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Abstract. This paper presents an unbalanced tree search (UTS) bench-
mark designed to evaluate the performance and ease of programming for
parallel applications requiring dynamic load balancing. We describe al-
gorithms for building a variety of unbalanced search trees to simulate
different forms of load imbalance. We created versions of UTS in two par-
allel languages, OpenMP and Unified Parallel C (UPC), using work steal-
ing as the mechanism for reducing load imbalance. We benchmarked the
performance of UTS on various parallel architectures, including shared-
memory systems and PC clusters. We found it simple to implement UTS
in both UPC and OpenMP, due to UPC’s shared-memory abstractions.
Results show that both UPC and OpenMP can support efficient dynamic
load balancing on shared-memory architectures. However, UPC cannot
alleviate the underlying communication costs of distributed-memory sys-
tems. Since dynamic load balancing requires intensive communication,
performance portability remains difficult for applications such as UTS
and performance degrades on PC clusters. By varying key work steal-
ing parameters, we expose important tradeoffs between the granularity
of load balance, the degree of parallelism, and communication costs.

1 Introduction

From multicore microprocessors to large clusters of powerful yet inexpensive PCs,
parallelism is becoming increasingly available. In turn, exploiting the power of
parallel processing is becoming essential to solving many computationally chal-
lenging problems. However, the wide variety of parallel programming paradigms
(e.g., OpenMP, MPI, UPC) and parallel architectures (e.g., SMPs, PC clusters,
IBM BlueGene) make choosing an appropriate parallelization approach diffi-
cult. Benchmark suites for high-performance computing (e.g., SPECfp, NAS,
SPLASH, SPEComp) are thus important in providing users a way to evaluate
how various computations perform using a particular combination of program-
ming paradigm, system software, and hardware architecture.

One class of applications not well represented in existing high-performance
benchmarking suites are ones that require substantial dynamic load balance.

* This work was supported by the U.S. Department of Defense.
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Fig. 1. Tree T1 has about 4.1 million nodes, and a depth of 10. The degree of each node
varies according to a geometric distribution with mean 4. The parallel efficiency of the
UPC implementation using 2 to 24 processors of an SGI Origin 2000 is shown relative
to the sequential traversal of the tree. Work is stolen in chunks of £ nodes at a time
from the depth-first stack of processors actively exploring a portion of the tree. When
k is small, the communication and synchronization overheads in work stealing start to
dominate performance and lower the efficiency. As k increases, it becomes increasingly
difficult to find processors with k nodes on their stack (the expected maximum number
of nodes on the stack is 40), hence efficiency suffers from lack of load balance.

Most benchmarking suites either exhibit balanced parallel computations with
regular data access (e.g. solvers communicating boundary data such as SWM,
TOMCATV, APPSP), or balanced computations with irregular data access and
communication patterns (e.g. sparse solvers, FFT, Integer Sort, APPLU). Ex-
isting benchmarks that do utilize dynamic load balancing do so only at specific
points in the application (e.g. Barnes-Hut n-body simulation, or solvers using
adaptive mesh refinement).

We introduce a simple problem — parallel exploration of an unbalanced tree
— as a means to study the expression and performance of applications requiring
continuous dynamic load balance. Applications that fit in this category include
many search and optimization problems that must enumerate a large state space
of unknown or unpredictable structure.

The unbalanced tree search (UTS) problem is to count the number of nodes
in an implicitly constructed tree that is parameterized in shape, depth, size, and
imbalance. Implicit construction means that each node contains all information
necessary to construct its children. Thus, starting from the root, the tree can
be traversed in parallel in any order as long as each parent is visited before its
children. The imbalance of a tree is a measure of the variation in the size of its
subtrees. Highly unbalanced trees pose significant challenges for parallel traversal
because the work required for different subtrees may vary greatly. Consequently,
an effective and efficient dynamic load balancing strategy is required to achieve
good performance.

In this paper we describe OpenMP and UPC implementations of the UTS
problem and evaluate their performance on a number of parallel architectures
and for a number of different tree shapes and sizes. The implementations use



a work-stealing strategy for dynamic load balancing. Threads traverse the por-
tion of the tree residing on their local stack depth first, while stealing between
threads adds a breadth first dimension to the search. Figure 1 illustrates the per-
formance of the UPC implementation on a shared memory machine as a function
of number of processors and the granularity of load balancing. We are particu-
larly interested in how well a single UPC implementation performs across shared
and distributed memory architectures, since UPC is a locality-aware parallel pro-
gramming paradigm that is intended to extend to both memory models.

