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Abstract
Frequent itemset mining is a popular and important first
step in the analysis of data arising in a broad range of
applications. The traditional “exact” model for frequent
itemsets requires that every item occur in each supporting
transaction. However, real data is typically subject to
noise and measurement error. To date, the effect of noise
on exact frequent pattern mining algorithms have been
addressed primarily through simulation studies, and there
has been limited attention to the development of noise
tolerant algorithms.

In this paper we propose a noise tolerant itemset model,
which we call approximate frequent itemsets (AFI). Like fre-
quent itemsets, the AFI model requires that an itemset has
a minimum number of supporting transactions. However,
the AFI model tolerates a controlled fraction of errors in
each item and each supporting transaction. Motivating this
model are theoretical results (and a supporting simulation
study presented here) which state that, in the presence of
even low levels of noise, large frequent itemsets are broken
into fragments of logarithmic size; thus the itemsets cannot
be recovered by a routine application of frequent itemset
mining. By contrast, we provide theoretical results show-
ing that the AFI criterion is well suited to recovery of block
structures subject to noise.

We developed and implemented an algorithm to mine
AFIs that generalizes the level-wise enumeration of frequent
itemsets by allowing noise. We propose the noise-tolerant
support threshold, a relaxed version of support, which varies
with the length of the itemset and the noise threshold. We
exhibit an Apriori property that permits the pruning of an
itemset if any of its sub-itemset is not sufficiently supported.
Several experiments presented demonstrate that the AFI
algorithm enables better recoverability of frequent patterns
under noisy conditions than existing frequent itemset mining
approaches. Noise-tolerant support pruning also renders an
order of magnitude performance gain over existing methods.

1 Introduction

Relational databases are ubiquitous, cataloging every-
thing from market-basket data [1] to gene-expression
data [8, 7]. One common representation for relational
databases is a binary matrix. Rows in the matrix cor-
respond to objects, while columns represent various at-
tributes of the objects. The binary value of each matrix
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Figure 1: Patterns with and without noise.

entry then indicates the presence (1) or absence (0) of an
attribute for a given object. For example, in a market-
basket database, rows represent transactions, columns
represent product items, and a binary entry indicates
whether an item is contained in a given transaction
[1, 2]. Frequent itemset mining [1] is a key technique
for the analysis of such data.

In the binary representation, a frequent itemset cor-
responds to a sub-matrix of 1s containing a sufficiently
large set of rows (transactions). Although frequent
itemset mining was originally developed to discover as-
sociation rules, its broader application provides the ba-
sis for subspace clustering and for building classifiers.
In these applications the ultimate goal is to discover in-
teresting associations between object and attribute sets,
rather than associations among attributes alone. One
important experimental application of frequent itemset
mining is the exploration of gene expression data, where
the joint discovery of both the set of conditions that
significantly effect gene regulation and the set of co-
regulated genes is of great interest.

In real data applications a “1” can be accidentally
recorded as “0” and vice versa. In a transaction
database, the noise can arise from both accidents of



the market and the vagaries of human behavior. Items
expected to be purchased together by a customer might
not appear together in a particular transaction either
because one item is out of stock or because it has
been overstocked by the customer. Microarray data
is likewise subject to measurement noise, stemming
from the underlying experimental technology and the
stochastic nature of the studied biological behavior. In
addition, uncertainty involved in choosing the proper
thresholds when imputing discrete observations from
the continuous gene expression values can introduce
error. Figure 1 illustrates how pattern in the data –
although perceptible – is obscured by noise. While
frequent itemsets and the algorithms that generate them
have been well studied, the difficulties that arise from
noise have not been adequately addressed.

In general, the noise present in real applications
undermines the ultimate goal of traditional frequent
itemset algorithms: recovering itemsets that appear
without error in a sufficient fraction of transactions.
In fact, as we discuss below, when noise is present,
classical frequent itemset algorithms discover multiple
small fragments of the true itemset, but miss the true
itemset itself. The problem is worse for the most
interesting, longer itemsets as they are more vulnerable
to noise.

Figure 2: When noise is present, the observed size of the
largest square sub-matrix of 1’s increases far more slowly
than the size of the initial square matrix of 1’s. (Note: noise
ratio refers to the value of p).

1.1 Fragmentation of Patterns by Noise In order
to analyze the potential effects of noise on frequent
pattern mining, Sun and Nobel [17] considered a simple
statistical model for the observed binary data matrix
Y. Formally,

Y = X⊕ Z,(1.1)

where Y, X and Z are m × n binary matrices and
⊕ is the entry-wise exclusive-or operation (modulo 2
sum). The matrix X contains the unobserved “true”
data values of interest, in the absence of noise, and Z is
a binary noise matrix whose entries zi,j are independent

Bernoulli random variables with P (zi,j = 1) = p =
1−P (zi,j = 0) for some p ∈ (0, 1/2). In this case we will
write Z ∼ Bern(p). An example is shown in Figure 1.
The statistical model (1.1) is equivalent to the standard
communication model, widely studied in information
theory, in which the values of X are observed after being
passed through a binary symmetric channel. It is the
binary version of the standard additive noise model in
statistics inference.

Suppose for the moment that m = n, and let
M(Y) be the largest k such that Y contains a k × k
submatrix of 1s, or equivalently, the largest k such that
Y contains k transactions having k common items. The
following proposition is proposed in [17]. It extends the
earlier result on the clique number of random graphs by
Bollobás et.al [4, 5] to binary random matrices.

Proposition 1. With probability 1, M(Y) ≤ 2 loga n−
2 loga loga n when n is sufficiently large, regardless of
the structure of X. Here a = (1− p)−1.

Proposition 1 shows that, even for small noise
levels p > 0, large blocks of 1s or other structures
in the true matrix X leave behind only fragments of
logarithmic size in Y. Thus no exact frequent itemset
mining algorithm will be able to recover such underlying
structure directly from Y.

