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Structure motifs are amino acid packing patterns that occur frequently within a set of protein structures. We define a labeled graph
representation of protein structure in which vertices correspond to amino acid residues and edges connect pairs of residues and are
labeled by (1) the Euclidian distance between the Cα atoms of the two residues and (2) a boolean indicating whether the two residues
are in physical/chemical contact. Using this representation, a structure motif corresponds to a labeled clique that occurs frequently
among the graphs representing the protein structures. The pairwise distance constraints on each edge in a clique serve to limit the
variation in geometry among different occurrences of a structure motif. We present an efficient constrained subgraph mining algorithm
to discover structure motifs in this setting. Compared with contact graph representations, the number of spurious structure motifs is
greatly reduced.

Using this algorithm, structure motifs were located for several SCOP families including the Eukaryotic Serine Proteases, Nuclear
Binding Domains, Papain-like Cysteine Proteases, and FAD/NAD-linked Reductases. For each family, we typically obtain a handful
of motifs within seconds of processing time. The occurrences of these motifs throughout the PDB were strongly associated with the
original SCOP family, as measured using a hyper-geometric distribution. The motifs were found to cover functionally important sites
like the catalytic triad for Serine Proteases and co-factor binding sites for Nuclear Binding Domains. The fact that many motifs are
highly family-specific can be used to classify new proteins or to provide functional annotation in Structural Genomics Projects.
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1. INTRODUCTION

This paper studies the following structural comparison
problem: given a set G of three dimensional (3D) protein
structures, identify all structure motifs that occur with
sufficient frequency among the proteins in G. Our study is
motivated by the large number of (> 35, 000) 3D protein
structures stored in public repositories such as the Pro-
tein Data Bank (PDB, 4). The recent Structural Genomics
projects 28 aim to generate many new protein structures
in a high-throughput fashion, which may further increase
the available protein structures significantly. With fast
growing structure data, automatic and effective knowl-
edge discovery tools are needed to gain insights from the
available structure data in order to generate testable hy-
potheses about the functional role of proteins and the evo-
lutionary relationship among proteins.

Our study is also motivated by the complex rela-
tionship between protein structure and protein function
8. It is well known that global structure similarity does
not necessarily imply similar function. For example, the
TIM barrels are a large group of proteins with remark-
ably similar global structures, yet widely varying func-

tions 23. Conversely, similar function does not necessar-
ily imply similar global structure: the most versatile en-
zymes, hydro-lyases and the O-glycosyl glucosidases, are
associated with 7 different global structural families 11.
Many globally dissimilar structures show convergent evo-
lution of biological function. Because of the puzzling re-
lationship between global protein structure and function,
recent research effort in protein structure comparison has
shifted to identifying local structural features (referred to
as structure motifs) responsible for biological functions
including protein-protein interaction, ligand binding, and
catalysis 3, 5, 30–33. A recent review of methods and ap-
plications involved in protein structure motif identifica-
tion can be found in 19.

Using a graph representation of proteins, we formal-
ize the structure motif identification problem as a fre-
quent clique mining problem in a set of graphs G and
present a novel constrained clique mining algorithm to
obtain recurring cliques from G that satisfy certain ad-
ditional constraints. The constraints are encoded in
the graph representation of protein structure as pair-
wise amino acid residue distances, pair-wise amino acid
residue interactions, and the physical/chemical properties
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of the amino acid residues and their interactions in a pro-
tein structure.

Compared to other methods, our method offers the
following advantages. First, our method is efficient. It
usually takes only a few seconds to process a group of
proteins of moderate size (ca. 30 proteins), which makes
it suitable for processing protein families defined by var-
ious classifications such as SCOP or EC (Enzyme Com-
mission). Second, our results are specific. As we show
in our experimental study section, by requiring structure
motifs to recur among a group of proteins, rather than in
just two proteins, we significantly reduce spurious pat-
terns without losing structure motifs that have clear bio-
logical relevance. With a quantitative definition of sig-
nificance based on the hyper-geometric distribution, we
find that the structure motifs we identify are specifically
associated with the original family. This association may
significantly improve the accuracy of feature-based func-
tional annotation of structures from structural genomics
projects.

The rest of this paper is organized as follows. In
Section 1.1, we review recent progress in discovering
protein structure motifs. In Section 2, we review def-
initions related to graphs and introduce the constrained
subgraph mining problem. In Section 3, we discuss our
graph representation of proteins structures. In Section
4, we present a detailed description of our method. We
also include a practical implementation of the algorithm
that supports the experimental study in Section 5. Fi-
nally, Section 6 concludes with a brief discussion of fu-
ture work.

1.1. Related work

There is an extensive body of literature on comparing and
classifying proteins using multiple sequence or structure
alignment, such as VAST 9 and DALI 12. Here we fo-
cus on the recent algorithmic techniques for discovering
structure motifs from protein structures. The methods can
be classified into the following five types:

• Depth-first search, starting from simple geomet-
ric patterns such as triangles, progressively find-
ing larger patterns 5, 25, 30.