The remainder of the paper is organized as follows. Section 2 describes the
class of unbalanced trees, and some of their properties. Section 3 describes the
benchmark programs that were developed to implement parallel unbalanced tree
search. Section 4 provides a detailed performance analysis of the implementations
on a variety of shared and distributed memory architectures, comparing absolute
performance, processor and work scaling. Section 5 has the conclusions.

2 Generating Unbalanced Trees

We describe a class of synthetic search trees whose shape, size, and imbalance
are controlled through a small number of parameters. The class includes trees
representing characteristics of various parallel unbalanced search applications.

The trees are generated using a Galton-Watson process [1], in which the num-
ber of children of a node is a random variable with a given distribution. To create
deterministic results, each node is described by a 20-byte descriptor. The child
node descriptor is obtained by application of the SHA-1 cryptographic hash [2] on
the pair (parent descriptor, child index). The node descriptor also is the random
variable used to determine the number of children of the node. Consequently the
work in generating a tree with n nodes is n SHA-1 evaluations.

To count the total number of nodes in a tree requires all nodes to be generated;
a shortcut is unlikely as it requires the ability to predict a digest’s value from an
input without executing the SHA-1 algorithm. Success on this task would call into
question the cryptographic utility of SHA-1. Carefully validated implementations
of SHA-1 exist which ensure that identical trees are generated from the same
parameters on different architectures.

The overall shape of the tree is determined by the tree type. Each of these
generates the children of its nodes based on a different probability distribution:
binomial or geometric. One of the parameters of a tree is the value r of the
root node. Multiple instances of a tree type can be generated by varying this
parameter, hence providing a check on the validity of an implementation.

We examined a variety of tree shapes and choose to report on two represen-
tative shapes due to space limits.

2.1 Binomial Trees

A node in a binomial tree has m children with probability ¢ and has no children
with probability 1 — g, where m and ¢ are parameters of the class of binomial



trees. When gm < 1, this process generates a finite tree with expected size 1_1qm.

Since all nodes follow the same distribution, the trees generated are self-similar
and the distribution of tree sizes and depths follow a power law [3]. The variation
of subtree sizes increases dramatically as gm approaches 1. This is the source of
the tree’s imbalance. A binomial tree is an optimal adversary for load balancing
strategies, since there is no advantage to be gained by choosing to move one node
over another for load balance: the expected work at all nodes is identical.

The root-specific branching factor by can be set sufficiently high to generate
an interesting variety of subtree sizes below the root according to the power law.
Alternatively, by can be set to 1, and a specific value of r chosen to generate a
tree of a desired size and imbalance.

2.2 Geometric Trees

The nodes in a geometric tree have a branching factor that follows a geometric
distribution with an expected value that is specified by the parameter by > 1.
The parameter d specifies its maximum depth cut-off, beyond which the tree is
not allowed to grow and without which its growth would become intractable.

The expected size of these trees is (bg)?, but since the geometric distribution
has a long tail, some nodes will have significantly more than by children, yielding
unbalanced trees. Unlike binomial trees, the expected size of the subtree rooted
at a node increases with proximity to the root.

Geometric trees have a depth of at most d, and have an O((by)?) expected
size. The depth-first traversal of a geometric tree resembles a stage of an iter-
ative deepening depth-first search, a common search technique for potentially
intractable search spaces.

3 Implementation

Our implementations perform a depth-first traversal of an implicit tree as de-
scribed in the previous section. Since there is no need to retain a description of
a node once its children have been generated, a depth-first stack can be used.
A node is explored by popping it off the stack and pushing its children onto
the stack. Parallel traversals can proceed by moving one or more node(s) from a
non-empty stack of one processor to the empty stack of an idle processor.

