
Identification of family-specific residue packing motifs and their
use for structure-based protein function prediction: I. Method
development

Deepak Bandyopadhyay Æ Jun Huan Æ Jan Prins Æ
Jack Snoeyink Æ Wei Wang Æ Alexander Tropsha

Received: 21 July 2008 / Accepted: 15 April 2009 / Published online: 20 June 2009

� Springer Science+Business Media B.V. 2009

Abstract Protein function prediction is one of the central

problems in computational biology. We present a novel

automated protein structure-based function prediction

method using libraries of local residue packing patterns

that are common to most proteins in a known functional

family. Critical to this approach is the representation of a

protein structure as a graph where residue vertices (residue

name used as a vertex label) are connected by geometri-

cal proximity edges. The approach employs two steps.

First, it uses a fast subgraph mining algorithm to find all

occurrences of family-specific labeled subgraphs for all

well characterized protein structural and functional fami-

lies. Second, it queries a new structure for occurrences of a

set of motifs characteristic of a known family, using a

graph index to speed up Ullman’s subgraph isomorphism

algorithm. The confidence of function inference from

structure depends on the number of family-specific motifs

found in the query structure compared with their distribu-

tion in a large non-redundant database of proteins. This

method can assign a new structure to a specific functional

family in cases where sequence alignments, sequence

patterns, structural superposition and active site templates

fail to provide accurate annotation.

Keywords Structural genomics � Protein graphs �
Protein function prediction � Family-specific motifs �
Frequent subgraph mining � FFSM

Introduction

Protein functional annotation is an important focus of

molecular biology that has critical implications for drug

discovery. Protein targets of known drugs come from just

over 120 different families [1], from among about 1000

unique protein folds [2], and thousands of unique protein

functions. Finding and characterizing new targets can

greatly expand our ability to identify novel drugs.

One rich source for new targets are the genome

sequencing [3] and structural genomics [4] projects, which

have produced a plethora of new protein sequences and

structures, respectively. A significant fraction of the pro-

tein-coding sequences from the genome projects corre-

sponds to proteins that have not been characterized

experimentally, called hypothetical proteins [5]. Likewise,

Electronic supplementary material The online version of this
article (doi:10.1007/s10822-009-9273-4) contains supplementary
material, which is available to authorized users.

D. Bandyopadhyay (&)

GlaxoSmithKline, 1250 S. Collegeville Rd, Mail Stop

UP12-210, Collegeville, PA, USA

e-mail: Deepak.2.Bandyopadhyay@gsk.com

J. Huan

Department of Electrical Engineering and Computer Science,

University of Kansas, Lawrence, KS, USA

e-mail: jhuan@eecs.ku.edu

J. Prins � J. Snoeyink � W. Wang

Department of Computer Science, University of North Carolina,

CB#3175 Sitterson Hall, Chapel Hill, NC, USA

J. Prins

e-mail: prins@cs.unc.edu

J. Snoeyink

e-mail: snoeyink@cs.unc.edu

W. Wang

e-mail: weiwang@cs.unc.edu

A. Tropsha (&)

School of Pharmacy, University of North Carolina, CB#7360

Beard Hall, Chapel Hill, NC, USA

e-mail: alex_tropsha@unc.edu

123

J Comput Aided Mol Des (2009) 23:773–784

DOI 10.1007/s10822-009-9273-4

http://dx.doi.org/10.1007/s10822-009-9273-4


a large percentage of structural genomics targets deposited

in the Protein Databank (PDB) lack experimental func-

tional annotation. Often, inferring the function of a new

protein as similar to that of a known protein with similar

sequence or fold (global structure) is problematic or mis-

leading [6].

Structure determination by structural genomics outpaces

the rate of experimental function characterization. There

are growing numbers of orphan structures, i.e. proteins

with unknown function and no apparent homology with

known functionally characterized proteins. An examination

of 1600 proteins from structural genomics projects that

were deposited between January 1999 and April 2005

(Fig. 1) indicates that only about 50% of them were

assigned a functional annotation, and another 25% could be

assigned a function with high confidence using global

structural similarity [7]. That leaves 25% (382 out of the

1600) orphan structures, whose PDB IDs are listed in the

Supplementary Material. Innovative, non-conventional

computational approaches are needed to infer the function

of such orphan protein structures.

Recently, we have begun to address this problem using

graph representations of protein structure [7, 8] and fre-

quent subgraph mining algorithms [9]. In this paper, we

present novel methodological developments that enable the

rigorous identification of protein family-specific residue

motifs. In addition, the accompanying paper [10] discusses

several examples of method application. Before covering

our method in detail, we shall discuss briefly previous

efforts in the field, covered in more detail in recent reviews

[11–13].

Related work

Successful computational methods for predicting protein

function tend to be knowledge based; i.e., they use infor-

mation derived from proteins with known function to

annotate similar or related proteins. These methods fall into

three broad categories based on the type of similarity they

exploit: sequence similarity, overall structural similarity, or

local structural similarity. In addition there are integrative

methods that assign function by combining functional

information from different sources. Here we focus on

functional annotation using local structural data, and briefly

mention other methods below.

Annotation methods based on sequence similarity

Functional annotation based on sequence alignment is

possible when one can identify another protein or domain

of known function with at least 40% sequence identity to a

query protein. 99% of the protein pairs with sequence

identity above 40% have similar structure, and more than

90% of protein pairs with more than 70% sequence identity

have the same function [14, 15].

Sequence-based functional annotation is challenging in

the absence of reliable sequence similarity. Some effective

methods include sequence patterns, regular expressions

derived from sequence alignments [16]; and sequence

profiles, probabilistic regular expressions containing fre-

quencies of amino acid occurrence at each sequence

alignment position (PSSM [17], PSI-BLAST [18]). Hidden

Markov Model (HMM [19]) profiles rigorously convert a

(a) (b)

Fig. 1 Number and functional classification of structural genomics

targets, 1999–2005. Number of structural genomics targets released

each year from 1999–2005 (*April), split into those with known and

unknown functions, shown in (a) table and (b) graph form. The

proteins with unknown function (*50%) are further split into those

whose function may be inferred on the basis of strong global

structural similarity to proteins of known function (DALI z-score

[ 12), and those with no strong global structural similarity. The last

column/row ‘‘total’’ is cumulative

774 J Comput Aided Mol Des (2009) 23:773–784

123



multiple sequence alignment into a profile by determining

transition probabilities between residue match, insert and

delete states at each position in the alignment. HMM

profiles can find remotely related sequences [20].