To demonstrate this effect, we added noise to a
square matrix of 1s. Each entry of the initial matrix was
changed to 0 with some probability p, independently
from entry to entry. We applied standard frequent
itemset mining to the corrupted matrix, and applied
this process to matrices of different sizes. Figure 2 plots
the size of the largest recovered square sub-matrix of
1s against the size of the original matrix, for different
values of p (corresponding to different levels of data
corruption). In the presence of noise, only a fraction
of the initial block of 1s was recovered, and this fraction
diminished with an increase in the size of the original
matrix. Furthermore, the number of unique itemsets
reported increased exponentially with both corruption
level and original block size (see the spurious itemsets
curve shown in Figure 10 in the experiment section).

The failure of classical frequent itemset mining to
detect simple patterns in the presence of random errors
compromises the ability of these algorithms to detect
associations, cluster items, or build classifiers when such
errors are present. Noise is ubiquitous in real data: it
presents new challenges for algorithm development, and
its consequences should not ignored. In this paper, we
focus on noise-tolerant frequent itemset mining of the
binary matrix representation of databases.



1.2 Approximate Frequent Itemset Models The
formal setting of our problem is as follows. The available
data take the form of an n×m binary matrix D. Each
row ofD corresponds to a transaction t and each column
of D corresponds to an item i. The t, i-th element
of D, denoted D(t, i), is 1 if transaction t contains
item i, and 0 otherwise. Let T0 = {t1, t2, . . . , tn} and
I0 = {i1, i2, . . . , im} be the set of transactions and items
associated with D, respectively. An itemset is called
frequent, if the fraction of transactions supporting it
exceeds a given threshold, minsup ∈ (0, 1].

One natural algorithmic approach for handling er-
rors is to relax the requirement that a sub-matrix de-
termined by the frequent itemset consists entirely of 1s,
and allow it instead to contain a large fraction of 1s (and
a small fraction of 0s), e.g., the “presence” signal [6, 18].
This requirement is evidently a necessary condition, but
it is not sufficient to define a sub-matrix of interest. To
see why this is the case, consider the matrix shown in
Figure 3.

The matrix in Figure 3 contains 3 sub-matrices
{A,B,C}. The fraction of 1s in each sub-matrix is
the same, namely 75%, however, the 1s are distributed
quite differently in each. In sub-matrix A, each row and
column contains 75% 1s, but in sub-matrix B and C the
1s are concentrated in the dense sub-matrix B∩C. Both
column g and row 7 are in a sense free riders on B ∩C.
Clearly, neither sub-matrix B nor C should be used
for association rule mining or classification purposes:
in sub-matrix B row 7 does not support any item in the
itemset, and in sub-matrix C item g is not supported
by any transaction. It is possible to generate many
more sub-matrices like B and C by combining any of
the remaining columns and rows with B ∩ C to form a
sub-matrices with densities of at least 75%.

Besides requiring a large fraction of 1s in a sub-
matrix of interest, we advocate imposing two other
conditions. First, for a given itemset, a supporting
transaction should contain most of the items. Second,
to be included in an itemset, an associated item has
to appear in most of the supporting transactions. In
the binary matrix representation, this means that the
fraction of 0s in each row and each column of the sub-
matrix representing the approximate itemset has to fall
below a user-defined threshold. The threshold may
differ for rows versus columns, and is denoted by εr
and εc, respectively. If the approximate itemset has
sufficiently many rows, it is judged to be an approximate
frequent itemset (AFI).

Definition 1.1. Let D be as above, and let εr, εc ∈
[0, 1]. An itemset I ⊆ I0 is an approximate frequent
itemset AFI(εr, εc), if there exists a set of transactions
T ⊆ T0 with |T | ≥ |T0| ·minsup such that the following
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Figure 3: A binary matrix with three weak AFI(0.25) They
can be more specifically classified as, A: AFI(0.25, 0.25); B:
AFI(*, 0.25); C: AFI(0.25, *).

two conditions hold:

1. ∀i ∈ T, 1
|I|

∑
j∈I

D(i, j) ≥ (1− εr);

2. ∀j ∈ I, 1
|T |

∑
i∈T

D(i, j) ≥ (1− εc);

Let AFI(εr, εc) denote the collection of all AFI sub-
matrices of D. Classical or exact frequent itemsets
(EFI) are a special case of AFI, where both noise
thresholds εr and εc are set to zero. In cases where
the noise in either the rows or the columns is not
restricted, AFI(εr, ∗) or AFI(∗, εc) is used to denote the
corresponding families. The noise threshold replaced
by “∗” means that no constraint is employed for the
corresponding parameter, or the noise threshold is 1,
i.e., ε = 1. We also define the sub-matrices that
satisfy the global noise constraint as weak AFIs in
Definition 1.2.

Definition 1.2. Let D be as above, and let ε ∈ [0, 1].
An itemset I ⊆ I0 is a weak AFI(ε) if there exists a set
of transactions T ⊆ T0 with |T | ≥ |T0| · minsup such
that the following condition holds:

1
|I||T |

∑
i∈T

∑
j∈I

D(i, j) ≥ 1− ε(1.2)

According to our definition, the three sub-matrices
in Figure 3 are weak AFIs. However, only sub-matrix
A constitutes a valid AFI(0.25, 0.25). B and C do not
satisfy the constraints of AFI(0.25, 0.25), but they are
valid AFI(∗, 0.25) and AFI(0.25, ∗) respectively.

Note that an AFI(εr, εc) also qualifies as both an
AFI(εr, ∗) and an AFI(∗, εc). The relationships among
the various criteria are summarized in the Venn diagram
of Figure 4. The differences in the sizes of the families
and the maximum lengths of itemsets contained in each
leads to substantial differences in the computational



costs for the algorithms that search for them. This will
be further elaborated upon in the experimental sections.

In this work we proceed from the premise that,
while the exact frequent itemset criterion is too restric-
tive, simple application of the weak AFI, AFI(εr, ∗) and
AFI(∗, εc) criteria allows poor approximations to fre-
quent itemsets.

