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Abstract. To achieve scalable parallel performance in Molecular Dynamics
Simulation, we have modeled and implemented several dynamic spatial domain
decomposition algorithms. The modeling is based upon Valiant’s Bulk Syn-
chronous Parallel architecture model (BSP), which describes supersteps of com-
putation, communication, and synchronization. We have developed prototypes
that estimate the differing costs of several spatial decomposition algorithms us-
ing the BSP model.
Our parallel MD implementation is not bound to the limitations of the BSP model,
allowing us to extend the spatial decomposition algorithm. For an initial decom-
position, we use one of the successful decomposition strategies from the BSP
study, and then subsequently use performance data to adjust the decomposition,
dynamically improving the load balance. We report our results here.

1 Introduction

A driving goal of our research group is to develop a high performance MD simulator
to support biochemists in their research. Our goals are to study large timescale behav-
ior of molecules and to facilitate interactive simulations [7]. Two main characteristics
of the problem impede our goal: first is the large number of interactions in solvated
biomolecules, and second is the small timestep that is required to adequately capture
high frequency motions. To meet our goal, we must develop a parallel implementation
that scales well even on small problem sizes. Because the communication cost, mem-
ory reference and load balance across processors trade in a complex fashion, we have
analyzed candidate implementations using the BSP [10, 1] model. The most promising
implementation was implemented and improved outside of the constraints of the BSP
model.
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At each step in MD simulation, the sum of all forces on each atom is calculated
and used to update the positions and velocities of each atom. The bonded forces seek
to maintain bond lengths, bond angles, and dihedral angles on single bonds, two-bond
chains and three-bond chains, respectively. Non-bonded forces are comprised of the
electrostatic forces and the Van der Waals forces.

A cutoff radius is introduced to limit non-bonded atom interactions to pairs closer
than a preset radius, Rc. This is still the most time-consuming portion of each step,
even though the cutoff radius reduces the O(n2) work to O(n). The remaining longer-
range forces are calculated by some other method [2, 5], calculated less frequently, or
completely ignored.

Good opportunities for parallelization in MD exist; all of the forces on each of the
atoms are independent, so they can be computed in parallel. Once computed, the non-
bonded forces are summed and applied in parallel. Good efficiency depends on good
load-balancing, low overhead, and low communication requirements.

Using a spatial decomposition increases data coherence, reducing communication
costs. Two nearby atoms interact with all atoms that are within Rc of both, providing
two opportunities for reduced communication. First, the atoms are near each other, thus
accessing the data for many nearby atoms data will not require interprocessor com-
munication. Second, for those interactions that require data from neighboring regions,
atomic data can be fetched once and then reused many times, due to the similarities of
interactions of nearby atoms.

The use of a spatial decomposition for MD has become widespread in recent years.
It is used by AMBER [3, 9], Charmm [6], Gromos [4] and NAMD [8], all of which
run in a message-passing paradigm, as opposed to our shared-memory implementation.
In general, each of these implementations found good scaling properties, but it is diffi-
cult to compare overall performance of the parallel MD simulators, as machine speeds
have improved significantly since publication of the cited reports. Compared with these
other implementations, our shared-memory implementation allows very precise load-
balancing on small systems.

2 Modeling Parallel Computation with the BSP Model

The Bulk Synchronous Parallel (BSP) model has been proposed by Valiant [10] as
a model for general-purpose parallel computation. It was further modified in [1] to
provide a normalized cost of parallel algorithms, enabling uniform comparison of al-
gorithms. The BSP model is both simple enough to quickly understand and use, but
realistic enough to achieve meaningful results for many parallel computers.

A parallel computer that is consistent with BSP architecture has a set of processor-
memory pairs, a communication network that transmits values in a point-to-point man-
ner, and a mechanism for efficient barrier synchronization of the processors. Parallel
computers are parameterized with 4 values:

1. The number of processors, P .
2. The processor speed, s, measured in floating-point operations per second.
3. The latency, L, which reflects the minimum latency to send a packet through the

network, which also defines the minimum time to perform global synchronization.



4. The gap, g, reflecting the network communication bandwidth on a per-processor
basis, measured in floating-point operation cycles taken per floating-point value
sent.