Phylogenetic and evolutionary methods for detecting

sequence similarity model the changes in protein sequences

assuming their divergence from each other during evolu-

tion. Some methods include evolutionary traces [21–23]

and comparative genomics [24] methods such as Clusters

of Orthologous Groups [25], gene co-evolution [26], and

cross-species co-occurrence [27].

Recent advances in sequence similarity searching

include graph models of residue coupling, i.e. residue pairs

that change together in an alignment [28]; neighborhood

correlation in the sequence similarity network, which

accommodates multidomain proteins and domain swapping

[29]; and Protein Function Templates (PFT/LIMACS, [30])

which include quantitative information about functional

sites in their multiple alignment and profile/PSSM to yield

better annotation. ModFun [31] adds similarity of protein

interaction partners to improve the specificity of sequence

annotation with PSI-BLAST.

Annotation methods based on global structural similarity

It is generally agreed that protein function is defined by its

structure, which is better conserved during evolution than

sequence [32]. Overall structural similarity to proteins of

known function may thus offer clues about the function of

an orphan protein, especially for remote sequence homo-

logs. Proteins with overall structural similarity at different

levels are grouped into hierarchical classifications such as

SCOP [33] and CATH [34]. Fast algorithms for pairwise

structure comparison have been developed [2, 32, 35, 36].

For instance, DALI [2] assigns a z-score to each structural

match based on the probability of two random structures

having a match with the same RMSD and length of

alignment; 90% of protein pairs with DALI z-score above

12 were shown to have the same function [37].

Annotation methods based on local structural similarity

In the absence of sequence and global structural similarity,

local structural patterns, often called residue packing pat-

terns or structural motifs, often give important insights into

function. The hypothesis that protein function is deter-

mined not by overall fold but by a few functionally

important residues is supported by convergent evolution of

function, loss of function upon mutation of key residues,

and the diversity of folds for some protein functions [38].

Below we review methods employing local structure

comparison, as opposed to ones that map sequence motifs

onto structure [6, 39, 40]:

– Depth-first search starts from simple geometric patterns

such as triangles, and progressively finds larger

patterns. This method was first used to find local

side-chain packing patterns by Russell [41]; this group

subsequently developed a method to find binding site

patterns in non-homologous structures (PINTS, [42])

and applied it to structural genomics proteins [43].

TRILOGY [44] looks for patterns among conserved

residues within a family, combining separate sequence

and structure matches, and building longer matches

from smaller ones. Similarly, Med-SuMO compares

functional sites based on patterns from triplets of

chemical groups surrounding ligand binding sites [45].

– Geometric hashing, which compares objects through

hashed coordinates, has been used to compare two

protein structures [46], compare a structure to a

database [47], and find functional sites in structural

genomics proteins [48].

– Functional site template methods represent known func-

tional sites as pockets [49], clefts [50], or patches [51], and

match new protein structures using geometry, conserved

residues and electrostatic/chemical properties.

– String pattern matching uses string search algorithms

on encoded local structure and sequence [41, 52].

– Graph matching methods have been developed to

compare protein structures modeled as graphs, usually

with clique detection techniques. Most of the tech-

niques [36, 41, 53–57] search using graph representa-

tions of existing functional sites, while a few [58, 59]

mine these from protein families.

– Other methods for inferring motifs from protein 3D

structure include inductive programming language

[60], fuzzy functional forms [61], computed proton-

ation properties [62], and geometric depth potentials

[63].

– Hybrid methods Some methods combine the benefits of

different approaches, such as geometric hashing to

speed up clique detection [64].

Consensus methods

Often, different function prediction methods give con-

flicting clues, and one would prefer to arrive at a consensus

based on the relative confidence of each prediction, or just

provide a few alternative functional assignments.

ProFunc [65] employs a consensus of different sequence,

structure and functional site methods to infer protein func-

tion. Sequence methods employed include BLAST [18],

InterPro [66] and Superfamily [67]. SSM [36] is used for

fold match detection, and functional site methods include

Relibase ligand templates [68], Catalytic Site Atlas [69],

J Comput Aided Mol Des (2009) 23:773–784 775

123



DNA-binding motifs [70], nests [71], and reverse templates

[72]. Results from different analyses are either presented

separately, or combined into a consensus prediction [73].

Materials and methods

Our algorithm includes five steps split between two major

components: family motif identification (steps 1–3) and

function prediction for a query structure (steps 4–5). The

first three preprocessing steps are run once for each

selected family, producing a motif library against which

new structures can be scanned.

Steps 4–5 are run for each query structure, and each

prediction is characterized with a confidence value. These

five steps are as follows:

1. Select families of non-redundant proteins from any

classification scheme such as SCOP or EC, or as

defined by the user. Also, define the background

dataset that will represent all remaining protein

structures.

2. Represent protein structures as graphs, with nodes at

the Ca atom of each residue (residue name is used to

label a node), and contact between residues defined

using the almost-Delaunay [74] edges. This set

expands the set of geometric nearest neighbors to

include pairs of points that could be nearest neighbors

if points were allowed to move from their defined

coordinates by up to e, thus accounting for imprecision

in atomic coordinates. Our recent work [8] showed that

almost-Delaunay edge graphs are sparse and robust

enough to find complex patterns from protein families

quickly in the presence of coordinate perturbations.

3. Mine family-specific motifs using the Fast Frequent

Subgraph Mining method [8]. Motifs are defined as

family-specific if they occur in at least 80% of the

family (support), and at most 5% of the background

(background occurrence).

4. Search for motifs in a structure to be annotated, using

an index of graph similarity to speed up Ullman’s

subgraph isomorphism [75].

5. Assign a significance to the function inference from the

number of motifs found and its distribution in back-

ground proteins.

Availability Steps 1–3 constitute the FFSM software

described previously [8], which is implemented in C??

and Perl, and is available from http://www.cs.unc.edu/

huan/FFSM.shtml. Steps 4–5 for function inference and

characterization are implemented in MATLAB and avail-

able in the ADMatlab bundle released by the first author at

http://www.cs.unc.edu/debug/software.

Family and background selection

We selected families from the SCOP structural classifica-

tion and the EC functional classification (Enzyme Com-

mission [76]). One could also use other classifications such

as Gene Ontology [77] or COGs [25], or manually selected

groups of proteins.