Yang et.al. [18] have developed models equivalent
to the weak AFI and AFI(εr, ∗), but use the terms weak
ETI and strong ETI, respectively, instead. For ease
in comparing the competing criteria, we adopt their
terminology for the remainder of this paper.

Figure 4: Relationships of various AFI criteria.

1.3 Challenges and Contributions Accommodat-
ing the refined noise criteria creates substantial algorith-
mic challenges not posed by exact frequent itemset min-
ing. First and foremost, the AFI criterion distinguishes
itself from traditional exact frequent itemsets as it vi-
olates the anti-monotone (Apriori) property. An exact
itemset cannot be frequent if any of its sub-itemsets fails
to be frequent. However, a sub-itemset of an AFI need
not be an AFI. For example, given minsup = 4 and
εr = εc = 25%, sub-matrix A in Figure 3 is a valid AFI,
but none of its sub-itemsets have sufficient support to
be an AFI. The minsup can no longer be employed as
a pruning threshold for itemset. No accurate pruning
threshold has ever been found in any of existing work on
noise-tolerant itemset mining. As a result, algorithms,
such as ETI mining, have to rely on heuristics to prune
the search space. These heuristics do not guarantee the
completeness of the search. Another algorithm to dis-
cover dense itemsets [13] enforces the constraint that
all sub-itemsets of a dense itemset must be frequent.
Since this algorithm requires minsup support for all sub-
itemsets, it can fail to identify larger itemsets that have
sufficient support.

Noise-tolerance also affects the way in which sup-
porting transactions are maintained in the algorithm.
With exact frequent itemset mining, a transaction sup-
porting an itemset also supports its sub-itemsets. This
property is fundamental to any depth-first approach.
This property, however, does not hold for AFI: one can-
not derive the support set of an AFI from the common

support sets of its sub-patterns, as is done in exact fre-
quent itemset mining. (Examination of sub-matrix A in
Figure 3 makes this clear.) To solve this problem, the
algorithms proposed in[18, 13] require repeated scans
of the entire database to identify the support for each
itemset. The exponential number of potential itemsets
makes this very expensive.

In this paper, we investigate the noise-tolerant
property of approximate frequent itemsets that provides
both the algorithmic basis for itemset generation, and
the potential for pruning based on an AFI’s support.
The property is a generalization of Apriori under noisy
conditions and includes the Apriori property as a special
case when noise is absent. By incorporating noise-
tolerant attributes, we designed an efficient and effective
approach for mining the complete set of approximate
frequent itemsets.

1.4 Outline The rest of the paper is organized as
follows. Section 2 outlines related work in the area
of noise-tolerant itemset mining. Section 3 contains a
theoretical analysis showing how the AFI criterion can
be used to recover block structures in the presence of
noise, a problem for which standard frequent pattern
mining fails. Section 4 presents the algorithm and two
pruning strategies. Assessment of the AFI algorithm
on synthetic and real data sets and an examination
of its scalability are presented in Section 5. Section 6
concludes the paper.

2 Background and Related Work

In the standard frequent itemset problem [1, 2], the goal
is to enumerate all the frequent itemsets in D; there is
no allowance for noise. This corresponds to our AFI
definition when εr = εc = 0.

Noise-tolerant itemsets were first discussed by Yang
et al. [18], who proposed two error tolerant models,
termed weak error-tolerant itemsets (ETI)(equivalent to
weak AFI) and strong ETI (equivalent to AFI(ε, ∗)). As
noted in the discussion of Figure 3, the ETI models
do not preclude columns of zeros. Although this
problem is identified by Yang et al. [18], it is not
resolved in their paper. In addition, without an efficient
pruning technique the authors had to employ a variety
of heuristics and sampling techniques instead. In [13]
the authors seek weak ETIs by constraining the subsets
of ETIs to also be weak ETIs. This constraint may not
only miss valid itemsets of interest, but also generates
irrelevant itemsets, such as cluster (B) in Figure 3.

Other lines of work to find itemsets tolerating noise
are [15, 12]. These approaches admit only a fixed
number of 0s in the itemsets. In contrast to our AFI
model, the fraction of noise can not vary with the size



of a submatrix defining an itemset, and therefore, is not
guaranteed to be bounded relative to the size of the
result. The support envelope technique [15] identifies
regions of the data matrix where each transaction
contains at least a given number of items and each item
appears in at least a given number of transactions. The
support envelope is a tool for exploring and visualizing
high-level itemset structures in a data matrix. The
paper defines a symmetric error tolerant itemset model
(Symmetric ETI). It is similar to AFI but restricts the
fraction of errors allowed to be the same for columns
and rows. Also, no additional properties or algorithms
for the symmetric ETI are developed by the authors.

3 Recovery of Block Structures in Noise

In this section we present some theoretical support for
the AFI model in the context of a simple recovery
problem for matrices with noise. Proposition 1 of
Section 1.1 shows that exact frequent itemset mining
cannot directly recover blocks of 1s and other structures
in the presence of noise. The weak ETI (weak AFI), ETI
(AFI(εr, *)) and AFI model address this problem by
allowing zeros in their target sub-matrices. One means
of validating and comparing these criteria is to see if
they are able to recover simple structures in cases where
exact frequent pattern mining fails. To this end, we
show how the AFI model can be applied to the simple
problem of recovering a sub-matrix of 1s set against a
background of zeros when noise is present. (A complete
analysis can be found in [17]). For simplicity, we only
consider square matrices and sub-matrices. However,
analogous results hold for rectangular matrices and sub-
matrices.

Let X be an n × n binary matrix that consists of
an l× l sub-matrix C∗ of 1s, with all other entries equal
to 0. (Note that the rows and columns of C∗ need not
be contiguous.) Suppose that we observe Y = X ⊕ Z,
where Z ∼ Bern(p), with 0 < p < 1/2, and wish to
accurately recover C∗. Let p0 be any number such that
p < p0 < 1/2, and let τ = 1− p0 be an associated error
threshold. If C is a sub-matrix of X, let C ∈ AFIτ (X)
denote the fact that every row and column of C has at
least 100 τ% 1s.

