fixed number

of LB time steps (step 5 described in Section 3.5). We do not take into account the I/O and

the serial initialization time, which consumes a negligible fraction of a typical simulation.

4.4.1 Domain decomposition effect

Important factors controlling the efficiency of parallelization include (1) the balance of

computational workload among processors, defined by Bcp = Max(Ni)/〈Ni〉; (2) the bal-

ance of the communication workload among processors, defined by Bcm = Max(Nci)/〈Nci〉;
(3) the ratio between communication and computation work, defined by 〈Nci〉/〈Ni〉; and

(4) Npi, the number of neighboring processors associated with processor i.
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We have conducted a series of experiments to compare the different domain decomposition

methods and analyze the above-mentioned parameters that influence parallel performance.

In Table 3 (also plotted in Fig. 8(a)), we present the single-phase flow simulation results

with respect to five domain decomposition methods, namely regular 1D (slice), 2D (shaft),

3D (cubic) decompositions, rectilinear decomposition, and ORB. The test case is carried

out on the homogeneous GB1b medium with 643 lattice nodes, using 64 processors. Table

4 lists the results for the same medium but using 256 processors. From Tables 3 and 4, we

find that computational workload balance is a dominant factor contributing to efficient

parallelization and that ORB leads to the best computation-balanced subdomains, hence

the optimal parallel efficiency.

The results in Tables 3 and 4 also imply that 〈Nci〉 and Bcm only have a minor impact

on the parallel efficiency at the test problem size. To verify this conclusion, we have

conducted an experiment to analyze the average and maximum time, over all processors,

spent on different steps (step 5(a) through 5(f) described in Section 3.5) in one LB time

iteration. Results are listed in Table 5. Four cases from Tables 3 and 4 are considered,

including the cubic and ORB decomposition using 64 and 256 processors, respectively. A

synchronization barrier is added at the end of step 5(f) for the purpose of accurate time

counting, even though the barrier is not needed and not present in the simulator.

In Table 5, the computation time corresponds to all serial work in the simulation step.

The message passing time is the time required to initiate the send and receive operations,

the communication wait time is the unoverlapped communication time, and the idle time

is the total time from imbalance in the simulation step.

In the LB models we apply asynchronous communication in order to overlap the process

of message transfer and the interface-independent computation. Provided that the com-

munication/computation ratio 〈Nci〉/〈Ni〉 is sufficiently small so that the interior node

computation time can offset the data exchange time, the overhead of communication can

become negligible. However, we only observe partial overlapping in Table 5. The situation

could be improved by forcing more interior node computation, such as adding some of

the work in the collision step. However, we do not expect much improvement on parallel
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Table 3
Comparison of different domain decomposition methods on single-phase simulations of GB1b
with 643 lattice nodes using 64 processors.

Decompositions Bcp(%) 〈Nci〉 Bcm(%) Npi 〈Npi〉 Efficiency ε

Slice (1 × 1 × 64) 131.6 11385 141.5 2 2 0.765

Shaft (1 × 8 × 8) 167.0 2559 155.6 7 - 8 8 0.719

Cubic (4 × 4 × 4) 152.0 1759 156.9 11 - 21 16 0.787

Rectilinear (4 × 4 × 4) 138.9 1761 148.5 9 - 20 16 0.867

ORB 116.1 1890 142.7 7 - 21 13 1.05

The numbers after the decompositions are respectively nx, ny, nz, which stand for the number
of partitions in the x, y, z directions.

Table 4
Comparison of different domain decomposition methods on single-phase simulations of GB1b
with 643 lattice nodes using 256 processors.

Decompositions Bcp(%) 〈Nci〉 Bcm(%) Npi 〈Npi〉 Efficiency ε

Shaft (1 × 8 × 8) 198.2 2242 177.8 7 - 8 8 0.780

Cubic (4 × 4 × 4) 233.2 765 220.7 7 - 22 15 0.607

Rectilinear (4 × 4 × 4) 206.7 768 218.5 7 - 22 15 0.732

ORB 127.0 875 158.7 5 - 20 12 0.867

performance because, in LB models, the total communication time, including the message

passing time spent on step 5(b) and communication wait time on step 5(d), contributes a

relatively small part of the total execution time (around 5% using 64 processors and 10%

using 256 processors). This finding is consistent with the study of Kandai et al.[5], who

pointed out that minimizing the computational load imbalance is more important than

minimizing the communication imbalance in LB simulations. Hence, the ORB leads to the

best parallel efficiency by significantly reducing the idle time, which is largely dependent

on the computational load balance.