Several strategies have been proposed to dynamically balance load in such a
parallel traversal. Of these, work-stealing strategies place the burden of finding
and moving tasks to idle processors on the idle processors themselves, minimiz-
ing the overhead to processors that are making progress. Work-stealing strategies
have been investigated theoretically and in a number of experimental settings,
and have been shown to be optimal for a broad class of problems requiring dy-
namic load balance [4]. Work-sharing strategies place the burden of moving work
to idle processors on the busy processors. A thorough analysis of load balancing
strategies for parallel depth-first search can be found in [5] and [6].

One key question concerns the number of nodes that are moved between
processors at a time. The larger this chunksize k, the lower the overhead to both



work stealing and work sharing strategies when amortized over the expected work
in the exploration of the k nodes. This argues for a larger value of k. However,
the likelihood that a depth first search of one of our trees has k nodes on the
stack at a given time is proportional to %, hence it may be difficult to find
large amounts of work to move. Indeed it was our goal to construct a problem
that challenges all load balancing strategies, since such a benchmark can be
used to assess some key characteristics of the implementation language, runtime
environment, and computing system. For example, distributed-memory systems
that require coarse-grain communication to achieve high performance may be
fundamentally disadvantaged on this problem.

3.1 Work Stealing in UPC and OpenMP

UPC (Unified Parallel C) is a shared-memory programming model based on a
version of C extended with global pointers and data distribution declarations for
shared data [7]. The model can be compiled for shared memory or distributed
memory execution. For execution on distributed memory, it is the compilers re-
sponsibility to translate memory addresses and insert inter-processor communi-
cation. A distinguishing feature of UPC is that global pointers with affinity to
one particular thread may be cast into local pointers for efficient local access
by that thread. Explicit one-sided communication is also supported in the UPC
run-time library via routines such as upc_memput() and upc_memget().

We implemented work stealing in OpenMP for shared memory machines and
UPC for shared and distributed memory machines. Instead of trying to steal
procedure continuations as would be done in Cilk [8], which requires cooperation
from the compiler, in our implementation we steal nodes from another thread’s
depth-first stack. Initially, the first thread holds the root node. As enough nodes
are generated from the root and its descendants, other threads steal chunks of
nodes to add to their stacks. Each thread performs a depth-first traversal of some
part of the tree using its own stack of nodes. A thread that empties its stack
tries to steal one or more nodes from some other thread’s nonempty stack. On
completion, the total number of nodes traversed in each thread can be combined
to yield the size of the complete tree.

3.2 Manipulating the Steal Stack

We now consider the design of the stack. In addition to the usual push and pop
operations, the stack must also support concurrent stealing operations performed
by other threads, which requires the stacks to be allocated in the shared address
space and that locks be used to synchronize accesses. We must eliminate over-
heads to the depth-first traversal performed by a working thread as much as
possible. Thus each thread must be able to perform push and pop operations at
stack top without incurring shared address translation overheads in UPC or re-
quiring locking operations. Figure 2 shows the stack partitioned into two regions.
The region that includes the stack top can be accessed directly by the thread
with affinity to the stack using a local pointer. The remaining area is subject to



Stack
A ] P Tree| Type bo | d q m| r |Depth|MNodes
Only T1 |Geometric| 4 |10 - |-J19] 10 | 4.130
T T2 |Geometric|1.014|508 - -1 0] 508 4.120
- Stack T3 | Biniomial | 2000 | — [0.124875| 8 [42| 1572 | 4.113
Bottom Table 1. Sample trees, with parameters and their result-
Fig. 2. A thread’s ing depths and sizes in millions of nodes.

steal stack

concurrent access and operations must be serialized through a lock. To amortize
the manipulation overheads, nodes can only move in chunks of size k between
the local and shared regions or between shared areas in different stacks.

Using this data structure, the local push operation, for example, does not
involve any shared address references in UPC or any lock operations. The release
operation can be used to move a chunk of k nodes from the local to the shared
region, when the local region has built up a comfortable stack depth (at least
2k in our implementation). The chunk then becomes eligible to be stolen. A
matching acquire operation is used to move nodes from the shared region back
onto the local stack when the local stack becomes empty.