The background dataset is a non-redundant subset of the

PDB used to check the specificity of frequent patterns

mined from families. It was selected by downloading from

PISCES [78] the precomputed CulledPDB dataset with

maximum 90% sequence identity, better than 3 Å resolu-

tion, and R-factor at most 1.0. This led to a set of 6749

protein chains when this analysis was first done (on May

29, 2004); at the time of writing the same parameters

produced a dataset of over 13,000 chains.

SCOP families were downloaded from version 1.65 of

the database, which was current when we initiated these

studies; the later version 1.67 was used to validate the

method as described in the companion paper [10]. EC

families were obtained using the Thornton group’s PDB to

EC mapping.1 Families in EC were removed if a SCOP

family was found to have exactly the same set of non-

redundant members. Thus, EC families are retained only

when they represent functionally related proteins that are

scattered over different SCOP families (e.g. halocompound

dehalogenases, muconate lactonizing enzymes, amino acid

racemases), or when they add many new members to a

family that is poorly represented in SCOP 1.65 (e.g. shi-

kimate dehydrogenase, dehydroquinate dehydratase).

Non-redundant lists of family members were created by

intersecting protein chains classified under a SCOP node or

an EC number with the background dataset. This avoided

inclusion of nearly identical structures that may bias the

family composition and also invoke the worst case expo-

nential behavior of subgraph mining.

Modeling protein structures by graphs

We represent protein structures using graphs, with nodes at

each residue labeled with the amino acid type, with V,A,I,L

merged into a single type since they often substitute for one

another. The other hydrophobic residues and other fre-

quently substituted pairs such as D and E are kept distinct

to detect patterns of their conservation. The almost-Dela-

unay edges [74] define contacts between residues in the

graph. We augment each contact by the Euclidean distance

between the two residues the edge connects [79]. Graphs

built using almost-Delaunay edges were previously shown

1 Enzymes database http://www.ebi.ac.uk/thornton-srv/databases/

enzymes, and flat file downloaded from http://www.ebi.ac.uk/

thornton-srv/databases/pdbsum/data/seqdata.dat.

776 J Comput Aided Mol Des (2009) 23:773–784

123

http://www.cs.unc.edu/huan/FFSM.shtml
http://www.cs.unc.edu/huan/FFSM.shtml
http://www.cs.unc.edu/debug/software
http://www.ebi.ac.uk/thornton-srv/databases/enzymes
http://www.ebi.ac.uk/thornton-srv/databases/enzymes
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/data/seqdata.dat
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/data/seqdata.dat


to afford faster and more accurate mining of frequent

patterns than graphs with residue contacts defined using

either Delaunay edges or a distance threshold [8]. Edges

are labeled with length ranges (0–4, 4–6, 6–8.5, 8.5–10.5,

10.5–12.5 and 12.5–15 Å). Motifs mined using this graph

representation are called weighted edge motifs, as opposed

to unweighted edge motifs described in our previous study

[80] where we used only two edge labels (sequence-adja-

cent or spatially-proximal) vs. edge length labels in the

present study.

All the proteins in the selected families were converted

into their graph representations, as were all proteins in the

background. There are 6515 protein chains in the back-

ground dataset for the unweighted edge representation, but

6625 for the weighted edge representation, because an

improved PDB parser allowed us to process more proteins.

Mining family-specific motifs

We mine frequent subgraphs from the graph representa-

tions of multiple proteins using the FFSM algorithm

[9]. Some parameters are set for the mining step, based on

the characteristics of the families being mined. These

include the minimum support (f, default 80%) and maxi-

mum background occurrence (b, default 5%) that were

described previously [80]. We introduce the following new

parameters:

– Maximum size (s) of a frequent subgraph to report is set

by default to eight residues. While larger subgraphs are

useful while studying the biological relevance of the

motifs [8], smaller subgraphs are desirable for the

purpose of function inference, since they can accom-

modate more variation across the family and find

members with slight variations in the geometric

arrangement of the residues comprising the motif. To

allow such variations, it is also necessary to report all

frequent subgraphs rather than only maximal frequent

subgraphs [81], to ensure that smaller subsets of

family-specific motifs that are themselves family-

specific are available as features for function inference.

– Minimum subgraph density (d) is expressed as the

maximum number of edges that one may add to the

reported subgraphs to make them cliques. This param-

eter serves to control the rigidity and interconnected-

ness of frequent subgraphs and motifs. By default it is

set to three edges missing from a clique for unweighted

edge motifs, and one edge missing for weighted edge

motifs.

The default settings of the parameters specified above

generate reasonably dense and biologically relevant sub-

graphs for most families in less than 2 h on a 2.8 GHz

Linux machine with 1 GB of memory. Any frequent

subgraphs that occur in more than a fraction b of the

background are removed from consideration, and the

remaining subgraphs are stored as the family motifs.

The default values of mining parameters produce a rea-

sonable number of motifs (between 10 and 1000) for many

families; for very small or heterogeneous families, the

parameters must be varied to attain this target number, as

described later in the Results on Family classification.

Querying a new protein using a graph index

The problem of annotating a query protein with a set of

motifs from a candidate family can be posed as searching

the graph of the query protein for occurrences of family-

specific subgraphs. This subgraph isomorphism search

problem is known to be NP-complete [75]. To make it

tractable, we build indices for each motif and for the query

structure containing some precalculated information about

the graphs. If by comparing indices one finds that a query

structure cannot contain a particular motif, one can stop the

search without checking for subgraph isomorphism.

We have devised a graph index called a local neigh-

borhood index, where for each node in a motif we count

the number of occurrences of nodes with different labels

reachable on paths with increasing lengths starting from

that node, as shown in Fig. 2. An index match occurs when

these counts for each node in a motif are equal to or

exceeded by a node with the same label in a query protein,

followed by a graph isomorphism search to confirm the

occurrence. Further technical details on calculating graph

indices can be found in the Supplementary Material.

Assigning significance to a function inference

Suppose there are CF motifs for family F, X1. . .XCF
with

family support f (say 0.8) and background occurrence b

(say 0.05). Suppose a set of these motifs Xq1. . .Xqn are

found in a query protein q by the subgraph isomorphism

algorithm above. One may then simply count the motifs

found to get a good first estimate of the confidence of q

belonging to F. Each motif occurs in a fraction of at least f

family members, and of at most b background proteins.

Then, were the occurrences of these motifs to be inde-

pendent and normally distributed, one would expect to see

on average f CF motifs in a family protein and b CF in a

background protein, normally distributed about these

means; the number found in a query protein could be

looked up in these distributions to determine P-value of

family or background membership.