An algorithm for the BSP is written in terms of S supersteps, where a single super-
step consists of some local computation, external communication, and global synchro-
nization. The values communicated are not available for use until after the synchroniza-
tion. The cost of the ith superstep is Ci = wi + ghi + L where wi is the maximum
number of local operations executed by any processor and h i is the maximum number
of values sent or received by any processor. The total cost of executing a program of S
steps is then:

Ctot =

SX

i=1

Ci = W +Hg + SL; where W =

SX

i=1

wi and H =

SX

i=1

hi

The normalized cost is the ratio between the BSP cost using P processors and the
optimal work perfectly distributed over P processors. The optimal work, W opt, is de-
fined by the best known sequential algorithm. The normalized time is expressed as

C(P ) =
P � Ctot

Wopt

The normalized cost can be reformu-
for t = 1 to T by k {
if Processor == 0

distribute atoms to processors
calculate local pairlist
for s = t to t+k - 1 {

get remote atom information
synchronize
calculate forces on local atoms
apply forces to update
local positions/velocities

}
}

Fig. 1. A high-level, multiple timestep algorithm
for performing parallel molecular dynamics com-
putations (k small timesteps per large timestep).

lated as C(P ) = a + bg + cL, where
a = P �W=(Wopt), b = P �H=(Wopt),
and c = P � S=(Wopt).

When the triplet (a; b; c) = (1, 0,
0), the parallelization is optimal. Val-
ues where a > 1 indicate extra work is
introduced in the parallelization and/or
load imbalance among the processors.
Values of b > 1=g or c > 1=L in-
dicate that the algorithm is communi-
cation bound, for the architecture de-
scribed by particular values of g andL.

3 BSP Modeling of Parallel MD

In this section, we model several domain decompositions for MD simulation. We de-
scribe a simplified MD algorithm, the domain decompositions, and show the results of
modeling.

3.1 A Simplified MD Algorithm

The most time-consuming step of MD simulations is the calculation of the non-
bonded forces, typically exceeding 90% of the execution time, thus we limit our model-
ing study to this aspect. Our simplified algorithm for computing the non-bonded forces



is shown in figure 1. It consists of an outer loop that updates the pairlist every k steps,
with an inner loop to perform the force computations and application. The value k

ranges from 10 to 50 steps, and is often referred to as the pairlist calculation frequency.
In our modeling of MD, Molecular Input Data

Name Atoms Name Atoms Name Atoms
Alanine 66 Water 798 Eglin 7065

Dipeptide (wet) 231 Argon 1728 Water 8640
SS Corin 439 SS Corin (wet) 3913 Polio (segment) 49144

Fig. 2. The input dataset names and number of atoms used
for measuring different decompositions

we examine the cost of ex-
ecuting k steps to amortize
the cost of pairlist calcula-
tion. Computing the cost of k
steps is adequate as the cost
of subsequent steps is roughly
the same.

The outer loop distributes the atoms to processors. We modeled it with three super-
steps that distribute the data, send perimeter atoms to neighboring processors, and build
local pairlists.

There is only one superstep in the inner loop. It consists of distributing positions of
perimeter atoms to nearby processors; a synchronization barrier to ensure all computa-
tion is using data from the same iteration; followed by a force calculation and applica-
tion. The computations performed by the inner loop are the same for all decompositions.

3.2 Modeling Experiment

The goal of the experiment is to find values of a; b, and c for each combination of four
data decompositions using nine molecular data sets (summarized in figure 2) with vary-
ing numbers of processors (normalized execution costs can be computed by choosing
values for g and L). The values of a, b, and c show how work and communication affect
parallel performance, and are computed for the inner and outer loops using

a =
P (wouter + k � winner)

Wopt

; b =
P (houter + k � hinner)

Wopt

; c =
P (Souter + k � Sinner)

Wopt

to compute C(P ) = a+ bg + cL.
The four decomposition strategies in this study are:

– Uniform Geometric Decomposition. This decomposition simply splits the simula-
tion space (or sub-space) equally in half along each dimension until the number of
subspaces equals the number of processors.

– Orthogonal Recursive Bisection Decomposition (ORB). ORB recursively splits the
longest dimension by placing a planar boundary such that half the atoms are on one
side, and half are on the other. This yields an assignment of atoms to processors
that varies by at most 1.

– Pairlist Decomposition. This decomposition yields perfect load-balance by evenly
decomposing the pairlist among the processors. A drawback is that it does not have
spatial locality, and is included it to better understand this aspect.

– Spatial Pairlist Decomposition. We also consider a spatial decomposition that is
based upon the number of entries in the pairlist assigned to each processor, placing
spatial boundaries based on pairlist length.



Fig. 3. A comparison showing the magnitude of difference
between a and b, and a and c for all (a; b; c) triplets in our
experiment. The values of a are plotted along the x-axis. The
b values are plotted with solid markers against a. Similarly,
the c values are plotted along the y-axis with hollow markers
against a.

that for modern parallel com-
puters with values of g in 1 –
100 and L in 25 – 10000, the
parallel overhead plus load-
imbalance (amount that a >

1) far outweighs the cost of
communication and synchro-
nization on virtually all of
the results in the study. Any
decomposition that seeks a
more evenly balanced load
(reduction of a) will im-
prove performance far more
than solutions that seek re-
duced communication (lower
b) or reduced synchronization
(lower c). Thus, even paral-
lel computers with the slow-
est communications hardware

will execute well-balanced, spatially-decomposed MD simulations with good effi-
ciency.