When there are no more chunks to reacquire locally, the thread must find
and steal work from another thread. A pseudo-random probe order is used to
examine other stacks for available work. Since these probes may introduce signif-
icant contention when many threads are looking for work, the count of available
work on a stack is examined without locking. Hence a subsequent steal operation
performed under lock may not succeed if in the interim the state has changed.
In this case the probe proceeds to the next victim. If the chunk is available to
be stolen, it is reserved under lock and then transferred outside of the critical
region. This is to minimize the time the stack is locked.

When a thread out of work is unable to find any available work in any other
stack, it enters a barrier. When all threads have reached the barrier, the traversal
is complete. A thread releasing work sets a global variable which in turn releases
an idle thread waiting at the barrier.

3.3 Data Distribution in OpenMP

Unlike UPC, the OpenMP standard does not provide a way to specify the dis-
tribution of an array across the memories of processors [9]. Generally this dis-
tribution is accomplished by allocating page frames to memories local to the
processor which generated the page fault [10]. However this strategy is prone to
false sharing when a large number of processors share a relatively small array of
per-processor data structures that are being updated. The symptom of such false
sharing is poor scaling to large processor counts.

The Irix-specific distribute_reshape directive provided compiler-mediated dis-
tribution of the array across processor memories, improving performance on the
SGI Origin. However we found that on the Intel compiler on the SGI Altix, this
directive was not operative.



System Processor Compiler | T1 | T2 | T3
Cray X1 Vector (800 MHz) | Cray 5.5.0.4| 29 | 29 | 31
SGI Origin 2000 MIPS (300 MHz) | GCC 3.2.2 | 158 | 156 | 170
SGI Origin 2000 MIPS (300 MHz) | Mipspro 7.3 | 169 | 166 | 183
Sun SunFire 6800 Sparc9 (750 MHz) | Sun C 5.5 | 260 | 165 | 384
P4 Xeon Cluster (OSC) | P4 Xeon (2.4GHz) | Intel 8.0 | 717 | 940 | 1354
Mac Powerbook PPC G4 (1.33GHz) | GCC 4.0 774 | 672 | 1117
SGI Altix 3800 Itanium?2 (1.6GHz) | GCC 3.4.4 | 951 | 902 | 1171
SGI Altix 3800 Itanium?2 (1.6GHz) Intel 8.1 |1160|1106 | 1477
Dell Blade Cluster (UNC) | P4 Xeon (3.6GHz) | Intel 8.0 |1273|1165]| 1866

Table 2. Sequential performance for all trees (Thousands of nodes per second)

As a result, we replaced the array of per-thread data with an array of point-
ers to dynamically allocated structures. During parallel execution, each thread
dynamically allocates memory for its own structure with affinity to the thread
performing the allocation. This adjustment eliminated false sharing, but was un-
ecessary for UPC. The facilities for explicit distribution of data in OpenMP are
weaker than those of UPC.

4 Performance Evaluation

The UTS program reports detailed statistics about load balance, performance,
and the tree that is generated. We have examined data on several different parallel
machines and discovered some meaningful trends, which are presented in this
section.

Three sample trees were used for most of the experiments. Two of these
are geometric trees and one is a binomial tree. All trees are approximately the
same size (4.1 million nodes, +£1%). However, they vary greatly in depth. The
parameters, depth, and size of each tree are given in Table 1.

4.1 Sequential Performance

Before examining parallel execution, we ran the benchmark sequentially on a
variety of systems. The performance results are given in Fig. 2. Unless otherwise
noted, all performance measures are the average of the best eight out of ten
executions. Note that some systems were tested with both their native compilers
and GCC. This establishes a helpful baseline for the parallel performance results
presented later. When compiling UTS with OpenMP, the native compilers were
used. The Intrepid UPC compiler, based on GCC, was used to compile UTS with
UPC on the shared memory systems. The -O8 optimization flag was used when
compiling on the shared memory machines. On the Pentium 4 and Dell blade
clusters, the Berkeley UPC compiler was used. The Berkeley compiler translates
UPC to C for final compilation on the native compiler. An experimental set of
optimizations offered by Berkeley UPC was not used in the results reported here,
but will be used shortly.
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Fig. 3. Parallel performance on the Origin 2000 using OpenMP and UPC. On the left,
results for geometric trees T1 and T2. On the right, results for T3 with static versus
dynamic data allocation for the steals stacks. Optimal chunk sizes were used.