However, the number of motifs in a background protein

is not normally distributed but looks like a Poisson distri-

bution, as shown in Fig. 3. Individual motifs are also not

independent, since some of them share residues, overlap,

J Comput Aided Mol Des (2009) 23:773–784 777

123



and cover the same set of residues in different ways. Thus,

we do not use the P-value for family membership from a

Poisson distribution, but instead compute it empirically as

discussed below.

Sensitivity and specificity based on number of motifs

Whereas family specific motifs are defined based on their

general prevalence within family members as compared to

the background set, the issue of inferring function for a

single protein is based on the number of family motifs

present within this protein. Thus, we shall seek to define a

cutoff value for the number of a family specific motifs that

a protein is required to have in order to infer its family

membership.

For any value picked as cutoff, the sensitivity is defined

as the fraction of known family members with at least that

many motifs. The specificity is defined as the fraction of all

proteins in the background set (i.e. not in the family) that

have fewer motifs than the cutoff, and hence are correctly

inferred as not being family members. Specificity can also

be defined as 1 minus the false positive rate. Too low a

cutoff leads to false positive hits, while too high a cutoff

misses family members that do not contain all or most of

the motifs. The optimal cutoff depends on motif mining

parameters (support and background frequency) and char-

acteristics of the family itself, such as its size and homo-

geneity, that affect the distribution of motifs in the family

and background. We define ROC curves for family mem-

bership prediction, plotting specificity and sensitivity of

inferring function by selecting proteins from the back-

ground having different numbers of motifs (from none to

all). As an example, Fig. 3 shows the number of

unweighted and weighted edge motifs within the Immu-

noglobulin light (V) chain family (370 non-redundant

proteins) and within the background (6255 non-redundant

proteins) in histograms, with ROC curves superimposed.

It is desirable to choose a cutoff with some minimum

specificity (e.g. 95, 99%), while allowing a limited loss in

sensitivity to accommodate outliers in SCOP (super-)fam-

ilies. Motifs that are good predictors would reach close to

100% specificity and sensitivity at some value of the

Fig. 2 An example of the local neighborhood graph index. An

example of the local neighborhood graph index (shown for

unweighted edge graphs; ALA could be V/A/I/L). Left: Subgraph

(motif) matched to graph (query protein). Solid arrows connect two

nodes with matching indices in motif and query; a dotted arrow

connects two nodes with the same label but with incompatible graph

index vectors, that cannot be part of a successful match. Right: node

ID, node type, and index (neighbor string) for each node in the two

graphs, with the same nodes connected by solid and dotted arrows

Fig. 3 Background distribution and ROC curve of Immunoglobulin

V-chain motifs. Distribution of Immunoglobulin V-chain motifs in

the background (light green), and within the family (dark blue,

superimposed in front), shown for (a) unweighted and (b) weighted

edge motifs. Inset: ROC curves showing specificity vs. sensitivity of

function inference at different cutoff points

778 J Comput Aided Mol Des (2009) 23:773–784

123



cutoff, and such a knee point can be chosen as a cutoff.

However, often there are multiple knee points and it is

desirable to have an automated procedure to pick the best

cutoff for a range of families with differently shaped ROC

curves. Also, it is sometimes necessary to conduct two

kinds of searches using motifs, a sensitivity-biased search

that ensures one does not miss family members, and a

specificity-biased search when scanning a huge database of

targets with the objective of turning up the most promising

function inferences while avoiding spurious hits. It makes

sense to have two different cutoff values for these two

searches.

The strict 99%-specificity cutoff point is set to the

number of the family motifs that occur in no more than one

percent (ca. 60 proteins) in the background set. This cutoff

point ensures 99% specificity regardless of sensitivity; thus

for some families less than half the known members can be

inferred with 99% specificity. For protein families where

even having all the motifs does not ensure 99% specificity,

the 99%-specificity cutoff point is set at the total number of

motifs, and family-specific motif-based function inference

is expected to be unreliable.

The sensitivity cutoff point aims to approximate a knee

point of the ROC curve, while ensuring at least 95% and no

more than 99% specificity. The heuristic for sensitivity

cutoff starts by finding the first two points of loss in sen-

sitivity, i.e. the proteins with the two lowest motif counts

within the family. Then we select the lower one of these

points that exceeds 98% specificity; if none of them do, we

select the lower one that exceeds 95% specificity. If both

points of loss in sensitivity have below 95% specificity, we

discard them and choose the 95%-specificity point as the

sensitivity cutoff point. Similarly, if both points of loss in

sensitivity have greater than 99% specificity, as happens in

families where all members contain all the motifs, we pick

the sensitivity cutoff point the same as the 99%-specificity

cutoff point.

Several proteins in large families with 10–40 non-

redundant members have too few motifs to be reliably

inferred even with 95% specificity. Often this is because of

functional divergence within a SCOP family or superfam-

ily, where the motifs capture the predominant function, and

members with diverged functions are detected as having

fewer motifs. However, sometimes this can indicate errors

in the PDB files, which can be resolved by cleaning the

motifs as described in the Supplementary Material. Con-

versely, families with \ 4 members, \ 15 motifs, family

support (f) \ 70% or background occurrence (b) C15%

usually have a broad histogram of motif occurrence in the

background, which forces a higher cutoff point. This is

usually accompanied by loss in sensitivity; in other words,

few family members have enough motifs to reliably infer

their function.

Results

We shall list the SCOP and EC families for which we have

derived motifs with our method, and categorize them based

on their size and the number and nature of their motifs.

How many families yield motifs?

In all, among 182 families from SCOP and 46 from EC

mined for motifs, 120 SCOP and 27 EC families yielded a

sufficient number of unweighted edge motifs, and 125

SCOP and 26 EC families produced weighted edge motifs.

The fraction of SCOP families that have a sufficient

number of motifs is 66%. Since the family and superfamily

level nodes we selected are nearly randomly distributed

within SCOP, this fraction gives an estimate of the per-

centage of SCOP (super-)families whose members share a

single function. The fraction is lowered by the large

number of heterogeneous superfamilies that end up not

having enough motifs and are omitted.

The fraction of EC families with sufficient number of

motifs is even lower at 61%, though EC is a functional

classification. We propose several reasons—broad families

at top levels of the EC hierarchy whose members share

only broad characteristics of a function, and not its

mechanism; functional sites accommodating substitution of

amino acids that we currently treat as distinct (e.g. D and E,

or F and W); functions spanning several folds and with

large differences in their active site geometry [38]; and

mechanistically diverse families (e.g. the enolase super-

family) known to pose a challenge for function inference

[82]. The fraction of EC families that yield motifs (61%) is

a rough estimate of the percentage of enzyme functions in

EC with the same local structure and mechanism. The

estimate is rough since we did not work with a represen-

tative sample of EC; also, the EC system’s historical

inconsistencies and other shortcomings make it not well

suited for function inference [83].

