
To appear: Crosscuts 6 (4) Dec 1997 (http://www.cscs.ch/Official/PubCrosscuts6-4.pdf)

Fast Primitives for Irregular Computations on the NEC SX-4

J.F. Prins† , University of North Carolina at Chapel Hill, USA

M. Ballabio, M. Boverat, M. Hodous, D. Maric, CSCS/SCSC Swiss Center
for Scientific Computing, Switzerland

1. IRREGULAR COMPUTATION

Modern science and engineering disciplines make extensive use of computer
simulations. As these simulations increase in size and detail, the computational costs of
naive algorithms can easily become prohibitive. Fortunately, sophisticated modeling
techniques have been developed in many areas that that vary model resolution as needed
coupled with sparse and adaptive algorithms that vary computational effort in time and
space as needed. For example, adaptive spatial decompositions are used with fast n-body
techniques such as FMA or P3M in cosmological simulations, and adaptive unstructured
meshing and sparse linear system solvers are used in computational fluid dynamics. The
computations that result from these techniques are called irregular, reflecting the a priori
unpredictability in the reference pattern and distribution of work.

Irregular computations can be problematic for current cache-oriented parallel computers
(NUMA), where high performance requires equal distribution of work over processors as
well as locality of reference within each processor. For many irregular computations load
balance and locality trade in a complex fashion, leading to complex optimization problems
in problem decomposition that are input-dependent and may evolve with the computation
itself.

Parallel computers that provide uniform access to a shared memory (UMA) do not
require locality of reference, and can optimize irregular computations entirely for load
balance, which can be performed quite effectively at run-time. However, high-
performance UMA architectures require memory references to be presented in bulk by each
processor in order to amortize access latency. In parallel computers such as the NEC
SX-4, this is achieved through the use of vector operations within each processor.

Manual or automated techniques can be used to restructure a large class of irregular
computations to express them in terms of simple vector operations and a small set of
primitive operations. The performance of irregular parallel computations expressed in this
fashion depends largely on the parallel performance of these primitives. Here we briefly
describe the implementation of one such primitive on the NEC SX-4 and illustrate its use in
achieving record performance on the NPB CG irregular computation benchmark.

2. EXPRESSING IRREGULAR COMPUTATIONS IN FORTRAN

Irregular computations are difficult to express using performance-oriented languages
such as Fortran, because there is a basic mismatch between the rectangular arrays of

† Work performed at the Institute for Theoretical Computer Science, IFW E48.2, ETH Zürich.

–2–

Fortran and the data types that are characteristic of irregular computations, such as trees,
graphs and nested sequences. While irregular data types can always be represented using
simple 1-D arrays, doing so results in programs that are beyond compile-time analysis.
Compilers have difficulty generating high-performance parallel code for such programs.

Consider, for example, the product of a sparse matrix M ∈ ℜm×m with a vector V ∈ ℜm,
where M has n nonzeros. A compressed row representation for M uses two data arrays
A(0:n-1) and H(0:n-1), representing, respectively, the non-zero values in consecutive rows
of and the columns in which they occur. In addition, a separate array S(0:m) describes the
partitioning of A and H into rows of M, by recording the positions at which successive
rows of M begin.

A
H

S (0) = 0 S (1) S (2) ... S (m -1) S (m) =n

With such a representation the product R = M • V can be expressed in Fortran 77 with
the following nested loops:

DO i = 0, m-1
 R(i) = 0
 DO j = S(i), S(i+1)-1
 R(i) = R(i) + A(j) * V(H(j))
 ENDDO
ENDDO

In a Fortran 77 program such as the one above, the available parallelism must be
discovered and extracted from the sequential DO loops. This is not always a simple matter,
and therefore more modern Fortran dialects such as Fortran 90, Fortran 95 and High
Performance Fortran (HPF) provide array-parallel operations and the FORALL construct to
specify available parallelism explicitly

Whether through nested loops or nested parallel constructs, our example program
specifies nested data-parallelism in which the actual degree of parallelism is data-dependent.
This kind of parallelism is complex to implement. Consider the options for the Fortran 77
program above.

(a) We may parallelize the inner loop, in essence creating a parallel dot product.
However, this will give poor performance if M has rows with few nonzeros. The
average number of nonzeros per row is quite small in most sparse linear systems.

(b) We may parallelize the outer loop, performing a number of sequential dot
products in parallel. This approach leads to load imbalance if we have rows that
vary widely in the number of nonzeros, because some rows will take longer to
complete than others.