Despite the similar sizes of the trees, most systems showed significant and
systematic differences in performance due to differences in cache locality. Ideally,
a node will remain in cache between the time it is generated and the time it is
visited. The long tail of the geometric distribution results in some nodes gen-
erating a large number of children, flushing the L1 cache. In the binomial tree
T3, nodes generate only 8 children, if any, keeping L1 cache locality intact for
faster execution. The impact of this difference in sequential exploration rate will
be seen in the parallel results given in the next section, where we will show that
the parallel performance also varies by tree type.

4.2 Parallel Performance on Shared Memory Machines

The performance of the trees using UPC and OpenMP on the SGI Origin 2000
is given in the left graph of Fig. 3. The OpenMP results for T1 and T2 are from
the modified version of the benchmark which incorporated dynamic allocation of
per-thread data structures. Optimal chunk size was used, based on the tree.

Note that the UPC version runs more slowly than the OpenMP version. This
can be attributed largely to the increased overheads of UPC. Furthermore, the
variation in runtimes by tree type seen in the sequential runs is also present in
the parallel runs. Absolute performance on T3 is higher, though all scale well.

A performance comparison for T3 in the right graph of Fig. 3 quantifies the
performance change between OpenMP implementations using static and dynamic
allocation of per-thread data structures. The OpenMP performance is dramati-
cally improved when using dynamic allocation to ensure data distribution. The
performance of the UPC dynamic allocation version is only slightly decreased
from the static allocation version, as the extra shared pointer dereference adds
to overhead costs. (The two are nearly indistinguishable in the graph.)

4.3 Parallel Performance on Distributed Memory

Using the same UPC code, we compiled and ran UTS on a Dell blade cluster at
UNC. The cluster’s interconnect is Infiniband, and we configured the Berkeley
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Fig. 4. Performance on the Dell blade cluster (left); Parallel efficiency on the Dell cluster
versus the Origin 2000 (right)

UPC runtime system to run over VAPI drivers, as opposed to UDP or MPI. Still,
performance was markedly poor. Figure 4 shows the overall performance of the
sample trees and a comparison of parallel efficiency between the SGI Origin and
the Dell blade cluster for trees T1 and T3. Note each plotted value represents
the best of 100 runs per chunk size on the cluster at that processor count. We
have found that the performance varies as much as one order of magnitude even
between runs using identical settings. While the efficiency on the Origin is consis-
tently above 0.9, the program’s efficiency on the cluster falls off sharply as more
processors are used. Poor scaling was also seen on the P4 Xeon Cluster at Ohio
Supercomputer Center (OSC).

Poor performance on distributed memory is consistent with previous UPC
evaluation [11]. Program designs that assume efficient access of shared variables
do not scale well in systems with higher latency.

Key factors contributing to the poor peak performance and high variability
are the work-stealing mechanism and termination detection, neither of which cre-
ate performance bottlenecks on shared memory machines. Each attempted steal
involves several communication steps: check whether work is availabe at the vic-
tim, reserve the nodes, and then actually transfer them. Failed steal attempts
add additional communication. The termination detection uses a simple cance-
lable barrier consisting of three shared variables: a cancellation flag, a count of
nodes at the barrier, and a completion flag. It is a classic shared variable solution
that uses local spinning when implemented in a shared memory machines. We
speculate that the distributed memory runtime has a different coherence protocol
that is a poor match to algorithms that rely on local spinning.

4.4 Visualization for Detailed Analysis

When tracing is enabled, each thread keeps records of when it is working, search-
ing for work, or idle. It also records the victim, the thief, and the time of each
steal. Since some systems, in particular distributed memory machines, do not
have synchronized clocks, the records kept by the threads are adjusted by an
offset. This offset is found by recording the time following the completion of
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Fig. 6. PARAVER time chart for T3 exploration on 16 processors of the Origin 2000

a OpenMP or UPC barrier. This give millisecond precision on the clusters we
tested, but more sophisticated methods could likely do better.

The records are examined after the run using the PARAVER (PARallel Vi-
sualization and Events Representation) tool[12]. PARAVER displays a series of
horizontal bars, one for each thread. There is a time axis below, and the color
of each bar at each time value corresponds to that thread’s state. In addition,
yellow vertical lines are drawn between the bars representing the thief and victim
threads at the time of each steal.