• Geometric hashing, originally developed in
computer vision, applied pairwise between
protein structures to identify structure mo-
tifs 3, 24, 35.

• String pattern matching methods that encode the
local structure and sequence information of a
protein as a string, and apply string search al-
gorithms to derive motifs 17, 18, 32.

• Delaunay tessellation (DT) 6, 20, 33 partition-
ing the structure into an aggregate of non-
overlapping, irregular tetrahedra thus identify-
ing all unique nearest neighbor residue quadru-
plets for any protein 33.

• Graph matching methods comparing protein
structures modeled as graphs and discovering
structure motifs by finding recurring subgraphs
1, 10, 14, 22, 29, 31, 38.

Geometric hashing 21 and graph matching 38 meth-
ods have been extended for inferring recurring structure
motifs from multiple structures, but both methods have
exponential running time in the number of structures in a
data set.

2. CONSTRAINED FREQUENT CLIQUE
MINING

2.1. Labeled graphs

We define a labeled graph G as a four-element tuple
G = (V, E, Σ, λ) where V is a set of vertices or nodes
and E ⊆ V × V is a set of undirected edges. Σ is a set
of (disjoint) vertex and edge labels, and λ: V ∪ E → Σ
is a function that assigns labels to vertices and edges. We
assume that a total ordering is defined on the labels in Σ.
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Fig. 1. Database G of three labeled graphs. The mapping (isomorphism)
q1 → p2, q2 → p1, and q3 → p3 demonstrates that clique Q is isomorphic
to a subgraph of P and so we say that Q occurs in P . Set {p1, p2, p3} is an
embedding of Q in P . Similarly, graph S (non-clique) occurs in both graph P
and graph Q.

G′ = (V ′, E′) is a subgraph of G, denoted by G′ ⊆
G, if vertices V ′ ⊆ V , and edges E′ ⊆ (E ∩ (V ′ × V ′)),
i.e. E′ is a subset of the edges of G that join vertices in
V ′.
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2.2. Constraints on structure motifs

A constraint in our discussion is a function that assigns
a boolean value to a subgraph such that true implies that
the subgraph has some desired property and false indi-
cates otherwise. For example, the following statement
“each amino acid residue in a structure motif must have
a solvent accessible surface of sufficient size” is a con-
straint. This constraint selects only those structure motifs
that are close to the surface of proteins. The task of for-
mulating the right constraint(s) is left for domain experts.
As part of our computational concern, we answer the fol-
lowing two questions: (1) what types of constraints can
be efficiently incorporated into a subgraph mining algo-
rithm and (2) how to incorporate a constraint if it can be
efficiently incorporated. The answer to the two questions
is the major contribution of this paper and is discussed in
details in Section 4.

2.3. Graph matching

A fundamental part of our constrained subgraph mining
method is to find an occurrence of a graph H within an-
other graph G. To make this more precise, we say that
graph H occurs in G if we can find an isomorphism be-
tween graph H = (VH , EH , Σ, λH) and some subgraph
of G = (VG, EG,Σ, λG). An isomorphism from H to
the subgraph of G defined by vertices V ⊆ VG is a 1-
1 mapping between vertices f : VH → V that preserves
edges and edge/node labels. The set V is an embedding
of H in G. This definition is illustrated in Figure 1.

In this paper, we restrict ourselves to matching
cliques, i.e. fully connected subgraphs. For example, the
graph Q in Figure 1 is a clique since each pair of (distinct)
nodes is connected by an edge in Q while S is not. In pro-
tein structure graphs, a clique corresponds to a structure
motif with all pairwise inter-residue distances specified.

2.4. The constrained frequent clique
mining problem

Given a set of graphs, or a graph database G, we de-
fine the support of a clique C, denoted by s(C), as the
fraction of graphs in G in which C occurs. We choose
a support threshold 0 < σ ≤ 1, and define C to be fre-
quent if it occurs in at least fraction σ of the graphs in G.
Note that while C may occur many times within a single
graph, for the purpose of measuring support, these count
as only one occurrence. Given a constraint ρ, the problem

of Constrained Frequent Clique Mining is to identify all
frequent cliques C in a graph database G such that ρ(C) is
true. Figure 2 shows all cliques (without any constraint)
which appear in at least two graphs in the graph database
shown in Figure 1. If we use support threshold σ = 2/3
without any constraint, all six cliques will be reported
to users. If we increase σ to 3/3, only cliques A1, A2,
A3, and A4 will be reported. If we use support thresh-
old σ = 2/3 and the constraint that each clique should
contains at least one node with label “a”, the constrained
frequent cliques are A1, A3, A4, and A6.
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Fig. 2. All (non-empty) frequent cliques with support≥ 2/3 in G from Figure
1. The actual support values are: (3/3, 3/3, 3/3, 3/3, 2/3, 2/3) for cliques from A1
to A6.