Neither approach in itself, nor both together, is adequate. A better approach arranges
the parallel work to be independent of the structure of M. Conceptually we flatten the
iteration space of the nested loops into a single-dimensional iteration space, replacing

–3–

reduction operations, such as the summation, with a primitive that performs multiple
reductions in parallel. In this case we obtain the following Fortran 90 program:

T = A * V(H)
R = SEGMENTED_SUM_REDUCE(T, S)

The computation of T uses simple array-parallel operations and is independent of the
actual structure of A and H. SEGMENTED_SUM_REDUCE(T,S) is defined as follows: given
T(0: n-1) and a segmentation descriptor S(0: m), the result R(0: m–1) satisfies ∀ 0 ≤ i < m
Ri = SUM(T(S i: S i+1–1)). Provided this primitive can be implemented to give good
parallel performance regardless of the size distribution of the segments, the flattened
program (a) retains all the parallelism specified in the original program and (b) is not
dependent on the structure of sparse matrix.

The mechanical flattening of nested data parallelism has been studied in high-level
functional languages such as NESL and Proteus [BCH+94, PP93]. Its application in
imperative languages such as Fortran is the subject of current research. Irregular
applications may also be constructed directly using F90/HPF and the primitives in Figure 1
[NCP97, HTJ97]. Examples include adaptive fast-multipole n-body methods [HJ96] and
graph partitioners [HJT97].

While expressing irregular computations in Fortran is generally more complex than it
would be using NESL or Proteus, the use of Fortran simplifies the interface between
regular and irregular portions of a computation and leverages optimizing Fortran compiler
technology to provide a seamless interface between the regular and flattened irregular
portions of the computation.

3. PRIMITIVES FOR IRREGULAR COMPUTATION

Segmented sum is one of the primitives for irregular computation shown in Figure 1.
Effective implementation of these operations must have excellent parallel scalability, and
high absolute performance that is parametric in the overall work performed and is largely
insensitive to the data values (e.g. sizes of segments). This property is fundamental for the
construction of irregular applications with predictable performance.

The primitives are closely related to the HPFLIB intrinsics, and could be defined using
HPFLIB. In practice, the commercial implementations of the HPFLIB primitives in the
systems we have seen fail to meet the performance requirements above [NCP97]. In some
cases the operations fail to parallelize, and in other cases the implementations exhibit
performance that is highly dependent on the input data. One reason for this situation may

• Eliminate or insert elements in sequences
PACK, UNPACK, MERGE

 • perform multiple independently-sized combining operations
SEGMENTED_XXX_REDUCE, XXX_SCATTER

 • compute data rearrangements
SEGMENTED_XXX_PREFIX, GRADE_UP, GRADE_DOWN

Figure 1. Primitives for irregular computation. XXX stands for a combining operation
such as SUM, PRODUCT, AND, OR, etc.

–4–

be that the algorithms and analysis for optimum performance are complex. This project is
part of a comprehensive algorithm design, analysis, and implementation effort to address
this problem.

4. IMPLEMENTATION OF SEGMENTED SUM

Let p be the number of processors and let q be the number of elements required for a
bulk reference. For a vector processor q is the length of a vector register. We treat the
input sequence T as an (h, pq) array in column-major order where h = n/pq as shown in
Figure 2. Segment ends are shown as breaks in the column, but in actuality all data in T is
contiguous.

For each column a sequential summation computes successive prefix sums into a second
array U. All columns can be summed simultaneously by assigning each column to a
unique element of a vector register in a processor and letting each processor repeatedly
perform a vector addition from T and a vector store to U. Since each column is the same
length, we get very precise load balance.

To extract the results, let W be the final column sums and define
R(i) = U(S(i+1)) - U(S(i)). R differs from the correct segment sum in at most pq
positions where a segment spans one or more columns (shown by the shaded segment
ends). The correction value for these partial sums in R is given by the segmented sum of
W where the W segments are defined by the columns in which a T segment ends.

p•q

q

n / (p•q)

W

T

Figure 2: Implementation of segmented sum

–5–

The performance of implementations of segmented sum on the NEC SX-4 and the Cray
T90 are shown in Figure 3. The performance is compared against nested sum, which is the
result of a standard compilation of the nested loop implementation of segmented sum. That
implementation is quite sensitive to the average segment size because the inner loop is
vectorized while the outer loop is parallelized (single processor performance is shown
here); there is a factor of 500 performance difference over the spectrum of inputs. In
contrast, the segmented sum implementation on the SX-4 operates at 94% of peak
performance of the machine, and the ratio of longest running time to shortest running time
is about 4.