Figure 5 shows PARAVER time charts for two runs on OSC’s P4 Xeon clus-
ter at chunk size 64. The bars on the top trace (4 threads) are mostly dark
blue, indicating that the threads are at work. The second trace (16 threads)
shows a considerable amount of white, showing that much of the time threads
are searching for work. There is also noticeable idle time (shown in light blue)
in the termination phase. The behavior of the Origin with 16 threads, shown in
Fig. 6, is much better, with all threads working almost all of the time.

4.5 Work Stealing Granularity

The most important parameter in performance is chunk size, which sets the
granularity of work stealing. A thread initiates a steal from another thread only

10
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Fig. 7. Performance of UTS at various chunk sizes on the SGI Origin 2000 (top) and
Dell blade cluster (bottom). For the cluster, the best performance out of 100 executions
at each setting is shown

when at least two chunks have accumulated in that thread’s steal stack. If the
chunk size is set too small, the threads will be too busy stealing (or trying to
steal) to get any work done. If the chunk size is too large, nodes will remain on
the stacks where they were generated and too few steals will occur.

Optimal Ranges for Chunk Size Figure 7 shows the performance of UTS at
various chunk sizes for trees T1 and T3 on the Origin 2000 using OpenMP and
on the Dell blade cluster using UPC. Results for UPC on the Origin were nearly
identical to those for OpenMP, and results on the Altix were similar. Note the
vast difference in the sizes of the optimal chunk size ranges for the two trees on
the Origin. For example, T1 performs reasonably well on 24 processors at a chunk
size of 5 to 15 nodes, while T3 performs well a chunk size of 8 to 80. T1 achieves
no speedup at a chunk size of 50, but T3 achieves linear speedup at chunk size
250 on four processors and even at chunk size 1000 on two processors.

On the cluster, the performance falls off much more rapidly on either side
of the peak values. As with the Origin, the acceptable chunk size range is much
larger for T3 than for T1. The peak performance for T1 is achieved with a chunk
size of 10 nodes, while chunk sizes of 50 to 150 work well for T3.

Corresponding results for T2 are omitted for lack of space. They resemble
those for T3, since the great depth of both trees allows large chunks to accumulate
on the stacks, a rare occurrence in the exploration of shallow T1.

11
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Fig. 8. Percent of work done exploring T1 (left) and T3 (right) by each thread in an
8-thread run, plotted for 10 runs per chunk size on the SGI Origin 2000

Stealing the Root One might suppose that no stealing occurs when chunk size
is at or above 50 for T1. However, this is not the case. The poor performance
can be attributed to T1’s lack of depth, which is limited by the parameter d
to give an expected stack size of bpd. When the chunk size is at or above bOTd
nodes, we expect that a chunk will only be released on the infrequent occasion
that a node generates more than by children, due to the long tail of the geometric
distribution. The chunk that is released, and possibly stolen, in such a case will
contain the older nodes from the bottom of the stack, i.e. the higher nodes in the
tree. The nodes which were generated most recently and are deeper in the tree
will be at the top of the stack for the local thread to continue working on.

Now suppose the chunk in the shared stack is stolen. The thief will then hold
nodes which are high in the tree and be able to generate some amount of work
before reaching the depth limitation. Meanwhile, the victim will quickly, if not
immediately, run out of work, because it holds nodes which are already at or near
the cutoff depth for the tree. Once the thief generates another chunk of work in
the lower portion of the tree, it becomes the victim, giving up the higher nodes.
In this way, the root and other nearby nodes are stolen repeatedly. The thread
currently holding them generates and does more work, while the other threads
are idle. The number of steals that occur over the course of the run is in fact
a good indication of how many times a value much higher than the expected
branching factor was drawn from the binomial distribution.

On the Origin, the root is most often passed back and forth between just
two threads. This is an interaction with the processor topology, in which each
node consists of two processors and memory. A shared variable indicates the
cancellation of the barrier when a chunk is released, and its change is first seen
on the node whose memory holds that shared variable. Using SGI’s cpuset facility,
we can force UTS to run each thread on a different node. With that configuration,
three or four threads share most of the work, rather than just two.