In order to recover C∗, we identify the largest square
AFI in the observed matrix Y having an error threshold
τ . More precisely, let C be the family of all square sub-
matrices C of X such that C ∈ AFIτ (X), and define

Ĉ = argmaxC∈C |C|

to be any maximal sized sub-matrix in C. Note that Ĉ
depends only on the observed matrix Y. Let

Λ = |Ĉ ∩ C∗|/|Ĉ ∪ C∗|

measure the overlap between the estimated index set
Ĉ and the true index set C∗. Then 0 ≤ Λ ≤ 1, and
values of Λ close to one indicate better overlap. A sketch
of proof of the following theorem can be found in the
appendix.

Theorem 1. Let Ĉ be the estimate of C∗ based on the
family AFIτ (X) as described above. Let δ = p− p0 > 0.
When n is sufficiently large, for any 0 < α < 1 and l
satisfying l > 16α−1(logb n+ 2),

P

(
Λ ≤ 1− α

1 + α

)
≤ ∆1(l) + ∆2(α, l).(3.3)

Here ∆1(l) = 2e−3 δ2 l/8p, ∆2(α, l) = 2n−
1
4 αl+4 logb n,

and the log base b = exp{3(1− 2 p0)2/8p}.

The following is an example illustrating Theorem 1.
Let X be a n × n binary matrix with n = 800 and
let C∗ be a l × l submatrix of X with l = 400.
Suppose the noise level p = 0.1 and suppose the user
specified noise level p0 = 0.15. When α = 1

4 , since
l > 16α−1(logb n + 2) = 360.1, it follows Theorem 1
that P

(
Λ ≤ 3

5

)
≤ 2(e−3.75 + 800−10.448) = 0.047, i.e.

the probability that the overlap of the recovered AFI
and C* will be less than 0.6 is small (less than 5%).

The conditions of Theorem 1 require that the noise
level p < 1/2 and that the user-specified parameter
p0 satisfy p < p0 < 1/2. Thus, in advance, one only
needs to know an upper bound on the noise level p.
A similar recovery result can be established for the
weak ETI model. However, the proof is considerably
more complicated, and more importantly, the recovery
method requires exact knowledge of the noise level p.
It appears that the same restriction is necessary for
recovery with the ETI model as well. In the context
of the simple recovery problem, the two-way restriction
of the AFI model has direct advantages over the weak-
ETI model.

Here we illustrate the essential ideas behind the
proof of Theorem 1. Note that the entries of Y in C∗ are
i.i.d. Bernoulli(1 − p) random variables. Consequently,
the sum of each row and each column of C∗ has a
Binomial(l,1 − p) distribution. Using this fact and the
condition that 1− p0 < 1− p, it can be shown that the
probability that any row or column of C∗ has average
density less than 1− p0 is very small. This implies that
C∗ ∈AFIτ (X) with high probability. Since Ĉ is the
maximal sized sub-matrix in AFIτ (X), it follows that
|Ĉ| is greater than or equal to |C∗| with high probability.
Now, we want to show that Ĉ can not be too large
either, and that it can only contain a small proportion
of entries outside C∗. When Ĉ is much larger than C∗, it
must contain a large number of rows (or columns) whose



entries are from outside C∗. The definition of Ĉ via the
AFI criterion implies that each such row (column) has
density greater than τ . Moreover, the rows (columns)
will necessarily contain a large rectangular region with
entries from outside C∗, and this region should also have
density greater than τ . But as the entries of Y outside
C∗ are i.i.d. Bernoulli(p), the probability of finding a
rectangular region as above is very small.

Theorem 1 can readily be applied to the asymptotic
recovery of structure in a sequential framework. Sup-
pose that {Xn : n ≥ 1} is a sequence of square binary
matrices, where Xn is n × n and consists of an ln × ln
sub-matrix C∗

n of 1s with all other entries equal to 0. For
each n we observe Yn = Xn ⊕Zn, where Zn ∼Bern(p),
and wish to recover C∗

n. Let Λn measure the overlap
between C∗

n and the estimate Ĉn produced by the AFI
recovery method above. The following corollary of The-
orem 1 shows that, under suitable conditions on ln, Ĉn

provides asymptotically consistent estimates of C∗
n. The

proof can be found in the appendix.

Corollary 1. If ln > 16ψ(n)(logb n + 2) where
ψ(n) →∞ as n→∞, then with probability one

Λn ≤ 1− ψ(n)−1

1 + ψ(n)−1

when n is sufficiently large.

4 AFI Mining Algorithm

Mining approximate frequent itemsets poses a number
of new algorithmic challenges beyond those faced when
mining exact itemsets. The foremost difficulty is that
noise-tolerant itemset mining cannot employ the anti-
monotone property that has led to the success of fre-
quent itemset mining. The development of an efficient
algorithm for finding AFIs calls for new itemset gener-
ation strategies to limit the search space. We present
a noise-tolerant Apriori property in Section 4.1.1. In
addition, the AFI criteria allow the number of errors
to increase with the size of the itemset. It is therefore
critical to take account of the additional errors in an
itemset as its dimensionality increases while collecting
the supporting transactions. Solving this problem is the
key to AFI mining, and is addressed in subsection 4.1.2.
The AFI mining algorithm adapts the methods of level-
wise breadth-first frequent itemset mining to this new
setting, and takes advantage of our new techniques to
generate noise-tolerant approximate frequent itemsets.

4.1 Mining AFIs The algorithm’s enumeration of
the AFI differs from the existing work of weak ETI
algorithm[18] in the following aspects: First, even
though the Apriori property doesn’t hold for any type

of AFI(except those that allow no noise), we have devel-
oped a noise-tolerant Apriori property (Theorem 4.1)
and apply it to prune and generate candidate itemsets.
Secondly, by taking different approaches in extending
the itemsets, we are able to collect the support of an
noise-tolerant itemset based on the support set in the
sub-itemsets.