3. HYBRID GRAPH REPRESENTATION
OF PROTEIN STRUCTURES

3.1. Graph representation overview

We model a protein structure as a labeled undirected
graph by incorporating pairwise amino acid residue dis-
tances and contact relation in the following way. The
nodes of our protein graphs represent the Cα atoms of
each amino acid residue. We create edges connecting
each and every pair of (distinct) residues, labeled by two
types of information: (1) The Euclidian distance between
the two related Cα atoms and (2) A boolean indicates
whether the two residues have physical/chemical contact.
More precisely, a protein in our study is a labeled graph
P = (V, E, Σ, λ) where

• V is a set of nodes that represents the set of
amino acid residues in the protein

• E = V × V - (u, u) for all u ∈ V

• Σ = ΣV ∪ ΣE is the set of disjoint node labels
(ΣV ) and edge labels (ΣE)

• ΣV is the set of 20 amino acid types
• ΣE = R+ × {true, false} where R+ is the set

of positive real numbers
• λ assigns labels to nodes and edges.

Our graph representation can be viewed as a hybrid
of two popular representation of proteins: that of distance
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matrix representation 8 and that of contact map represen-
tation 13.

In practice we are not concerned with interactions
over long distances (say > 13 Å), so proteins need not be
represented by complete graphs. Since each amino acid
occupies a real volume, the number of edges per vertex
in the graph representation can be bounded by a small
constant.

The graph representation presented here is similar to
those used by other groups 25, 38. The major difference
is that in our representation, geometric constraints are in
the form of pairwise distance constraints and are embed-
ded into the graph representation to model geometrically
conserved patterns. The absence of geometric constraints
can lead to many spurious matches as noticed in 25, 38.
Another difference is that we explicitly specify the “con-
tact” relation. The contact relation enables us to incorpo-
rate various constraints into the subsequent graph mining
process and further reduce irrelevant patterns.

In the following, we discuss how to discretize dis-
tances into distance bins, which is important for our struc-
ture motif identification algorithm.

Fig. 3. Mapping distances l to bins. The unit is Å.

3.2. Distance discretization

To map continuous distances to discrete values, we dis-
cretize distances into bins. The width of such bins is com-
monly referred to as the distance tolerance, and popular
choices are 1 Å 22, 1.5 Å 5, and 2 Å 26. In our system, we
choose the median number 1.5 Å as shown in Figure 3,
which empirically delivers patterns with good geometric
conservation.

4. THE CONSTRAINED CLIQUE
MINING ALGORITHM

In this section, we present a detailed discussion on (1)
what types of constraints can be incorporated efficiently
into a subgraph mining algorithm and (2) how to incor-
porate them.

Our strategy relies on designing graph normalization
functions that map cliques to one dimensional sequences
of labels. A graph normalization function is a 1-1 map-
pingN such thatN (G) = N (G′) if and only if G = G′.
In other words, a graph normalization function always
assigns a unique string to each unique graph. The string
N (G) is the canonical code (code in short) of the graph
G with respect to the function N .

Many graph normalization functions have a very de-
sirable property: prefix-preservation. A graph normaliza-
tion function is prefix-preserving if for every graph G,
there always exists a subgraph G′ ⊂ G such that the
code of G′ is a prefix of the code of G. Examples of
prefix-preserving graph normalization functions include
the DFS code 39 and the CAM code 15. As we prove in
Theorem 4.8, with a generic depth first search algorithm,
a prefix-preserving graph normalization function guaran-
tees that no frequent constrained patterns can be missed.
The design challenge here is to construct a graph normal-
ization function that is prefix-preserving in the presence
of constraints.

4.1. A synthetic example of
constraints

The following constraint is our driving example for con-
strained clique mining. The constraint states that we
should only report frequent cliques that contain at least
one edge label of “y”. The symbol “y” is selected to
make the constraint works best with the graph example
we show in Figure 1. Applying this constraint to all the
frequent cliques shown in Figure 2, we find that there are
only three cliques satisfying the constraint, namely A4,
A5, and A6. We name this simple constraint an edge la-
bel constraint and show a specific graph normalization
function that is prefix-preserving for this edge label con-
straint. Before we do that, we introduce a normalization
that does not support any constraints. Our final solution
will adapt this constraint-unaware graph normalization
function.

4.2. A graph normalization function
that does not support constraints

We use our previous canonical code 15 for graph normal-
ization, outlined below for completeness.

Given an n × n adjacency matrix M of a graph
G with n nodes, we define the code of M , denoted
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by code(M), as the sequence of lower triangular en-
tries of M (including the node labels as diagonal entries)
in the order: M1,1M2,1M2,2...Mn,1Mn,2...Mn,n−1Mn,n

where Mi,j represents the entry at the ith row and jth col-
umn in M . Since edges are undirected, we are concerned
only with the lower triangular entries of M . Figure 4
shows examples of adjacency matrices and codes for the
labeled graph Q shown in the same figure.