Figure 8 shows ten runs at different chunk sizes for T1 and T3 on the Origin
2000. Note that for chunk sizes of 15 to 55 nodes, the work for T3 is spread
evenly among the eight threads, about 12.5% each. The work for T1 is also evenly

12
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Fig. 9. PARAVER time charts for T1 exploration at chunk sizes of 10 nodes (top) and
60 nodes (bottom) on the Origin 2000

distributed when the chunk size is 15. With a chunk size of 35, a disproportionate
amount of work is done by just a few threads. When chunk size is increased to
55 nodes, work distribution is even more biased. Figure 9 shows PARAVER time
charts for runs for T1 with chunk sizes 10 (ideal) and 60 (pathological).

Recall from Table 1 that T1 has a depth limitation d = 10 and a constant
expected branching factor b = 4, yielding an expected stack size of 40 nodes. For
any chunk size greater than 20 nodes, the stack rarely accumulates the two-chunks
worth of work needed to enable a release. In contrast, binomial trees like T'3 have
no depth limitation, allowing the stack to grow very deep and facilitating many
chunk releases and subsequent steals, even at a large chunk size. This is also the
case for deep geometric trees such as T2, which has a much lower branching factor
than T1 and a less restrictive depth limitation. The example illustrates well the
subtle interactions between the tree shape and the load balance strategy.

4.6 Comparing Absolute Performance of Various Machines

UPC is supported by a great variety of shared memory and distributed memory
machines. In Fig. 10, a performance comparison for T3 on a variety of shared
memory and distributed memory machines running the UPC version of UTS on
16 processors is shown. The OpenMP version is used for the SunFire 6800. In
terms of absolute performance, the Altix is the fastest and the Dell cluster is the
second-fastest. If scaling on the cluster were 65% or better, it would overtake the
Altix in this UPC comparison.

4.7 Larger Trees for More Processors

When running UTS on a large number of processors, the tree must be large
enough to produce work for all the threads. Figure 11 shows the speedup of the
UPC version of UTS on the Altix 3800 for binomial trees of different sizes using
64 processors. The smallest, T3, is 4.1 million nodes. The other is 85 million nodes
in size. The speedup of T3 never approaches that of the larger tree. Hwever, the
Altix achieves a near-linear parallel speedup of nearly 60 on the 85M node tree,
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Fig. 10. Performance for T3 on 16 pro- Fig. 11. Speedup on the SGI Altix 3800
cessors on various machines. Except on using 64 processors for T3 and another,
the SunFire, the UPC version was used. much larger, binomial tree.

searching over 67M nodes/sec. Larger trees are able to generate large chunks of
work more often. Running at a higher chunk size further amortizes the cost of
stealing, as more work is procured per steal than at lower chunk sizes. Thus, a
greater number of processors can be effectively utilized.

5 Conclusions and Future Work

The primary contributions of our work are twofold: First, we have introduced a
novel and challenging benchmark to measure a parallel system’s ability to perform
substantial dynamic load balancing. Second, we have used the benchmark to
investigate the performance portability of shared memory programming models
to distributed memory systems. Comparison of the OpenMP and UPC versions
showed that both of these easily-programmed implementations exhibit near-ideal
scaling and comparable absolute performance on shared memory systems, but the
UPC implementation scaled poorly on distributed memory systems. While UPC,
with its shared memory abstractions, can simplify programming for clusters,
severe performance penalties can be incurred by the implicit communication costs
of a dynamic load-balancing implementation based upon liberal shared variable
accesses. We have also presented analysis of situations in which data locality,
horizon effects, granularity of load balance, and problem size can dramatically
impact the effectiveness of distributed load balancing.

One of our early versions of UTS, psearch, was one of several benchmarks used
to test recent communications optimizations for UPC [13]. We encourage testing
of our implementations with different optimization schemes and on a variety of
systems, as well as the development of new implementations. In some future
implementations, we will seek to improve performance on distributed memory
machines without degrading the performance on shared memory. We will be
turning the tables to ask whether a program designed for efficiency on distributed
memory can compete with our shared memory implementation on shared memory
machines in terms of scaling and absolute performance. In that scenario, just as
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in those presented in this paper, the UTS benchmark’s dynamic load balancing
makes it a daunting task for performance portability.
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