4.1.1 Noise-Tolerant Support Pruning The anti-
monotone property of exact frequent itemsets is the key
to minimizing exponential searches in frequent itemset
mining. In particular, the anti-monotone property
ensures that a (k + 1) exact itemset can be pruned if
any one of its k sub-itemsets is not frequent. However,
this property is no longer true for any variation of AFI.
Instead, in this paper, we derive a noise-tolerant support
to serve as the Apriori pruning threshold. The noise-
tolerant support is determined by the size of the itemset
and the noise thresholds. This support threshold leads
to substantial performance gain for our algorithm.

Theorem 4.1. Given a support threshold minsup, if a
length (k + 1)-itemset I ′ is an AFI(εr, εc), then for any
of its k item subset I ⊆ I ′, the number of transactions
containing no more than εr fraction of noise in I is at
least

n ·minsup ·
(

1− kεc
bkεrc+ 1

)
(4.4)

Proof: By assumption, there exists a set of transactions
T ′ such that |T ′| ≥ n ·minsup and T ′× I ′ ∈ AFI(εr, εc)
Let I be a k item subset of I ′ with support set T . Thus
each t ∈ T contains at most kεr zeros on I.

Let num0(C) be a function that returns the number
of 0s in any submatrix C of D. Since the transactions in
T ′ \ T do not support I, each such transaction contains
more than kεr zeros on I. It follows that

num0((T ′ \ T )× I) ≥ |T ′ \ T | · (bkεrc+ 1)
≥ (|T ′| − |T |) · (bkεrc+ 1)

As T ′ × I ′ is an AFI, each item in I contains at most
εc|T ′| zeros on T ′. Therefore,

num0(T ′ × I) ≤ k · |T ′| · εc.(4.5)

Combining the last two inequalities gives

(|T ′| − |T |) ·(bkεrc+ 1)
≤ num0((T ′ \ T )× I)
≤ num0(T ′ × I)
≤ k · |T ′| · εc(4.6)



where the second inequality follows from the fact that
T ′ \ T ⊆ T ′. Expressing the last inequality in terms of
|T | yields

|T |≥ |T ′|
(

1− kεc
bkεrc+ 1

)
≥n ·minsup ·

(
1− kεc

bkεrc+ 1

)
(4.7)

Based on the bound of Theorem 4.1 we make the
following definition.

Definition 4.1. Given εc, εr and minsup, the noise-
tolerant pruning support for a length-k itemset is,

minsupk = minsup ·
(

1− kεc
bkεrc+ 1

)
+

(4.8)

Here (a)+ = max{a, 0}.

The noise-tolerant support threshold is used as the
basis of a pruning strategy for AFI mining. The strategy
removes supersets of a given AFI(εr, ∗) I from further
consideration when the number of transactions which
contain less than εr fraction of errors in I is less than
n · minsupk. In the special case that εr = εc =
0, minsupk = minsup, which is consistent with the
anti-monotone property of exact frequent itemsets [1].
The support threshold decreases as εc increases and
as εr decreases. In the former case, a less stringent
column constraint is applied to a block with fixed row
constraints, and conversely in the case of decreasing εr.
In particular, the support threshold is equal to 0 when
k · εc > dk · εre. Therefore, no pruning can be applied
at all.

4.1.2 0/1 Extensions Starting with singleton item-
sets, the AFI algorithm generates (k+ 1)-itemsets from
k-itemsets in a sequential fashion. The number of 0s al-
lowed in the itemset grows with the length of the itemset
in a discrete manner. If b(k+1)εrc > bkεrc, then trans-
actions supporting the (k + 1)-itemset are permitted
one more zero than transactions supporting k-itemsets.
When b(k + 1)εrc = bkεrc, no additional zeros are al-
lowed. For example, if εr = 0.25, additional zeros are
permitted in transactions when extending itemsets of
length 3, 7, 11 and so on. Whether the maximal number
of zeros will increase in a (k+1) itemset makes a differ-
ence in deriving its set of supporting transactions. In-
tuitively, if an additional zero is allowed at level (k+1),
any transaction supporting a k itemset should also sup-
port its (k + 1) superset. On the other hand, when the
maximum number of zeros allowed in an itemset stay
the same at level (k + 1), a transaction that does not

support k itemset will not have enough 1s to support
its (k + 1) superset. These two properties are formally
addressed in Lemma 4.1 and Lemma 4.2 as 1-Extension
and 0-Extension respectively.

Lemma 4.1. (1-Extension) If bk · εrc = b(k + 1) · εrc
then any transaction that does not support a k-itemset
will not support its (k + 1) item superset.

The Lemma is based on the fact that if no additional
noise is allowed when generating a (k + 1) itemset, a
transaction that does not support a k-itemset will not
support its (k + 1) superset since the number of 1s it
contains is always smaller than or equal or bk∗εc−1+1

k+1 <
ε. Thus if bk ·εrc = b(k+1) ·εrc then the transaction set
of a (k+1) itemset I is the intersection of the transaction
sets of its length k subsets. This is called a 1-extension.

Lemma 4.2. (0-Extension) If bk · εrc + 1 = b(k + 1) ·
εrc then any transaction supporting a k-itemset also
supports its (k+1) supersets.

The procedure of 0-extension illustrates how noise
can be incorporated into a frequent itemset. If addi-
tional noise is allowed for a (k+ 1) itemset relative to a
k itemset, it is intuitive that a transaction that supports
a k-itemset will also support its (k + 1)-item supersets,
no matter whether the (k + 1)th entry is 1 or 0. To
utilize this property, if bk · εrc + 1 = b(k + 1) · εrc, the
transaction set of a (k+1) itemset I is the union of the
transaction sets of its length k subsets. This is called a
0-extension.