The lexicographic order of sequences defines a to-
tal order over adjacency matrix codes. Given a graph
G, its canonical code, denoted by F (G), is the max-
imal code among all its possible codes. For example,
F (M1) =“bybyxa” shown in Figure 4 is the canonical
code of the graph.
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Fig. 4. All possible adjacency matrices for the clique Q. Since adjacency ma-
trices for undirected graph are symmetric, only the lower triangular part of the
matrices are shown. Using lexicographic order of symbols: y > x > d > c >
b > a > 0, we have code(M1) =“bybyxa” > code(M2) = “bybxya”
> code(M3) = “aybxyb” > code(M4) =“aybxyb”. Hence code(M1) is

the canonical code for the graph Q.

4.3. A graph normalization function
that supports constraints

In this section, we introduce the definition of a generic
graph normalization function ψ. In the following two
sections, we show the applications of the generic graph
normalization function ψ. In Section 4.4, we show that
several widely used constraints for protein structure mo-
tifs lead to a well-defined function ψ. In Section 4.5, we
show that the function ψ can be used in a depth-first con-
strained clique search procedure to make sure that each
constrained frequent clique is searched once and exactly
once.

Definition 4.1. Given the graph normalization function
F with its codomain Γ and a constraint ρ, a generic
graph normalization function ψ, is a function that maps
a graph G to Γ∗ recursively as:

ψ(G) =





F (G) if ρ(G) is false
F (G) if | V (G) | = 1

max
G′⊂G,ρ(G′)

ψ(G′)$F (G) otherwise

where G′ is a subgraph of G with size one less than G;
ψ(G′)$f(G) is the concatenation of the code produced
by ψ(G′), the symbol $, and the code F (G). We assume
that the symbol $ is not in the set Γ and we use this sym-
bol to separate different parts of the generic graph nor-
malization. The total ordering on strings (max) is defined
by lexicographical order with the underlying symbol or-
dering assumed from Γ.

Example 4.1. Applying the generic graph normalization
to the graph Q shown in Figure 4, with the graph nor-
malization F be the canonical code we discussed in Sec-
tion 4.2, ψ(G) is b$byb$bybyxa. bybyxa is a suffix of the
code since it is the canonical code of graph Q. In a search
for ψ(Q), two subgraphs of Q that satisfy the edge label
constraint are searched. One is a single edge connecting
nodes with labels “b” and “b” with an edge label “y” and
the other is also a single edge connecting nodes with la-
bels “a” and “b” with an edge label “y”. Since the canon-
ical code for the first (“byb”) is greater than that of the
second (“bya”), we put string “byb” before the string “by-
byxa” and obtain “byb$bybyxa”. Finally we add a single
“b” before the string “byb$bybyxa” at the last step of the
recursive definition and we have ψ(G) = b$byb$bybyxa.

Theorem 4.1. ψ(G) exists for every graph G with the
edge label constraint.

Proof. Let’s first assume that a graph G contains an edge
label “y”. We claim that there always exists a subgraph
G′ of G that also contains the same label. This obser-
vation suggests that we can always find at least one G′ in
the recursive definition, and hence ψ(G) is defined. If the
original G does not contain any edge label “y”, its code
is F (G), which is also defined.

Theorem 4.2. ψ is a 1-1 mapping and thus a graph nor-
malization function.

Proof. If two graphs are isomorphic, they must give the
same string, according to the definition of ψ. To prove
that two graphs that have the same canonical strings are
isomorphic, noticing that the last element of a label se-
quence produced by ψ is F (G) where F is a graph nor-
malization procedure. Therefore two identical sequence
must imply the same graph, as guaranteed by F .

Theorem 4.3. For all G such that ρ(G) is true, there ex-
ists a subgraph G′ ⊂ G with size one less than G such
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that ρ(G′) is true and ψ(G′) is a prefix of ψ(G).

Proof. This property is a direct result of the recursive
definition 4.1.

We notice that in proving Theorems 4.2 and 4.3, we
do not use the definition of the constraint ρ. In other
words, Theorems 4.2 and 4.3 can be proved as long as
we have Theorem 4.1. Therefore, we have the following
theorem:

Theorem 4.4. If ψ is defined for every graph with re-
spect to a given constraint ρ, ψ is 1-1 and prefixing-
preserving.

Proof. This is a direct result of the recursive definition
4.1.

4.4. More examples related to protein
structure motifs

Let’s first view a real-world example of constraint that is
widely used in structure motif discovery. The connected
component constraint (CC constraint for short) asserts
that in a structure motif, each amino acid residue is con-
nected to at least another amino acid residue by a contact
relation and that the motif is a connected component with
respect to the contact relation. The intuition of the CC
constraint is that a structure motif should be compact and
hence has no isolated amino acid residue. To be formal,
the CC constraint is a function cc that assigns value true
to a graph if it is a connected component according to the
contact relation and false otherwise.

As another example, the contact density constraint
asserts that the ratio of the number of contacts and the to-
tal number of edges in a structure motif should be greater
than a predefined threshold. Such ratio is referred to as
the contact density (density) of the motif and the con-
straint is referred to as the density constraint. The in-
tuition of the density constraint is that a structure motif
should be compact and the amino acid residues in the mo-
tif should well interact with other. This constraint may
be viewed as a more strict version of the CC constraint
which only requires a motif to be connected component.
Again, to be formal, the density constraint is a function d

that assigns value true to a graph if its contact density is
at least some predefined threshold and false otherwise.