The graph in figure 4 shows the effect of communication speed on the overall perfor-
mance of the different decompositions. In this dataset, P is set to 32, and two different
machine classes are examined. The first is a uniform memory access machine (UMA),
with (g; L) = (1; 128), representing machines such as the Cray vector processors that
can supply values to processors at processor speed once an initial latency has been
charged. The second is a non-uniform memory access machine (NUMA), much like
the SGI parallel computers and the Convex SPP.

There are two interesting conclusions to be drawn from figure 4. The first is that
executing MD on a machine with extremely high communication bandwidth (UMA)
performs, in normalized terms, almost identically with machines with moderate com-
munications bandwidth. This is seen in the small difference between the same data
using the same decomposition, where the normalized execution cost for both architec-



Fig. 4. This graph shows the normalized execution cost on
32 processors, comparing different decomposition strategies
on machines with differing communication performance.
For the UMA architecture, (g;L) = (1; 128); for NUMA,
(g;L) = (8; 25). Note that the normalized cost of a pro-
gram on a machine with very high performance communi-
cation is only marginally better than machines with substan-
tially lower communication performance (except for pairlist
decomposition).

clusion drawn from this study
is that load-balancing is by
far the most important aspect
of parallelizing non-bonded
MD computations. This can
be seen in the significantly
larger values of a when com-
pared to values of b and c, as
well as the results in figure
4 that show the improvement
gained in using load-balanced
decompositions. The spatial
decomposition using pairlist-
length as a measure shows the
advantage that is achieved by
increasing locality over the
non-spatial pairlist decompo-
sition. These results are im-
portant not only in our work
implementing simulators, but
to others as well, guiding
them in the choices of their
parallel algorithms.

4 Implementation of Dynamic Load Balancing in Molecular
Dynamics

The results of the previous section are a stepping stone in the pursuit of our overall goal.
In this section, we describe the parallelization using spatial decomposition for shared-
memory computers of our Sigma MD simulator. The performance results in this section
show that the modeling provides a good starting point, but good scaling is difficult to
achieve without dynamic load-balancing.

Optimizations in programs often hamper parallelization, as they usually reduce
work in a non-uniform manner. There are (at least) two optimizations that hamper the
success of an ORB decomposition in Sigma. The first is the optimized treatment of
water. Any decomposition based on atom count will have less work assigned when the
percentage of atoms from water molecules is higher.



The second is the creation of atom groups, where between 1 and 4 related atoms
are treated as a group for non-bonded interactions, so the amount of work per group
can vary by a factor of 4. This optimization has the benefit of reducing the pairlist by a
factor of 9, since the average population of a group is about 3.

4.1 A Dynamic Domain Decomposition Strategy

One troubling characteristic of our
average
work
per
atom

Atom boundaries

Previous

Future
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  bo
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    b1
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    b4

    b4

Fig. 5. Unbalanced work loads on a set of proces-
sors. If the boundaries are moved as shown, then
the work will be more in balance.

static parallel implementation was the
consistency of the imbalance in the
load over a long period. Typically, one
processor had a heavier load than the
others, and it was this processor’s ar-
rival at the synchronization point that
determined the overall parallel perfor-
mance, convincing us that an adaptive
decomposition was necessary.

To achieve an evenly balanced de-
composition in our MD simulations,
we use past performance as a predic-
tion of future work requirements. One
reason this is viable is that the system of molecules, while undergoing some motion, is
not moving all that much. The combination of this aspect of MD with the accurate per-
formance information leads to a dynamic spatial decomposition that provides improved
performance and is quick to compute.

To perform dynamic load balancing, we rely on built-in hardware registers that
record detailed performance quantities about a program. The data in these registers
provide a cost-free measure of the work performed by a program on a processor-by-
processor basis, and as such, are useful in determining an equitable load balance.

Some definitions are needed to describe our work-based decomposition strategy.

– The dynamics work, wi, performed by each processor since the last load-balancing
operation (does not include communication and synchronization costs)

– The total work, W =
P

P

i=1
wi, since the last load-balancing operation

– The estimated ideal (average) work, w =W=P , to be performed by each processor
for future steps

– The average amount of work, a i = wi=ni, performed on behalf of each atom group
on processor i (with ni atom groups on processor i)

– The number of decompositions, dx; dy; dz, in the x; y and z dimensions

4.2 Spatial Adaptation

We place the boundaries one dimension at a time (as is done in the ORB decompo-
sition) with a straightforwardO(P ) algorithm. Figure 5 shows a single dimension split
into n subdivisions, with n � 1 movable boundaries (b0 and bn are naturally at the be-
ginning and end of the space being divided). In Sigma, we first divide the space along