0-extension and 1-extension suggest two basic steps
to be taken for efficient maintenance of the supporting
transactions. They allow the algorithm to obtain the
support transactions of an itemset from its item subsets
while avoiding the repeated scan of databases that
plagues the algorithms proposed by [18, 13]. In the
next section, we illustrate through an example the use of
the two techniques together with noise-tolerant support-
based pruning method.

4.2 An Example In this section we present a simple
example in which the data matrix D of Figure 5 is used
to illustrate the AFI algorithm. Let εr = εc = 1/3 and
let minsup = 0.5. The number of transactions in the
database, n, equals 8. We wish to find the complete set
of AFIs in D. In this case, the algorithm proceeds as
follows.

Step 1: k = 1,minsup1 = 0.5. The database is
scanned once and the support of each singleton item is
recorded.

Step 2: k = 2,minsup2 = 0.5 ∗ 1/3. As bk · εrc =
b(k − 1) · εrc, no additional 0’s are allowed and a 1-
extension is performed. In particular, the transaction
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ab ad cdbc bdac

abd acd bcdabc

abcd

b c d
T:{1,2,3,5,8}

a
T:{1,2,4,5,7} T:{1,3,4,5} T:{5,6,7}

* a b c
1 1 1 1
2 1 1 0
3 1 0 1
4 0 1 1
5 1 1 1

b c d
1 1 1 0
4 1 1 0
5 1 1 1
7 1 0 1

a b c d
1 1 1 1 0
5 1 1 1 1

a b d
1 1 1 0
2 1 1 0
5 1 1 1
7 0 1 1

a c d
1 1 1 0
3 1 1 0
5 1 1 1

Level:0

Level:1

Level:2

Level:3

Level:4

a b
1 1 1
2 1 1
5 1 1

a c
1 1 1
3 1 1
5 1 1

a d
5 1 1

b d
5 1 1
7 1 1

c d
5 1 1

1-extension

1-extension

0-extension

1-extension

b c
1 1 1
4 1 1
5 1 1

a b c d
1 1 1 1 0
2 1 1 0 0
3 1 0 1 0
4 0 1 1 0
5 1 1 1 1
6 0 0 0 1
7 0 1 0 1
8 1 0 0 0

(A) (B)
Figure 5: (A) Sample database; (B) Level wise mining of AFI in database (A). See Section 4.2 for more details. Only
black colored itemsets will be generated by AFI, while every itemset including the grey-colored itemsets will have to be
generated to mine ETIs.

set of the itemset ab is obtained by intersecting the
transaction set of a, equal to {1, 2, 3, 5, 8}, with that of
b, equal to {1, 2, 4, 5, 7}; the result is {1, 2, 5}. Since the
number of transactions supporting ad and cd is equal
to 1. Therefore, their supports are below the support
threshold minsup2, any AFI that contains them can be
pruned. These itemsets are colored gray in Figure 5.

Step 3: k = 3,minsup3 = 0.5 ∗ 2/3. In this case,
bk · εrc = b(k − 1) · εr)c + 1. Thus one additional
0 is allowed in 3-itemsets, and a 0-extension (union
of transaction sets) is performed. For example, a
transaction supports itemset abc if it supports any of
{ab, ac, bc}; the transaction set of abc is the union of
the transaction sets for {ab, ac, bc}, which is {1, 2, 5} ∪
{1, 3, 5} ∪ {1, 4, 5} = {1, 2, 3, 4, 5}.

Step 4: k = 4,minsup4 = 0.5 ∗ 1/3. Because of
support constraintminsup, i.e, 0.5, {a, b, c, d} cannot be
a valid AFI. No further extension of the current itemset
is possible since all of the search space is covered.

Step 5: The candidate AFIs are {b, d} and {a, b, c}.
The first does not satisfy the minsup size constraint.
The second is readily shown to be a valid AFI, and
constitutes the output of the algorithm.

4.3 Global Pruning In order for an individual item
i to appear in an AFI, its overall support must exceed
minsup ·n · (1− εc). During the level-wise generation of
AFI(εr, ∗), the total number of transactions under con-
sideration in a given level will decrease or remain the
same, and the number of transactions supporting an
individual item will have the same property. If the sup-
port of item i among the transactions at level k drops

Algorithm 1
Input: D, εr, εc, minsup
Output: The sets of approximate frequent itemsets
1. for i = 1 : m
2. T(i)=genSupport(D, i);
3. k = 1;
4. L1=∪m

i>0{i};
5. repeat
6. k := k+1;
7. Lk := GenCandidateItemset(Lk−1,minsup

k−1)
8. if (bk · εrc = b(k + 1) ∗ εrc)
9. T(Lk) := 1-Extension(I,Lk−1);
10. else
11. T(Lk) := 0-Extension(I,Lk−1);
12. AFIp := AFIp ∪ Lk;
13. until Lk is ∅
14. AFI :=filter(AFIp,minsup, εc)
15. return AFI

Figure 6: AFI mining algorithm. Lk represents the set of
itemsets at level k; T (I) returns the support set of I.

below minsup ·n · (1− εc), then i can not appear in any
AFI generated at levels k′ ≥ k. In particular, any item-
set containing i can be eliminated from consideration.
To illustrate, in the example presented in Figure 5 the
number of transactions supporting an itemset should
not be below 4. In addition, the number of support-
ing transactions for an individual item has to be above
d4 · (1− εc)e = d4(1−1/3)e = 3. The set of transactions
remaining at level 2 is T = {1, 2, 3, 5, 7}; the number of
transactions in T supporting item d is 2, which is less



than 3, so any itemset in level k ≥ 2 containing d can
be eliminated from consideration.