It would be an awkward situation if we need to de-
fine a new graph normalization procedure for each of the

constraints we discuss above. Fortunately, this is not the
case. In the following discussion, we show that generic
graph normalization function ψ is well defined for these
two constraints.

Theorem 4.5. ψ(G) exist for every graph G with respect
to the CC constraint or the density constraint.

Proof. We only show the proof of the theorem for the
CC constraint and that for the density constraint can be
proved similarly. The key observation is for every graph
G of size n that is a connected component with respect to
the node contact relation, there exists a subgraph G′ ⊆ G

such that G′ is a connected component according to the
same contact relation. The observation is a well-known
result from graph theorem and a detail proof can be found
in 15.

Following Theorem 4.4, we have the following theo-
rem.

Theorem 4.6. ψ is a 1-1 mapping and prefix-preserving
for the CC constraint or the density constraint.

After working several example constraints, we study
the sufficient and necessary condition such that our graph
normalization function ψ is well defined for a constraint
ρ. The following theorem formalize the answer.

Theorem 4.7. Given a constraint ρ, ψ(G) exist for every
graph G with respect to the constraint ρ if and only if for
each graph G of size n such that ρ(G) is true, there exists
a subgraph G′ ⊂ G of size n− 1 such that ρ(G′) is also
true.

Proof. (if) For a graph G such that ρ(G) is true, if there
exists one G′ ⊂ G such that ρ(G′) is also true, by the
definition of ψ, ψ(G) exists.

(only if) If ψ(G) exists for every graph G with re-
spect to a constraint ρ, for a graph G such that ρ(G) is
true, by the definition of ψ, we always have at least one
G′ ⊂ G such that ρ(G′) is also true.

4.5. cliquehashing

We have designed an efficient algorithm identifying fre-
quent cliques from a labeled graph database with con-
straints, as described below. At the beginning of the algo-
rithm we scan a graph database and find all frequent node
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CliqueHashing(G, σ, ρ)
begin
1. for each node label t ∈ λ(v), v ∈ V [G], G ∈ G do
2. counter[t] ← counter[t] ∪ {v}
3. C ← C ∪ {t}
4. end for
5. for t ∈ C do
6. if( s(t) ≥ σ, ρ(s) is true ) do
7. F ← F ∪ backtrack search(t, counter[t])
8. end if
9. end for
10. return F
end

backtrack search(t0,O, ρ)
begin
1. for each clique h ∈ O do
2. O′ ← {f |f = h ∪ v, h ⊂ V [G], v ∈ (V [G]− h)}
3. for each occurrence of a clique f ∈ O′ do
4. t ← ψ(f)
5. counter[t] ← counter[t] ∪ {f}
6. C ← C ∪ {t}
6. end for
7. end for
8. for each t ∈ C do
9. if( s(t) ≥ σ, t0 v t, and ρ(t) is true ) do
10. F ← F ∪ backtrack search(t, counter[t])
11. end if
12. end for
13. return F
end

Fig. 5. The CliqueHashing algorithm which reports frequent cliques, F , from a group of graphs G with support at least σ and with a constraint ρ. ψ is the graph
normalization function defined in Definition 4.1. x v y if string x is a prefix of string y. s(G) is the support of a graph G.

types (line 1-4, Figure 5). The node types and their occur-
rences are kept in a hash table counter. At a subsequent
step, a frequent clique with size n ≥ 1 is picked from the
hash table and is extended to all possible n + 1 cliques
by attaching one additional node to its occurrences in all
possible ways. These newly discovered cliques and their
occurrences, are again indexed in a separate hash table
and enumerated recursively. The algorithm backtracks to
the parents of a clique if no further extension from the
clique is possible. The overall algorithm stops when all
frequent node types have been enumerated. We illustrate
the CliqueHashing algorithm, with the edge label con-
straint, in Figure 6.

Theorem 4.8. If ψ is well defined for all possible graphs
with the constraint ρ, the CliqueHashing algorithm iden-
tifies all frequent constrained cliques from a graph
database exactly once.

Proof. The prefix preserving property of Definition 4.1
implies that at least one subclique of a frequent clique
will pass the IF statement of line 9, in the back-
track search procedure in CliqueHashing. Therefore the
algorithm will not miss any frequent cliques in the pres-
ence of a constraint ρ.

The proof that the algorithm discovers every con-
strained frequent cliques exactly once may not be obvious
at first glance. The key observation is that for a clique G

of size n, there is only one subclique with size n− 1 that
has a code matching a prefix of ψ(G). If we can prove the

observation, by the line 9 of the backtrack search proce-
dure, the CliqueHashing algorithm guarantees that each
constrained frequent cliques will be discovered exactly
once.