Family classification based on motif mining parameters

We may get different numbers of motifs for the same

family by adjusting the values of three parameters: family

support (f), background occurrence (b) and graph density

(d). Thus we require the number of motifs for each family

to be in a target range of 11–999 (20–200 preferred). These

limits are based on empirical observations: using 10 or

fewer motifs one cannot distinguish true and false positives

with confidence. On the other hand, 1000 or more motifs

are redundant for typical protein families; they cover the

same 100–500 residues in different ways, and overfit the

sample of the protein family selected for motif mining,

precluding identification of other proteins having similar

J Comput Aided Mol Des (2009) 23:773–784 779

123



functions. Hence, we tune the values of parameters f, b and

d to achieve this target number of motifs for different

families. It is useful to classify families based on the

mining parameters used to obtain the target number of

motifs:

– Ideal families have at least 5 members, most of which

share the same function, but their sequences and

structures differ enough that only a few motifs may

be found and they correspond to functionally important

residues. This is the family type that our subgraph

mining algorithm with default parameters of f 0.8, b

0.05 and d 1 (unweighted edges) or 3 (weighted edges)

works best on. In fact, changing the parameters does

not affect the motifs from many of these families since

there is a definite set of motifs, all highly specific to the

family. For example, eukaryotic serine protease is an

ideal family.

– Rich families have at least 5 members that are very

similar in sequence and structure as well as function,

and thus have too many motifs. Parameter values for

rich families should be restrictive to bring the number

of motifs below 1000—typically f is 0.9 or 1.0, b is

0.05, 0.02 or 0.01, and d is 1 or 0. For example, TIM

(triosephosphate isomerase) is a rich family.

– Poor families have at least 5 members that share the

same function, but differ enough in structure and/or

sequence that they share no (or very few) motifs when

mined with the default parameters. Parameter values

for poor families should be permissive—typically f is

chosen as 0.7 or 0.8, b is 0.1 or 0.15, and d is 2 or 3. For

example, a/b-knot methyltransferase is a poor family.

– Functionally heterogeneous families have at least 5

members, and at least two different functions are well

represented in their members. Heterogeneous families

again need to be mined with permissive values of

parameters, e.g. setting f 0.7. For example, some

superfamilies of TIM barrel fold (Ribulose phosphate

binding barrel, metallo-dependent hydrolase) are het-

erogeneous families.

– Tiny families have 3–4 members. Wangikar et al. [58]

had observed that families with less than 5 proteins

may have few frequent patterns that are significant, i.e.

have discriminating power. Patterns that are frequent in

two out of three or three out of four proteins usually run

into the hundreds of millions, and are mostly spurious

and not specific to the family. Thus, we use extremely

restrictive values of the mining parameters for tiny

families: f is 1.0 (patterns must occur in all family

members), b is 0.05, 0.02 or 0.01 (highly specific), and

d is 0 or 1 (highly connected/dense). With these choices

we are able to mine most tiny families for motifs,

whose discriminating power we confirm in the

companion paper [10]. For example, the Sec7 domain

is a tiny family with 3 members.

– Omitted families are either heterogeneous, poor or tiny

families that did not yield at least 10 motifs using

permissive mining parameters (e.g. S-adenosine-

L-methionine (AdoMet) dependent methyltransferase,

SCOP: 53335), or rich families that had over 1000

motifs even with restrictive parameters (e.g. isopro-

pylmalate dehydrogenase, EC 1.1.1.85, had 3332

weighted edge motifs even with f 1.0, b 0.01 and d

0). Both these were omitted from further analysis, as

were families with less than three non-redundant

members.

– Augmented families are those that were omitted, tiny or

poor families using the non-redundant members from

SCOP 1.65, but can be converted into ideal families by

adding new members from SCOP 1.67 or other sources.

We could mine motifs only from the SCOP 1.67

version for the CheY-like superfamily (SCOP ID:

52172) and family (52173). Also, we mined motifs

from both SCOP 1.65 and 1.67 for haloacid dehalo-

genases (56784) and antibiotic resistance proteins

(54598) that were poorly represented in protein struc-

ture space in SCOP 1.65.

All our chosen SCOP and EC family datasets that

yielded sufficient unweighted or weighted edge motifs are

listed in Tables II–V in the Supplementary Material.

Performance of the graph index

Performance of the graph index is measured by the speed

of retrieving results as well as the efficiency (fraction of

real embeddings per index hit for a single subgraph) and hit

rate (fraction of real embeddings per index hit in a single

query). In the Supplementary Material we prove that our

graph index improves the speed, efficiency and hit rate for

the subgraph isomorphism search, making it feasible to

search for multiple motifs within large families in a rea-

sonable time.

Discussion

Comparative contribution of motif based

function inference

We shall compare the relative merits of function inference

using structure-based family-specific motifs versus previous

efforts, to establish its scope and applicability. Sequence-

based functional annotation has been more popular than

other approaches since there are an order of magnitude more

sequences than structures, and the gap is growing since

780 J Comput Aided Mol Des (2009) 23:773–784

123



genomes are sequenced faster than structures are solved.

However, the success of annotation based on sequence

alignment depends on a high degree of sequence similar-

ity—30% pairwise sequence identity is considered the

lowest threshold for homology modeling, and more than

40% for reliable transfer of function annotation from a

known to an unknown protein [84]. Structural genomics

targets usually share less than 30% sequence identity with

proteins of known function, since they are deliberately

selected in this way to maximize coverage of fold space.

Thus, they cannot be reliably annotated by sequence

alignment.

Sequence patterns/motifs derived from an alignment are

usually constrained to occur in the same order within the

sequences across all members of a family. Thus, sequence

methods may not find patterns of residues that do not fol-

low the conventional sequential order in some members of

a family (but are similar in three dimensions). They also

fail to classify proteins in which a pattern occurs out of

sequential order as belonging to the family. Modifications

such as circular permutations [85] lead to homologous

proteins not detectable by sequence comparison, while

domain insertion/ deletion, strand invasion, and internal

swapping of b-hairpins [86] lead to different structures and

functions within a family of evolutionarily-related proteins.