4.4 Identification of AFI The AFI algorithm so far
generates a superset of approximate frequent itemsets.
The postprocessing of this subset can be done separately
from the level-wise generation since it will neither
benefit nor prohibit the traversing of the search space.
The verification of whether an AFI(εr, ∗) is an AFI can
be easily done by simply checking the percentage of
0’s in each candidate itemset. Finding a maximal
AFI in an AFI(εr, ∗) is more difficult. In the technical
report [9], we describe a heuristic algorithm for this
problem that scales linearly with respect to |T | + |I|,
where I is an itemset supported by a transaction set T .
The algorithm works by removing transactions having
a large number of zeros, beginning with those whose
zeros are aligned with low density items. Due to space
limitations, a complete description of this algorithm is
omitted.

5 Experiments

We performed four experiments to assess the perfor-
mance of AFI. The first explored the scalability of the
AFI mining algorithm and the effectiveness of the prun-
ing methods. The second experiment used synthetic
data to compare the results of AFI mining to exact
frequent itemset mining and ETI. Finally, we applied
AFI to a zoology data set with known underlying pat-
terns.

5.1 Scalability Two data sets were employed to
measure scalability. The first, T10KI100, was gener-
ated by the IBM synthetic data set generator. It con-
tains 10K transactions and 100 items, with an average
of 10 items per transaction. The second data set was the
chess data set, which is available from the UCI machine
learning repository[20]. It contains 28K transactions
and 65 items with at least one third nonzero elements
per transaction. We built the exhaustive level-wise al-
gorithm presented in [18] to discover the complete set
of strong ETIs. The experiments were run on a 2GHz
PC with 2G memory.

Figure 7 presents the run-time performance for both
data sets, with εr = εc = 20%. All algorithms performed
well when minsup was 5% or higher; however, ETI was
not able to compete when minsup dropped below 2%.
In contrast to AFI, ETI lacks an effective pruning strat-
egy; therefore, a much larger set of candidate itemsets
may be generated in order to build the complete set of
ETIs. In addition, because the noise criterion of ETI
is less stringent, the maximum length of an ETI can be
much larger than that of an AFI. This leads to an ex-

(A) T10KI100 (B)Chess

Figure 7: Comparison between AFI and ETI

(A) T10KI100 (B)Chess

Figure 8: The running time of AFI with noise-tolerant
support pruning varying minsup and ε. ε = εc = εr.

ponentially larger number of candidate itemsets. Both
shortfalls explain why AFI can outperform ETI by such
a large margin. AFI mining with downward pruning
appears to be superior to global support pruning, es-
pecially when the minimum support is low. The AFI
algorithm employing both pruning strategies was also
tested, although not shown in the Figure; the perfor-
mance was almost the same as AFI using only the sup-
port pruning property.

(A) T10KI100 (B)Chess

Figure 9: The running time of AFI with noise-tolerant
support pruning as minsup varies. εc 6= εr.

We tested the scalability of our algorithm as the
noise threshold and minimum support varied. The re-
sult is shown in Figure 8. To reduce the parameter
space, the transaction-wise threshold εr was set equal
to the item-wise noise threshold εc in this set of experi-
ments. Figure 8 shows that running time increases with
increases in noise tolerance, as expected. Here the al-



gorithm is essentially looking for approximate frequent
itemsets with higher-dimensionality (detailed results
are in [10]). Allowing more noise in an itemset results
in larger approximate frequent itemsets; consequently,
more candidate itemsets have to be explored, and com-
putation increases exponentially with respect to the di-
mensionality of the itemsets. Nevertheless, even with a
very high error rate of 30%, our algorithm proves com-
petent in finding the complete sets of AFI in a reason-
able time.

Figure 9 shows how different transaction-wise and
item-wise noise thresholds can affect performance. Rela-
tively speaking, reducing the item-wise error constraint
leads to a greater reduction in running time than re-
ducing the transaction-wise error constraint, as the for-
mer leads to higher levels of pruning according to The-
orem 4.1.

5.2 Quality Testing with Synthetic Data In ad-
dition to run-time performance we also tested the qual-
ity of the results produced by AFI. To do so we created
data with an embedded pattern and then overlaid ran-
dom errors. By knowing the true patterns, we were
able to assess the quality of the various results. To each
synthetic data set created, an exact method (ETI with
εc = 0), ETI and AFI were each applied.

To evaluate the performance of an algorithm on a
given data set, we employed two measures that jointly
describe quality: “recoverability” and “spuriousness.”
Recoverability is the fraction of the embedded patterns
recovered by an algorithm, while spuriousness is the
fraction of the mined results that fail to correspond to
any planted cluster. A truly useful data mining algo-
rithm should achieve high recoverability with little spu-
riousness to dilute the results. A detailed description
of the two measures is given in [9]. Multiple data sets
were created and analyzed to explore the relationship
between increasing noise levels and the quality of the
result. Noise was introduced by bit-flipping each entry
of the full matrix with a probability equal to p. The
probability p was varied over different runs from 0.01
to 0.2. The number of pattern blocks embedded also
varied, but the results were consistent across this pa-
rameter. Here we present results when 1 or 3 blocks
were embedded in the data matrix (Figure 10(A) and
(B), respectively).

In both cases, the exact method performed poorly
as noise increased. Beyond p = 0.05 the original pat-
tern could not be recovered, and all of the discovered
patterns were spurious. In contrast, the error-tolerant
algorithms, ETI and AFI, were much better at recov-
ering the embedded matrices at the higher error rates.
However, the ETI algorithm reported many more spu-

rious results than AFI. Although it may discover the
embedded patterns, ETI also reports many additional
patterns that are not of interest, often including irrele-
vant columns. The AFI algorithm consistently demon-
strated higher recoverability of the embedded pattern
while maintaining a lower level of spuriousness.

(A) Single Cluster (B) Multiple Clusters

Figure 10: Algorithm quality versus noise level.

5.3 Zoo Data Set We also applied AFI to a
database downloaded from the UCI Machine Learning
Repository[20]. The Zoo Database contains 101 in-
stances and 18 attributes (animal name, 15 boolean at-
tributes, 2 numerics). The boolean attributes are hair,
feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, breathes, venomous, fins, tail, domestic and
catsize. The numeric attributes are legs and type, where
the type attribute appears to be the class attribute.
All the instances are classified into 7 classes (mammals,
birds, fish, etc.).