To prove the observation, we assume to the contrary
that there are at least two such subcliques with the same
size and both give codes as prefixes of ψ(G). We claim
that one of the two codes must be a prefix of the other
(by the definition of prefix). The claim leads to the con-
clusion that one of two subcliques must be a subclique of
the other (by the definition of ψ). The conclusion con-
tradicts our assumption that the two subcliques have the
same size.
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Fig. 6. The contents of the hash table counter after applying the
CliqueHashing algorithm to the data set shown in Figure 1 with
the edge label constraint.
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Fig. 7. A graph database of three graphs with multiple labels.
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Fig. 8. the contents of the hash table counter after applying the
CliqueHashing algorithm to the data set shown left.

4.6. CliqueHashing on Multi-labeled
Graphs

A multi-labeled graph is a graph where there are two or
more labels associated with a single edge in the graph.
The CliqueHashing algorithm can be applied to multi-
labeled graphs directly without major modifications. The
key observation is that our enumeration is based on oc-
currences of cliques (line 3 in function backtrack search).
In Figure 7, we show a graph database with three multi-
labeled graphs. In figure 8, we show (pictorially) how the
CliqueHashing algorithm can be applied to graphs with
multilables.

In the context of the structure motifs detection, han-
dling multi-labeled graphs is important for the following
reason. First, due to the imprecision in 3D coordinates
data in motif discovery, we need to tolerate distance vari-
ations between different instances of the same motif. Sec-
ond, partitioning the 1D distance space into distance bins
is not a perfect solution since distance variations can not
be well handled at the boundary of the bins. In our ap-
plication distance bins may lead to a significant number
of missing motifs. Using a multi-labeled graph we can
solve the boundary problem by using “overlapping” bins
to take care of boundary effect.

5. EXPERIMENTAL STUDY

5.1. Experimental setup

To exclude redundant structures from our analysis, we
used the culled PDB list (http://www.fccc.edu/research/
labs/dunbrack/pisces/culledpdb.html) with sequence sim-
ilarity cutoff value 90% (resolution = 3.0, R factor = 1.0).
This list contains about one quarter of all protein struc-
tures in PDB; remaining ones are regarded as duplicates
to proteins in the list. We study four SCOP families:
Eukaryotic Serine Protease (ESP), Papain-like Cysteine
Protease (PCP), Nuclear Binding Domains (NB), and
FAD/NAD-linked reductase (FAD). Each protein struc-
ture in a SCOP family was converted to its graph repre-
sentation as outlined in Section 3. The pairwise amino
acid residue contacts are obtained by computing the
almost-Delaunay edges 2 with ε = 0.1 and with length
up to 8.5 Å, as was also done in 14. Structure motifs from
a SCOP family were identified using the CliqueHash-
ing algorithm with the CC constraint that states “each
amino acid residue in a motif should contact at least an-
other residue and the motif should be a connected compo-
nent with respect to the contact relation”. Timings of the
search algorithm were reported using the same hardware
configuration used in 14.

In Table 1, we document the four families includ-
ing their SCOP ID, total number of proteins in the family
(N ), the support threshold we used to retrieve structure
motifs (σ), and the processing time (T , in seconds). In the
same table, we also record all the structure motifs identi-
fied, giving the motifs’ compositions (a sequence of one-
letter residue codes), actual support values (κ), the num-
ber of occurrences outside the family in the representa-
tive structures in PDB (referred to as the background fre-
quencies hereafter) (δ), and their statistical significance
in the family (P ). The statistical significance is computed
by a hyper-geometric distribution, specified in Appendix
7.1. Images of protein structures were produced using
VMD 16 and residues in the images were colored by the
residue identity using default VMD settings.

5.2. Eukaryotic serine protease

The structure motifs identified from the ESP family were
documented at the top part of Table 1. The data indicated
that the motifs we found are highly specific to the ESP
family, measured by P−value ≤ 10−82. We have inves-
tigated the spatial distribution of the residues covered by
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Table 1. Motifs

Motif Composition κ δ −log(P ) Motif Composition κ δ −log(P ) Motif Composition κ δ −log(P )

Eukaryotic Serine Protease (ID: 50514) N : 56 σ: 48/56, T : 31.5
1 DHAC 54 13 100 14 DHAC 50 6 100 27 DASC 49 20 92
2 ACGG 52 9 100 15 HACA 50 8 100 28 SAGG 49 31 90
3 DHSC 52 10 100 16 ACGA 50 11 100 29 DGGL 49 53 83
4 DHSA 52 10 100 17 DSAG 50 16 100 30 DSAGC 48 9 99
5 DSAC 52 12 100 18 SGGC 50 17 100 31 DSSC 48 12 97
6 DGGG 52 23 100 19 AGAG 50 27 95 32 SCSG 48 19 93
7 DHSAC 51 9 100 20 AGGG 50 58 85 33 AGAG 48 19 93
8 SAGC 51 11 100 21 ACGAG 49 4 100 34 SAGG 48 23 88
9 DACG 51 14 100 22 SCGA 49 6 100 35 DSGS 48 23 94