Though the majority of structural genomics proteins

have low sequence similarity to known proteins, up to 75%

of them have enough overall structural similarity to reliably

infer function. Frequently, the annotation suggested by

global structural similarity reveals incorrect annotation

previously assigned by sequence similarity [87]. Several

reviews discuss the comparative merits of sequence and

structure-based methods for functional annotation and the

accuracy of annotation transfer [84, 88–90].

Inference of function from overall structure similarity

may be problematic, because similar folds do not neces-

sarily imply a similar function. For example, the TIM

barrels are a large group of proteins having a similar fold

but very different functions [91]. On the other hand, similar

function does not require similar fold. For example, the

most versatile enzymes, hydro-lyases and O-glycosyl glu-

cosidases, are associated with 7 folds each [38]. Function

assignment based on identification of functional sites was

shown to be more accurate than that based on the overall

most similar sequence or structure [6], and it may be the

only feasible computational means to suggest functions for

structural orphans, proteins whose sequence and structure

have no similarity to others of known function.

Most methods for function assignment can detect only

active site templates from known protein families that have

already been characterized in the literature. This precludes

the identification of similarity to a hitherto unknown

functional site, or cases where some active site residues

have mutated or the active site geometry is distorted.

Modeling of functional sites by only functionally important

charged and polar residues [53, 58] precludes the identifi-

cation of functions such as membrane proteins or lipid

binding, where hydrophobic residues are functionally

important. Also, identification of a functional site does not

always lead to identification of function, since many fam-

ilies share functional sites (such as ATP or NAD binding

sites), and many active sites could carry out more than one

function [92]. It is also known that combinations of protein

domains often have novel functions, different from the

characteristic of the same domain in single domain proteins

[90].

Some local structure search methods such as geometric

hashing [93] and clique detection [58, 59] have been used

to infer recurring spatial motifs from groups of structures.

Both methods have exponential running time as the number

of structures increases. Our subgraph mining algorithm [9]

builds frequent subgraphs of arbitrary topology directly

using a tree representation, typically taking less time for

larger families than smaller ones. Thus it is faster and

applicable to larger structures and databases than exhaus-

tive subgraph enumeration by depth-first search [36].

The calculation of motifs by the method is fully auto-

mated and does not assume any prior knowledge of func-

tional sites, though such knowledge can be incorporated to

guide or restrict the mining process. In contrast to func-

tional sites, family-specific motifs are highly specific to

their families, and thus the discovery of a family motif in a

protein of unknown function is more significant than the

discovery of local structural similarity to one or a few

unrelated proteins that might occur by chance. The use of a

robust graph representation and multiple motifs required

for a match increase the confidence of function assignment,

compared to the identification of a single functional site.

There have been recent efforts towards the annotation of

protein structures (and homology models built from

sequences) using functional signatures derived from struc-

tural alignments [94], overlapping sphere representations of

functional sites [95, 96], and clusters of functionally

important residues determined by predicted protonation

properties [62] or a geometric depth potential [63, 97], to

name just a few. Our method, unlike the first [94], does not

depend on a sequence or structure alignment, and can find

motifs not conserved in the sequence. It differs from the

second [96] in that the functionally important residues used

in graph patterns are inferred from protein families rather

than chosen manually from the literature or bound ligand

positions. It distinguishes itself from the other methods

mentioned [62, 63] by insisting that motifs found and used

for annotation be unique to each family.

The PHUNCTIONER method [98] groups proteins

based on GO terms, and creates associated libraries of 3D

J Comput Aided Mol Des (2009) 23:773–784 781

123



profiles storing fragments of aligned structure and their

associated function-specific sequence alignments and

position-specific scoring matrix (PSSM). PHUNCTIONER

chooses conserved residues based on the alignment of

similar structures; it could potentially miss similarities in

function among proteins that are split over different folds.

Since the method uses sequence alignment, it could miss

motifs or families with non-conserved sequence. Also,

there is no mechanism to exclude profiles of one family

from occurring in another family, which our method

achieves by enforcing a maximum background occurrence

for each motif.

ProKnow [99] correlates sequence and global/local

structural features found in a new protein with an extensive

function knowledge-base, weighting predictions by the

Bayes theorem. ProKnow’s impressive accuracy depends

on the accuracy of GO annotations for existing proteins;

unreliable annotations marked ‘‘Inferred from Electronic

Annotation’’ are excluded, since they decrease function

prediction accuracy from 89% to 56%. ProKnow is most

accurate at detecting unspecific top-level functions (e.g.

protein binding), whereas our method excels at precise

identification of a specific functional family, whose motifs

differentiate it from closely related families. The RIGOR

method [100] included in ProKnow detects graph patterns

from known functional sites; if extended to detect family-

specific motifs, it could find uncharacterized protein fam-

ilies, ensure robustness and family-specificity in local

structures matches. Thus, family-specific motifs that are

identified with our method complement [99], ProFunc [65]

and other meta servers for protein function inference.

Limitations

Our method has limitations, arising from representation

choices, algorithmic issues, and the nature of the problem

itself. In our representation, we use Ca coordinates to cal-

culate graph edges and their lengths; this choice captures

shared topology, but may miss contacts made by long side-

chains. Currently we do not allow residue substitutions in

patterns, other than unifying V,A,I,L. Merging commonly

substituted residue types (e.g. D and E) increases the sen-

sitivity of motifs but must decrease their specificity, losing

motifs that are no longer unique to a family. Finally, the

weighted edge matching criteria may be too restrictive to

find patterns with widely varying geometry or containing

edges that happen to lie on bin boundaries. We have

developed a new overlapping-bin weighted edge repre-

sentation to remedy this last problem [79].

Algorithmically, subgraph mining involves the NP-

complete problem of subgraph isomorphism. The FFSM

algorithm [80] stores graph embeddings, so it does well

with small isomorphic subgraphs, but can become

inefficient with the large ones that could arise in families

with very similar or identical structures. In these cases,

however, it may be more appropriate to use global

sequence or structure similarity methods for functional

annotation in place of motif mining, since by design the

latter approach is more applicable to proteins with remote

sequence or structure homology.

It is part of the nature of the problem that classifications

that are too fine can produce too many motifs due to high

local similarity or small sample sizes, such as families with

three or fewer members. Conversely, too coarse a classi-

fication can produce no motifs that are specific to a fam-

ily—this happens with 35% of our SCOP families and

superfamilies, especially the latter because of their heter-

ogeneity. Because the number, specificity, and sensitivity

of motifs depends on size and heterogeneity of the family,

the support and background occurrence parameters must be

varied to find meaningful sets of motifs for the maximum

number of families.