5. APPLICATION: NPB CG BENCHMARK

To give a simple illustration of the use of the segmented sum primitive, we replaced the
sparse matrix-vector product in the distributed sample code for the NAS NPB 1.0 CG
benchmark with the flattened program shown in section 2. We also added some compiler
directives to parallelize and vectorize the remaining regular vector-vector operations. NPB
1.0 is a “best effort” benchmark, in which implementations may be optimized in this
fashion.

Figure 4 plots the performance of the CG implementations on the class B benchmark.
The highest reported performance at the time of this writing is 5.1 GFLOPS for a 16
processor Cray C90 [SB96]. The highest NUMA performance documented is 2.5
GFLOPS from a 256 processor Cray T3E. Our implementation for the SX-4 runs at 8.8
GFLOPS using 16 processors and at 13.3 GFLOPS using 32 processors, and hence
achieves world-record performance on this problem.

0

200

400

600

800

1000

1 10 100 1000 104 105

Cray T916 Segmented Sum
NEC SX-4 Segmented Sum
Cray T916 Nested Sum
NEC SX-4 Nested SumS

u
m

m
a

ti
o

n
 r

a
te

 (
M

F
L

O
P

S
)

Average Segment Size

Figure 3: Performance of segmented sum implementations.

–6–

6. CONCLUSIONS AND FURTHER WORK

We have described a technique to implement irregular computations by flattening nested
data parallelism and supported by a small library of primitives. We believe this approach
significantly simplifies the construction of complex irregular algorithms and can offer
predictable performance in the face of varying inputs. The implementation of the primitives
is the key determinant of this property. On high-performance UMA architectures the
primitives may be implemented to achieve high performance and load balance by using a
factor q of “parallel slack” to meet the bulk-reference condition.

UMA architectures are currently only found in supercomputers like the NEC SX-4 and
Cray T90 which are quite expensive relative to NUMA architectures constructed using
commodity processors. However, as the CG results show, for some important irregular
computations these machines offer the highest performance available at any price. In the
near term it is possible that the design of parallel computers constructed from commodity
processors will also be driven towards bulk-reference operation, through vector operations,
multithreading, or user-specified caching policies implemented through bulk rearrangement
of data. One impetus comes from the increasing shortfall of memory performance for
increasingly fast processors; another comes from the vacuum created by the decreasing
numbers of conventional supercomputers.

While segmented sum (and other segmented reductions) are one of the most important
primitives for irregular computation, there are more to implement. In our project we are
now considering implementations for other operations from the list in Figure 1.

0

2000

4000

6000

8000

1 104

1.2 104

1.4 104

0 10 20 30 40 50 60 70

NEC SX-4/32
Cray C90/16
IBM SP2-P2SC
Cray T3E

O
ve

ra
ll

 P
er

fo
rm

an
ce

 (
M

F
L

O
P

S
)

number of processors

Figure 4: NAS NPB 1.0 CG performance. The NEC implementation uses the sparse
matrix - vector product described in section 2.

–7–

DEDICATION

We dedicate this project in memory of Matteo Boverat who died unexpectedly while this
project was underway. Matteo was a major contributor to this effort whose boundless
enthusiasm and enjoyment of the work was an inspiration to us all.

REFERENCES
[BCH+94] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, M. Zagha, "Implementation of a

Portable Nested Data-Parallel Language", Journal of Parallel and Distributed Computing 21
(2), 1994.

[BBB+91] D. Bailey et al., “The NAS Parallel Benchmarks”, Intnl Journal of Supercomputer
Applications 5 (3), 1991.

[HJ96] Y. Hu and L. Johnsson. Implementing O(N) N-body Algorithms Efficiently in Data-Parallel
Languages, Journal of Scientific Programming, 5 (4), 1996.

[HJT97] Y. Hu, L. Johnsson and S.-H. Teng. High Performance Fortran for Highly Unstructured
Problems. Proc. 6th Symposium on Principles and Practice of Parallel Programming, ACM,
1997.

[HTJ97] Y. Hu, S.-H. Teng and L. Johnsson, "A Data-Parallel Implementation of the Geometric
Partitioning Algorithm", Proceedings of the 8th SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

[NCP97] L. Nyland, S. Chatterjee, J. Prins, "Parallel Solutions to Irregular Problems Using HPF",
First HPF UG meeting, Santa Fe, NM, 1997.

[PP93] J. Prins, D. Palmer, "Transforming High-level Data-Parallel Programs into Vector
Operations", Proc. 5th Symposium on Principles and Practice of Parallel Programming,
ACM, 1993.

[SB96] S. Sani, D. Bailey, “NAS Parallel Benchmark (1.0) Results 11-96”, NASA Ames Research
Center Technical Report NAS-96-018, Nov. 1996.