10 HSAC 51 14 100 23 DACS 49 7 100 36 DAAG 48 27 89
11 DHAA 51 18 100 24 DGGS 49 8 100 37 DASG 48 32 87
12 DAAC 51 32 99 25 SACG 49 10 98 38 GGGG 48 71 76
13 DHAAC 50 5 100 26 DSGC 49 15 98

Papain-like cysteine protease (ID: 54002) N : 24, σ: 18/24, T : 18.4
1 HCQS 18 2 34 3 WWGS 18 3 44 5 WGSG 18 5 43
2 HCQG 18 3 34 4 WGNS 18 4 44

Nuclear receptor ligand-binding domain (ID: 48509) N : 23, σ: 17/23, T : 15.3
1 FQLL 20 21 43 3 DLQF 17 8 39 4 LQLL 17 40 31
2 DLQF 18 7 42

FAD/NAD-linked reductase (ID: 51943) N : 20 σ: 15/20, T : 90.0
1 AGGG 17 34 34 2 AGGA 17 91 27

those motifs, by plotting all residues covered by at least
one motif in the structure of a trypsin: 1HJ9, shown in
Figure 9. Interestingly we found that all these residues
are confined to the vicinity of the catalytic triad of 1HJ9,
namely: HIS57-ASP102-SER195, confirming a known
fact that the geometry of the catalytic triad and its spa-
tially adjacent residues are rigid, which is probably re-
sponsible for functional specificity of the enzyme.

Fig. 9. Left: Spatial distribution of residues found in 38 common structure mo-
tifs within protein 1HJ9. The residues of catalytic triad, HIS57-ASP102-SER195,
are connected by white dotted lines. Right: Performance comparison of graph
mining (GM) and geometric hashing (GH) for structure motif identification.

We found that there are five motifs that occur sig-
nificantly (P−value < 10−7) in another SCOP family:
Prokaryotic Serine Protease (details not shown). This is
not surprising since both prokaryotic and eukaryotic ser-
ine proteases are quite similar at both structural and func-
tional levels and they share the same SCOP superfamily
classification. None of the motif has significant presence

outside these two families.
Comparing to our own previous study that uses

generic subgraph mining algorithm (without constraints
and without utilizing pairwise amino acid residue dis-
tance information), and pairwise structural comparison
performed by other groups 1, 10, 22, 31, 29, 38, we report
a significant improvement of the “precision” of structure
motifs. For example, rather than reporting thousands of
motifs for a small data set like serine proteases 38, 14, we
report a handful of structure motifs that are highly spe-
cific to the serine protease family (as measured by low
P -values) and highly specific to the catalytic sites of the
proteins (as shown in Figure 9).

To further evaluate our algorithm, we randomly sam-
ple two proteins from the ESP family and search for com-
mon structure motifs. We obtain an average of 2300 mo-
tifs per experiment for a total of thousand runs. Such mo-
tifs are characterized by poor statistical significance and
were not specific to known functional sites in the ESP. If
we require a structure motif to appear in at least 24 of a
31 randomly selected ESP proteins and repeat the same
experiment, we obtain an average of 65 motifs per exper-
iment with improved statistical significance. This exper-
iment demonstrates that comparing a group of proteins
improves the quality of the motifs, as observed by 38.

Beside improved quality of structure motifs, we ob-
serve a significant speed up for our structure motif com-
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parison algorithm comparing to other methods such as
geometric hashing. At the right part of Figure 9, we show
performance comparison of graph mining (GM) and geo-
metric hashing (GH)21 ( executable download from the
companion website) for serine proteases. We notice a
general trend that with the increasing number of proteins
structures, the running time of graph mining decreases
(since there are fewer common structure motifs) but the
running time of geometric hashing increases. The two
techniques have different set of parameters that make any
direct comparison of running time difficult, however, the
trend is very clear that graph mining has better scalability
than geometric hashing for data set contains large number
of proteins structures.

Fig. 10. Left: Residues included in the motifs from PCP family in protein
1CQD. The residues in catalytic dyad CYS27-HIS161 are connected by a white
dotted line and two important surrounding residues ASN181 and SER182 are la-
beled. Right: Residues included in motifs from the NB family in protein 1OVL.
The labeled residue GLN 435 has direct interaction with the cofactor of the pro-
tein.

5.3. Papain-like cysteine protease and
nuclear binding domain

We applied our approach to two additional SCOP fam-
ilies: Papain-Like Cysteine Protease (PCP, ID: 54002)
and Nuclear Receptor Ligand-Binding Domain (NB, ID:
48509). The results are documented in the middle part of
Table 1.

For the PCP family, we identified five structure
motifs which covered the catalytic CYC-HIS dyad and
nearby residues ASN and SER which are known to inter-
act with the dyad 7, as shown in Figure 10. For the NB
family, we identified four motifs a which map to the co-
factor binding sites 37, shown in the same figure. In ad-
dition, four members missed by SCOP: 1srv, 1khq, and
1o0e were identified for the PCP family and six members
1sj0, 1rkg, 1osh, 1nq7, 1pq9, 1nrl were identified for the

NB family.