Conclusions

We have described a fast and robust method for protein

function prediction based on structure-based residue

packing patterns identified as family-specific motifs. This

paper presented novel algorithms for motif mining in

SCOP or GO families as well as approaches for matching

an orphan protein to a family based on the occurrence of

family motifs in the orphan protein. The chief results

reported in this paper could be summarized as follows. (1).

We have processed all families in both SCOP and EC

classifications (at different levels of hierarchy) and identi-

fied subsets of families where we could mine statistically

significant family specific motifs. For each family, we have

identified family specific motifs that collective amount to a

unique Motif Library. (2). Based on family complexity and

the results of motif mining we have developed a family

nomenclature that classifies families into several groups:

Ideal, Rich, Poor, Functionally heterogeneous, Tiny,

Omitted, and Augmented. (3). For efficient mining of a

query orphan protein against a Motif Library, we have

developed a novel special ‘‘local neighborhood’’ graph

index. (4). Special metrics of statistical significance of

function inference based on motif matching have been

introduced and discussed. These algorithmic and compu-

tational developments lay a foundation for the experi-

mental application and validation of our approach. In the

following companion paper (Part II, [10]) we describe the

validation of the method, and discuss several case studies

of function inference that are relevant to target identifica-

tion for drug discovery.

782 J Comput Aided Mol Des (2009) 23:773–784

123



Acknowledgments These studies were supported by NIH grant

GM068665 and NSF grant CCF-0523875.

References

1. Overington J, Al-Lazikani B, Hopkins A (2006) Nat Rev Drug

Discov 5:993

2. Holm L, Sander C (1996) Science 273:595

3. Smith LM (1989) Genome 31:929

4. Burley SK (2000) Nat Struct Biol 7 Suppl:932

5. Koonin EV, Galperin MY (2002) Sequence-evolution-function:

computational approaches in comparative genomics. Kluwer

Academic Publishers, Dordrecht, The Netherlands (published

online on NCBI bookshelf, 2003)