One task could be to discover the common features
of a set of animals in the same class. For example, mam-
mals produce milk, are covered in hair, are toothed, and
grow tails. However, not every mammal exhibits these
common features: platypuses lack teeth and dolphins
are hairless. If such exceptions are not tolerated, it is
hard to find the complete set of features that character-
izes a class.

For testing purposes, we adopted the 7 classes into
which the instances were already categorized as the true
underlying pattern. Then we examined how well the
competing frequent itemset mining methods recovered
these classes. We focused on the 4 classes with at least
5 instances and where each class had least 3 commonly
shared features.

The exact method, ETI(εr), and AFI(εr, εc) were
each applied to the dataset. When we required a perfect
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Figure 11: Three AFI blocks discovered in the zoo dataset. * indicates the presence of a feature.

match between the output of a method and the true
pattern, only AFI was able to recover 3 out of the 4
classes. Here “perfect match” refers to a step in the
evaluation of the output, not the criteria for adding a
transaction to the support of an itemset. When the
criteria for a match was relaxed to 85% overlap, then
AFI recovered the fourth class: bugs. Figure 11 displays
the sets of animals and their common features identified
by AFI.

Neither the exact method nor ETI were able to re-
cover a single class under the perfect match evaluation
criterion. Exact frequent itemset mining generated sub-
sets of the animals in each class and then found subsets
of their common features. The instance flamingo pre-
sented a typical problem: in this data set flamingo lacks
the airborne attribute – perhaps because the zoo clipped
their wings. Thus flamingo cannot be included in the
class bird with the common feature airborne.

Although such “errors” as clipped wings are accom-
modated by ETI, sometimes the type of tolerance fea-
tured by ETI identified irrelevant items. It identified fin
and domestic as common features for mammals, which
is not generally true. Because only the row-wise con-
straint was applied, the set of features discovered was
not reliable.

6 Conclusion

In this paper we have outlined an algorithm for mining
approximate frequent itemsets from noisy data. The
AFI model places two criteria on the fraction of noise in
both the rows and columns, and so ensures a relatively
reasonable distribution of the error in any patterns
found. Our work generalizes the classical level-wise
frequent itemset mining based on the Apriori-property
into a new algorithm where the Apriori-property does
not hold and noise has to be incorporated. Our work
generates not only more reasonable and useful item-

sets than classical frequent itemset mining and existing
noise-tolerant frequent itemset mining, but it is com-
putationally more efficient as well. We are currently
investigating depth-first methods for approximate fre-
quent itemset mining.
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7 Appendix

The detailed proofs of the following Lemma 1 and
Lemma 2 can be found in [17]. We only state them
here.

Lemma 1. Under the conditions of Theorem 1,

P
(
|Ĉ| ≤ l2

)
≤ ∆1(l).(7.9)

Lemma 2. For any sufficiently large n, let A = {C :
C ∈ Cn such that |C| > l2

2 and |C∩C∗c|
|C| ≥ α}. Let

A = {A 6= ∅}. If l ≥ 16α−1(logb n+ 2), then

P (A) ≤ ∆2(α, l)(7.10)

Proof of Theorem 1: Let E be the event that
{Λ ≤ 1−α

1+α}. It is clear that E can be expressed as
the union of two disjoint events E1 and E2, where

E1 = {|Ĉ| ≤ |C∗|} ∩ E

and
E2 = {|Ĉ| > |C∗|} ∩ E

On the other hand, by the definition of Λ, inequality
Λ ≤ 1−α

1+α can be rewritten equivalently as

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C∗|

≥ 1 + α

1− α
.

Moreover, when |Ĉ| > |C∗|, one can verified the trivial
fact that |Ĉ ∩C∗c| > |Ĉc ∩C∗|, which also implies that

1 +
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

+
|Ĉc ∩ C∗|
|Ĉ ∩ C|

≤ 1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

.

Furthermore, one can verified that E2 ⊂ E′
2, where

E′
2 = {|Ĉ| > |C∗|} ∩

{
1 + 2

|Ĉ ∩ C∗|
|Ĉ ∩ C∗|

≥ 1 + α

1− α

}
.

Therefore, it suffices to bound P (E) by P (E1) and
P (E′

2) separately.
Immediately, one can bound P (E1) by ∆1(l) via

Lemma 1. It remains to bound P (E′
2). Notice that

inequality

1 + 2
|Ĉ ∩ C∗c|
|Ĉ ∩ C∗|

≥ 1 + α

1− α
implies

|Ĉ ∩ C∗c|
|Ĉ|

≥ α.

Therefore, by Lemma 2, one can bound P (E′
2) by

P (E′
2) ≤ P

(
E′

2

∣∣∣|Ĉ| ≥ l2
)
≤ ∆2(α, l),

where the first inequality holds because the uncondi-
tional probability is always less or equal to the condi-
tional probability. Consequently, we have

P

(
Λ ≤ 1− α

1 + α

)
≤ ∆1(l) + ∆2(α, l).(7.11)

Proof of Corollary 1: Theorem 1 implies that if we
can bound both ∆1(ln) and ∆2(ψ(n)−1, ln) by 2n−2 for
any sufficiently large n, then Borel -Cantelli Lemma can
be applied to establish the almost sure convergency.

When n is sufficiently large, the condition ln >
16ψ(n)(logb n+ 2) and ψ(n) → n, implies ln > 2( 3

4 (p−
p0)2 logb e)−1 logb n. By plugging this lower bound of ln
into ∆1(ln), one can get ∆1(ln) < 2n−2. Meanwhile, by
plugging the condition that ln > 16ψ(n)(logb n+2) into
∆2(ψ(n)−1, ln), one can get ∆2(ψ−1(n), ln) < 2n−2.