Fig. 11. The motif appears in two proteins 1LVL (belongs to the FAD/NAD-
linked reducatase family without Rossman fold ) and 1JAY (belongs to the 6-
phosphogluconate dehydrogenase-like, N-terminal domain family with Rossman
fold) with conserved geometry.

5.4. FAD/NAD binding proteins

In the SCOP database, there are two superfamilies of
NADPH binding proteins, the FAD/NAD(P)-binding do-
mains and the NAD(P)-binding Rossmann-fold domains,
which share no sequence or fold similarity to each other.
This presents a challenging test case for our system to
check whether we would be able to find patterns across
the two groups with biological significance.

To address the question, we applied our algorithm
to the largest family in SCOP FAD/NAD(P)-binding do-
main: FAD/NAD-linked reductases (SCOPID: 51943).
With support threshold 15/20, we obtained two recurring
structure motifs from the family, and both showed strong
statistical significance in the NAD(P)-binding Rossmann-
fold superfamily as shown in bottom part of Table 1.

In Figure 11, we show a motif that is statistically en-
riched in both families; it has conserved geometry and
is interacting with the NADPH molecule in two proteins
belonging to the two families. Notice that we do not in-
clude any information from NADPH molecule during our
search, and we identified this motif due to its strong struc-
tural conservation among proteins in a SCOP superfam-
ily. The two proteins have only 16% sequence similarity
and adopt different folds (DALI z-score 4.5). The result
suggests that significantly common features can be in-
ferred from proteins with no apparent sequence and fold
similarity.

aStructure motifs 2 and 3 have the same residue composition but they have different residue contact patterns and therefore regarded as two patterns.
They do not map to the same set of residues.
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5.5. Random proteins

Our last case study is a control experiment to empirically
evaluate the statistical significance of the structure motifs
regardless of the P−value definition. To that end, 20 pro-
teins were randomly sampled from the culled PDB list in
order to obtain common motifs with support ≥ 15. The
parameters 20 and 15 were set up to mimic the size of a
typical SCOP family. We repeated the experiment a mil-
lion times, and did not find a single recurring structure
motif. Limited by the available computational resources,
we did not test the system further; however, we are con-
vinced that the chance of observing a random structure
motif in our system is rather small.

6. CONCLUSION
We present a method to identify recurring structure mo-
tifs in a protein family with high statistical significance.
This method was applied to selected SCOP families to
demonstrate its applicability to finding biologically sig-
nificant motifs with statistical significance. In future
studies, we will apply this approach to all families in
SCOP as well as from other classification systems such
as Gene Ontology and Enzyme Classification. The accu-
mulation of all significant motifs characteristic of known
protein functional and structural families will aid protein
structures resulting from structural genomics projects.
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7. APPENDIX

7.1. Statistical significance of
structure motifs

Any cliques that are frequent in a SCOP family are checked against
a data set of 6500 representative proteins from CulledPDB 36, se-
lected from all proteins in the Protein Data Bank. For each clique c,
we used Ullman’s subgraph isomorphism algorithm 34 to search for
its occurrence(s) and record the search result in an occurrence vector
V = v1, v2, . . . , vn, where vi is 1 if c occurs in the protein pi, and
0, otherwise. Such cliques are referred to as structure motifs. We de-
termine the statistical significance of a structure motif by computing
the related P -value, defined by a hyper-geometric distribution 5. There
are three parameters in our statistical significance formula: a collection
of representative proteins M , which stands for all known structures in
PDB; a subset of proteins T ⊆ M in which a structure motif m occurs,
a subset of proteins F ⊆ M stands for the family we would like to
establish the statistical significance. The probability of observing a set
of motif m containing proteins K = F ∩T with size at least k is given
by the following formula:

P−value = 1−
k−1X

i=0

`|F |
i

´`|M|−|F |
|T |−i

´
`|M|
|T |
´ . (1)

where |X| is the cardinality of a set X . For example, if a motif m oc-
curs in every member of a family F and in no proteins outside F (i.e.
K = F = T ) for a large family F , we would estimate that this motif
is specifically associated with the family; the statistical significance of
such case is measured by a P−value close to zero.

We adopt the Bonferroni correction for multiple independent hy-
potheses 27: 0.001/|C|, where |C| is the set of categories, is used as
the default threshold to measure the significance of the P -value of in-
dividual test. Since the total number of SCOP families is 2327, a good
starting point of P -value upper bound is 10−7.

7.2. Background frequency
Using the culledpdb list (http://www.fccc.edu/research/labs/dunbrack/
pisces/culledpdb.html) as discussed in Section 5.1, we obtain around
6000 proteins as the “representative proteins” in PDB. We treat the pro-
teins as a sample from PDB and for each motif, we estimate its back-
ground frequency (the number of occurrences in proteins) using graph
matching. Specifically, each sample protein is transformed to its graph
representation using the procedure outline in Section 3 and we use sub-
graph isomorphism testing to obtain the total number of proteins the
motif occurs in.