Fig. 6. This graph shows two views of the adaptive decom-
position working over time using 8 processors. The upper
traces show the number of T4-Lysozyme atom groups as-
signed to each processor. The lower traces show the percent-
age of time spent waiting in barriers by each process since
the previous balancing step. At step 0, an equal number of
atom groups is assigned to each processor, since nothing is
known about the computational costs. From then on, the de-
composition is adjusted based on the work performed.

ing in a single dimension as
shown in figure 5. Along the
x-axis, the region boundaries
separate atoms based on their
position (atoms are sorted by
x-position). The height of a
partition represents the aver-
age work per atom in a par-
tition, which as stated earlier,
is not constant due to den-
sity changes in the data and
optimizations that have been
introduced. Thus, the area of
the box for each partition is
wi, and the sum of the areas
is W . The goal is to place
bi far enough from bi�1 such
that the work (represented by
area) is as close to w as pos-
sible. This placement of the
boundaries can be computed
in O(n) time for n bound-
aries. While this does not lead
to an exact solution, a few it-
erations of work followed by balancing yield very good solutions where the boundaries
settle down.

Figure 6 shows the boundary motion in Sigma as the simulation progresses. Initially,
space is decomposed as if each atom group causes the same amount of work. This de-
composes space using ORB such that all processors have the same number of atom
groups. As the simulation progresses, boundaries are moved to equalize the load based
on historical work information. This makes the more heavily loaded spaces smaller,
adding more volume (and therefore atoms) to the lightly loaded spaces. As the simula-
tion progresses, the number of atom groups shifted to/from a processor is reduced, but
still changing due to the dynamic nature of the simulation and inexact balance.

4.3 Results

We have tested the implementation on several different parallel machines, including
SGI Origin2000, SGI Power Challenge and KSR-1 computers. Figure 7 shows the per-
formance of several different molecular systems being simulated on varying numbers
of processors. The y-axis shows the number of simulation steps executed per second,
which is indeed the metric of most concern to the scientists using the simulator. We ran



tests using decompositions where we set P = (dx � dy � dz) to 1, 2, 4, 6, 8, 9, 12, and
16.

There are several conclusions to be drawn from the performance graph, the most im-
portant of which is the scaling of performance with increasing processors. The similar
slopes of the performance trajectories for the different datasets shows that the perfor-
mance scales similarly for each dataset. The average speedup on 8 processors for the
data shown is 7.59.

The second point is that the performance difference between the two architectures is
generally very small, despite the improved memory bandwidth of the Origin 2000 over
the Power Challenge. Our conjecture to explain this, based on this experiment and the
BSP modeling in the previous section, is that the calculation of non-bonded interactions
involves a small enough dataset such that most, if not all, atom data can remain in cache
once it has been fetched.

5 Conclusions

We are excited to achieve
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Fig. 7. Parallel Performance of Sigma. This graph shows the
number of simulations steps per second achieved with sev-
eral molecular systems, T4-Lysozyme (13642 atoms), and
SS-Corin (3948 atoms). The data plotted represent the per-
formance of the last 200fs (100 steps) of a 600fs simulation,
which allowed the dynamic decomposition to stabilize prior
to measurement. A typical simulation would carry on from
this point, running for a total of 106fs (500,000 simulation
steps) in simulated time, at roughly these performance lev-
els.

performance that enables in-
teractive molecular dynam-
ics on systems of molecules
relevant to biochemists. Our
performance results also en-
able rapid execution of large
timescale simulations, allow-
ing many experiments to
be run in a timely man-
ner. The methodology de-
scribed shows the use of high-
level modeling to understand
what the critical impediments
to high-performance are, fol-
lowed by detailed implemen-
tations where optimizations
(including model violations)
can take place to achieve even
better performance.

Prior to our BSP model-
ing study, we could only con-
jecture that load-balancing
was the most important as-
pect of parallelism to explore
for high performance parallel MD using a spatial decomposition. Our BSP modeling
supports this claim, and also leads us to the conclusion that the use of 2 or 4 worksta-
tions using ethernet communications should provide good performance improvements,
despite the relatively slow communications medium. Unfortunately, we have not yet



demonstrated this, as our implementation is based upon a shared-memory model, and
will require further effort to accommodate this model.

Our BSP study also shows that, for MD, processor speed is far more important than
communication speed, so that paying for a high-speed communications system is not
necessary for high performance MD simulations. This provides economic information
for the acquisition of parallel hardware, since systems with faster communication usu-
ally cost substantially more.

And finally, we’ve shown that good parallelization strategies that rely on informa-
tion from the underlying hardware or operating system can be economically obtained
and effectively used to create scalable parallel performance. Much to our disappoint-
ment, we have not been able to test our method on machines with large numbers of
processors, as the trend with shared-memory parallel computers is to use small num-
bers of very fast processors.

We gratefully acknowledge the support of NCSA with their “friendly user account”
program in support of this work.
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