The major disadvantage associated with the ORB method compared to the regular de-

composition methods is the possible irregular communication pattern, which causes higher

communication overhead. The irregular communication pattern includes the higher num-

ber of neighboring processors Npi and the larger size of messages to be transferred Nci

for each processor i. However, we find that in our LB implementations the disadvantages
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Table 5
Average and maximum time of all processors (in millisecond) spent on different parts of a single
simulation time step.

Time Computation Message passing Communication wait Idle Total

Cubic(64 PEs) 15.74/23.60 0.19/0.29 0.88/1.48 6.95/11.86 23.76

ORB (64 PEs) 15.57/17.67 0.17/0.28 0.74/1.12 1.73/2.83 18.21

Cubic(256 PEs) 4.40/9.43 0.20/0.38 0.58/1.07 4.63/7.32 9.81

ORB (256 PEs) 4.39/5.80 0.16/0.52 0.59/1.11 1.36/2.13 6.50

associated with the ORB are insignificant. We have observed, from Table 3 and Table 4,

a similar range of Npi among cubic, rectilinear and ORB methods. Interestingly, 〈Npi〉 of

ORB is even less than those of the cubic and rectilinear methods. In addition, compared

to the cubic and rectilinear methods, ORB does not lead to substantially larger size of

communication work Nci, even using 256 processors. By using the sparse representation,

we eliminate the message passing associated with the solid nodes, so with the regular de-

compositions each processor does not have the same communication work and the same

number of the neighboring processors. Moreover, balancing the number of fluid nodes ac-

tually helps to balance the size of communication work now that message passing occurs

only between fluid nodes.

To further verify our finding, we performed tests on different porous media. Fig. 8(a) and

Fig. 8(b) plot Bcp, Bcm and efficiency ε for the homogeneous GB1b medium for both

the single-phase and two-phase simulations, respectively. Fig. 8(c) and Fig. 8(d) show

the results for a heterogeneous sphere-packed medium, labeled as RSP23. The porosity of

RSP23 is 0.33 and the relative standard deviation of the grain size is 64.7%; more prop-

erties of the medium are seen in [6]. For two-phase simulations, two additional layers of

void space are added at both horizontal sides of the domain, representing the non-wetting

phase and wetting phase reservoirs. Thus the flow domain is actually 68 × 64 × 64. It

is evident that for both test cases with 64 processors, none of the regular decomposi-

tions is efficient for either the homogeneous or heterogeneous medium. Among the three

regular decompositions, slice decomposition provides the best workload balance, but it

generates subdomains with the highest communication/computation ratio, which results

in high communication overhead. Compared with cubic decomposition, rectilinear de-
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Fig. 8. Comparison among the different domain decomposition methods. In all test cases, the
domain size is 643 and 64 processors are used: (a) single-phase flow simulation on a homogeneous
medium GB1b (porosity φ = 0.36); (b) two-phase flow simulation on GB1b; (c) single-phase flow
simulation on a heterogeneous sphere packing medium RSP23 (φ = 0.33); (d) two-phase flow
simulation on RSP23. Bcp = Max(Ni)/〈Ni〉 represents the computational load balance, and
Bcm = Max(Nci)/〈Nci〉 represents the communicational load balance.

composition slightly improves workload balance for the homogeneous medium, but for

the heterogeneously distributed media, it does not have much of an advantage in terms

of computational balance and parallel efficiency. On the other hand, for single-phase and

two-phase simulations on both porous media, the computational workloads obtained by

the ORB are approximately balanced. For our test problem size and 64 processors, the

ORB decomposition is on average 37% more efficient than regular decompositions for the

GB1b medium, and 49% for the heterogeneous RSP23 medium.

Furthermore, in Fig. 9 we show, for a fixed lattice size (GB1b with 643), the speedups
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Fig. 9. Speedup s with respect to single processor vs. the number of processor p on GB1b
medium with 643 lattice nodes using different domain decomposition methods: (a) single-phase
flow simulation; and (b) two-phase flow simulation.

versus increasing numbers of processors (up to 128) using slice, cubic, rectilinear and

ORB methods. We can observe that (1) ORB improves the parallel efficiency significantly

in LB applications compared to standard approaches, especially when a large number

of processors is applied; (2) rectilinear partitioning improves parallel performance to a

limited extent; and (3) for homogeneous porous media, while using a moderate number of

processors, regular decomposition methods can be acceptable approaches, but they cause

serious workload imbalance problems when a large number of processors are used.