6. Aloy P, Querol E, Aviles FX et al (2001) J Mol Biol 311:395

7. Bandyopadhyay D, Huan J, Liu J et al (2006) Protein Sci

15:1537

8. Huan J, Bandyopadhyay D, Wang W et al (2005) J Comput Biol

12:657

9. Huan J, Wang W, Prins J (2003) ICDM ’03: Proceedings of the

Third IEEE International Conference on Data Mining

10. Bandyopadhyay D, Huan J, Prins J et al (2009) J Comput Aided

Mol Des. doi:10.1007/s10822-009-9277-0

11. Gherardini P, Helmer-Citterich M (2008) Brief Funct Genomic

Proteomic 7:291

12. Zhao X, Chen L, Aihara K (2008) Amino Acids 35:517

13. Redfern O, Dessailly B, Orengo C (2008) Curr Opin Struct Biol

18:394

14. Rost B (1999) Protein Eng 12:85

15. Tian W, Skolnick J (2003) J Mol Biol 333:863

16. Hofmann SK, Bucher P, Falquet L et al (1999) Nucleic Acids

Res 27(1):215

17. Gribskov M, Luthy R, Eisenberg D (1990) Meth Enzymol

183:146

18. Altschul SF, Madden TL, Schaffer AA et al (1997) Nucleic

Acids Res 25:3389

19. Krogh A, Brown M, Mian IS et al (1994) J Mol Biol 235:1501

20. Madera M, Gough J (2002) Nucleic Acids Res 30:4321

21. Lichtarge O, Bourne HR, Cohen FE (1996) J Mol Biol 257:342

22. Kristensen D, Ward R, Lisewski A et al (2008) BMC Bioin-

formatics 9:17

23. Ward R, Erdin S, Tran T et al (2008) PLoS ONE 3:e2136

24. Koonin EV, Makarova KS, Aravind L (2001) Annu Rev

Microbiol 55:709

25. Tatusov RL, Koonin EV, Lipman DJ (1997) Science 278:631

26. Bowers PM, Pellegrini M, Thompson MJ et al (2004) Genome

Biol 5:R35

27. Date SV, Marcotte EM (2005) Bioinformatics 21:2558

28. Thomas J, Ramakrishnan N, Bailey-Kellogg C (2008) IEEE/

ACM Trans Comput Biol Bioinform 5:183

29. Song N, Joseph J, Davis G et al (2008) PLoS Comput Biol

4:e1000063

30. Lanczycki C, Chakrabarti S (2008) Bioinformation 2:279

31. Espadaler J, Eswar N, Querol E et al (2008) BMC Bioinfor-

matics 9:249

32. Taylor W, Orengo C (1989) J Mol Biol 208:1

33. Andreeva A, Howorth D, Brenner SE et al (2004) Nucleic Acids

Res 32:D226

34. Orengo C, Michie A, Jones S et al (1997) Structure 5:1093

35. Gibrat J, Madej T, Bryant S (1996) Curr Opin Struct Biol 6:377

36. Krissinel EB, Henrick K (2004) Softw Pract Exp 34:591

37. Holm L, Sander C (1997) In: Gaasterland T, Karp PD, Karplus

K, Ouzonis CA, Sander C, Valencia A (eds) ISMB’97. 5th

International conference on intelligent systems for molecular

biology, Halkidiki, Greece, June 1997, p 140

38. Hegyi H, Gerstein M (1999) J Mol Biol 288:147

39. Glaser F, Pupko T, Paz I et al (2003) Bioinformatics 19:163

40. Liang M, Brutlag D, Altman R (2003) In: Altman RB, Dunker

AK, Hunter L, Jung TA (eds) PSB’03. 8th Pacific symposium on

biocomputing, Hawaii, January 2003, p 204

41. Russell RB (1998) J Mol Biol 279:1211

42. Stark A, Russell R (2003) Nucleic Acids Res 31:3341

43. Stark A, Shkumatov A, Russell RB (2004) Structure (Camb)

12:1405

44. Bradley P, Kim PS, Berger B (2002) Proc Natl Acad Sci

99:8500

45. Jambon M, Andrieu O, Combet C et al (2005) Bioinformatics

21:3929

46. Nussinov R, Wolfson HJ (1991) PNAS 88:10495

47. Barker J, Thornton J (2003) Bioinformatics 19:1644

48. Shulman-Peleg A, Nussinov R, Wolfson H (2004) J Mol Biol

339:607

49. Binkowski TA, Freeman P, Liang J (2004) Nucleic Acid Res

32:W555

50. Laskowski RA, Luscombe NM, Swindells MB et al (1996)

Protein Sci 5:2438

51. Ferre F, Ausiello G, Zanzoni A et al (2004) Nucleic Acids Res

32:D240

52. Taylor WR, Jonassen I (2004) Proteins 56:222

53. Artymiuk PJ, Poirrette AR, Grindley HM et al (1994) J Mol Biol

243:327

54. Gardiner EJ, Artymiuk PJ, Willett P (1997) J Mol Graph Model

15:245

55. Samudrala R, Moult J (1998) J Mol Biol 279(1):287

56. Schmitt S, Kuhn D, Klebe G (2002) J Mol Biol 323(2):387

57. Stark A, Sunyaev S, Russell RB (1998) J Mol Biol 326:1307

58. Wangikar PP, Tendulkar AV, Ramya S et al (2003) J Mol Biol

326:955

59. Milik M, Szalma S, Olszewski K (2003) Protein Eng

16(8):543

60. Turcotte M, Muggleton S, Sternberg M (2001) J Mol Biol

306(3):591

61. Fetrow JS, Skolnick J (1998) J Mol Biol 281:949

62. Murga L, Wei Y, Ondrechen M (2007) Genome Inform 19:107

63. Xie L, Bourne P (2007) BMC Bioinformatics 8 Suppl 4:S9

64. Weskamp N, Kuhn D, Hullermeier E et al (2004) Bioinfor-

matics 20:1522

65. Laskowski RA, Watson JD, Thornton JM (2005) Nucleic Acids

Res 33:W89

66. Mulder N, Apweiler R (2008) Curr Protoc Bioinformatics

Chapter 2: Unit 2.7

67. Gough J, Chothia C (2002) Nucleic Acids Res 30:268

68. Hendlich M, Bergner A, Gunther J et al (2003) J Mol Biol

326:607

69. Porter CT, Bartlett GJ, Thornton JM (2004) Nucleic Acids Res

32:D129

70. Jones S, Barker JA, Nobeli I et al (2003) Nucleic Acids Res

31:2811

71. Milner-White EJ, Nissink JW, Allen FH et al (2004) Acta

Crystallogr D Biol Crystallogr 60:1935

72. Laskowski R, Watson J, Thornton J (2005) J Mol Biol 351:614

73. Watson J, Sanderson S, Ezersky A et al (2007) J Mol Biol

367:1511

74. Bandyopadhyay D, Snoeyink J (2004) ACM-SIAM Symposium

On Discrete Algorithms. New Orleans, LA, USA

75. Ullman JR (1976) J Assoc Comput Mach 23:31

76. Bairoch A (2000) Nucleic Acids Res 28:304

77. Gene Ontology Consortium (2004) Nucleic Acids Res 32:D258

J Comput Aided Mol Des (2009) 23:773–784 783

123

http://dx.doi.org/10.1007/s10822-009-9277-0


78. Wang G, Dunbrack RL (2003) Bioinformatics 19:1589 http://

www.fccc.edu/research/labs/dunbrack/pisces/culledpdb.html

79. Huan J, Bandyopadhyay D, Snoeyink J et al (2006) IEEE

Computational Systems Bioinformatics Conference (CSB).

Stanford, CA, USA

80. Huan J, Wang W, Bandyopadhyay D et al (2004) In: Gusfield D,

Bourne P, Istrail S (eds) RECOMB’04. 8th Annual international

conference on research in computational molecular biology, San

Diego, April 2004, p 308

81. Huan J, Wang W, Prins J et al (2004) In: Kohavi R, Gehrke J,

DuMouchel W, Ghosh J (eds) ACM SIGKDD’04. 10th Inter-

national conference on knowledge discovery and data mining,

Chicago, August 2004, p 581

82. Pegg SC, Brown S, Ojha S et al (2005) In: Altman RB, Dunker

AK, Hunter L, Jung TA (eds) PSB’05. 10th Pacific symposium

on biocomputing, Hawaii, January 2005, p 358

83. Babbitt PC (2003) Curr Opin Chem Biol 7:230

84. Wilson CA, Kreychman J, Gerstein M (2000) J Mol Biol

297:233

85. Lindqvist Y, Schneider G (1997) Curr Opin Struct Biol 7:422

86. Grishin NV (2001) J Struct Biol 134:167

87. Keller J, Smith P, Benach J et al (2002) Structure 10:1475

88. Fetrow JS, Siew N, Di Gennaro JA et al (2001) Protein Sci

10:1005

89. Michalovich D, Overington J, Fagan R (2002) Curr Opin

Pharmacol 2:574

90. Hegyi H, Gerstein M (2001) Genome Res 11:1632

91. Nagano N, Orengo C, Thornton J (2002) J Mol Biol 321:741

92. Petsko G, Ringe D (2004) Protein structure and function. New

Science Press Ltd, Waltham, MA, USA

93. Leibowitz N, Fligelman Z, Nussinov R et al (2001) Proteins

43:235

94. Wang K, Samudrala R (2006) BMC Bioinformatics 7:278

95. Hambly K, Danzer J, Muskal S et al (2006) Mol Divers 10:273

96. Xie L (2004) WIPO patent http://www.wipo.int/pctdb/en/wo.

jsp?WO=2005045424

97. Xie L, Bourne P (2008) Proc Natl Acad Sci USA 105:5441

98. Pazos F, Sternberg MJ (2004) Proc Natl Acad Sci USA

101:14754

99. Pal D, Eisenberg D (2005) Structure (Camb) 13:121

100. Kleywegt GJ (1999) J Mol Biol 285(4):1887

784 J Comput Aided Mol Des (2009) 23:773–784

123

http://www.fccc.edu/research/labs/dunbrack/pisces/culledpdb.html
http://www.fccc.edu/research/labs/dunbrack/pisces/culledpdb.html
http://www.wipo.int/pctdb/en/wo.jsp?WO=2005045424
http://www.wipo.int/pctdb/en/wo.jsp?WO=2005045424

	Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development
	Abstract
	Introduction
	Related work
	Annotation methods based on sequence similarity
	Annotation methods based on global structural similarity
	Annotation methods based on local structural similarity
	Consensus methods


	Materials and methods
	Family and background selection
	Modeling protein structures by graphs
	Mining family-specific motifs
	Querying a new protein using a graph index
	Assigning significance to a function inference
	Sensitivity and specificity based on number of motifs


	Results
	How many families yield motifs?
	Family classification based on motif mining parameters
	Performance of the graph index

	Discussion
	Comparative contribution of motif based �function inference
	Limitations


	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