4.4.2 Lattice size effect

Next, Fig. 10 shows the parallel efficiencies using the new LB implementation and ORB

decomposition on both single-phase and two-phase simulations, for various lattice sizes N

and a different numbers of processors p. Efficiency ε of problem size 643 is with respect

to the CPU time of a single processor, while ε of 1283 is with respect to 8 processors, and

ε of 2563 to 32 processors due to the memory constraint on the IBM-SP. The results in

Fig. 10(a) and Fig. 10(b) show that ε first increases due to the cache effect then decreases

steadily for the 643 lattice, because of scaling problems as p increases in size. In other

words, when p increases to a certain number (more than 128 processors in our case),

the communication time becomes dominant. We expected this behavior. We also see the
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Fig. 10. Parallel efficiency ε vs. the number of processors p on GB1b medium with different
problem size 643, 1283 and 2563 for (a) single-phase flow simulations; and (b) two-phase flow
simulations. The ORB decomposition method is applied. Efficiency ε of problem size 643 is with
respect to the CPU time of a single processor, ε of 1283 is with respect to 8 processors, and ε of
2563 to 32 processors.

superlinear speedups achieved on both 1283 and 2563 lattices, because more of the problem

fits in the additional cache memory when more processors are used. The results prove that

the parallel implementation method can be scaled up with respect to both the number of

processors and the problem sizes.

4.4.3 Platform effect

Finally, we plot in Fig. 11 the total execution time for 300 time steps versus p on different

parallel computer platforms at the North Carolina Supercomputing center, including the

IBM-SP, SGI Origin 2400, IBM p690 and the Linux Beowulf cluster. For a clear compar-

sion, the speedup values with respect to the single processor CPU time on the IBM-SP are

indicated in the figure. We find that the performance results are not exactly in order with

those predicted by Table 1. We observe faster execution on the SGI than on the IBM-SP

even though the SGI has lower peak FLOPS than IBM-SP. For all the parallel computers,

the execution time is nearly proportional to 1/p, which implies good parallel performance

of our LB implementation. Superlinear speedup also occurs with 16 processors on the SGI

due to the cache effects.
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Fig. 11. Total execution time for 300 time steps vs. p on different parallel computers. The
numbers shown in the figure are the corresponding speedup values relative to the CPU time of
a single processor on the IBM-SP.

5 Conclusions

We have developed a new sparse representation approach for simulating single-phase and

multiphase flow in porous medium systems using the lattice Boltzmann method. Standard

approaches represent the full lattice of a porous medium using a regular grid, and the

parallelization is based on regular 1D, 2D or 3D decompositions of the grid. We have shown

that such approaches have serious disadvantages, including waste of computational time

and memory, as well as a load imbalance problem due to the presence of the solid phase.

The SLR approach is implemented only to store information related to the fluid phase

nodes of the porous media, using an IA data structure. For sequential runs significantly

faster execution is achieved compared to a code based upon the standard approach. The

use of the IA data structure also allows us to develop generic parallel LB simulators that

decouple from the domain decomposition step.

To achieve improved parallel efficiency, we have investigated several domain decompo-

sition strategies, including standard decompositions, rectilinear decomposition, and an

orthogonal recursive bisection (ORB) decomposition. We find that for the cases examined

in this work the computational workload balance is a dominating factor contributing to

efficient parallelization. Regular decompositions are acceptable approaches only for ho-
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mogeneous media and a moderate number of processors. Otherwise, they lead to poor

parallel efficiencies due to workload imbalance problems. Rectilinear decomposition im-

proves parallel performance to a limited extent because of its geometric constraints of

straight-line cutting.

We have shown that the ORB method leads to good workload balance among subdomains

and that excellent parallel efficiencies are obtained on both homogeneous and heteroge-

neous media for single-phase and multiphase LB applications. We also have shown that

the ORB domain decomposition method can be scaled up with respect to both the num-

ber of processors and the problem size to achieve good performance on different parallel

computers. We believe that our new LB implementation combined with the ORB decom-

position is a promising approach that can greatly enhance the applicability of LB methods

for a wide range of flow and transport simulations at a practical scale.
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