
UPC Implementation of an Unbalanced
Tree Search Benchmark

Jan Prins, Jun Huan Bill Pugh, Chau-Wen Tseng P. Sadayappan

Univ. of North Carolina
at Chapel Hill

Univ. of Maryland
at College Park

Ohio State University

October 2003

Abstract
We have developed an unbalanced tree search problem to evaluate the
ease of programming a parallel application requiring dynamic load
balancing and to benchmark the performance of such an application on a
variety of parallel systems. Here we describe the benchmark, and report
on its implementation using Unified Parallel C (UPC). We then examine
the performance of the UPC implementation on a number of parallel
systems.

1 Description of the benchmark
The goal of the unbalanced tree search benchmark (UTS) is to traverse an implicitly constructed tree with
parameterized size and imbalance. Implicit construction means that each node contains all information
necessary to completely construct its subtrees. The balance of a tree is a measure of the similarity in the
size of its subtrees. Highly unbalanced trees pose significant challenges for parallel traversal because the
work required for a simple depth first traversal of different nodes may vary greatly.

The benchmark simply counts the total number of nodes in the tree, but to generate the correct result
requires full traversal of the entire tree. Starting from the root node with a specified number of children,
the tree can be traversed in parallel and in any order.

Trees are generated using a Galton-Watson process [Har60], in which the number of children for each
node (other than the root) is generated following a distribution that is identical but independent for all
nodes. We use a binomial distribution in which each node has either zero or m>0 children. To create
deterministic results, the number of children is based on a cryptographic hash (SHA-1) associated with
each node. Each node is represented by a 20-byte id viewed as a 160-bit unsigned integer, with byte 0
representing the 8 most significant bits and byte 19 representing the 8 least significant bits. The id of the
root is r and the number of children of the root is nr. For a given node v other than the root, the number of
children n(v) is determined from the least significant 32 bits of its id as follows

⎪⎩

⎪
⎨
⎧

<=
otherwise ,0

2
)2mod(if ,)(32

32
q v mvn

where q and m are two parameters chosen so that 0 < q < 1 is the probability that a node will be an
interior node and 1 ≤ m ≤ 256 is the number of children of an interior node. To generate finite trees, we
require qm < 1.

For an interior node v with m children, the id c(v,i) of its child 0 ≤ i < m is defined as

 c(v,i) = SHA-1 (v ++ i)

where v ++ i is the 24-byte sequence formed by appending the value of i as a four byte value (most
significant byte first) to the least significant end of the 20-byte value of v, and SHA-1 is the cryptographic
hash function that converts any sequence of bytes (so in particular our sequence of 24 bytes) into a 20
byte digest [NIST94]. The use of a good cryptographic hash is important for three reasons: (1) the values
of the nodes are likely to be uniformly distributed, (2) the possibility of a collision among node ids
(which could give rise to an infinite tree) is infinitesimally small, and (3) carefully validated
implementations of SHA-1 exist which ensure that identical trees can be generated from the same
parameters on different architectures.

When the least significant 32 bits of the node representation is uniformly distributed, the expected
number of children of a node v is E(n(v)) = qm and the expected size of the tree below v is 1/(1-qm).
Therefore the expected size of the complete tree rooted at r is S(r) = 1 + nr /(1-qm). The variation in
subtree sizes increases as m gets larger, and as qm approaches 1.

Since tree generation using SHA-1 is completely deterministic, a tree is completely specified by the four
parameters (r, nr, q, m), representing the id of the root, the number of children directly below the root, and
the two parameters that govern the expected size and imbalance.

The table below lists the sizes of tree generated for three different values of the parameters. Trees T1 and
T2 are used to assess correct operation of the algorithm, while tree T3 is a highly unbalanced tree used in
performance evaluation.

Tree r (hexadecimal) nr q m S(r)
T1 0000 … 00000000 3200 0.234375 4 50,045
T2 0000 … 00000101 3200 0.234375 4 53,521
T3 0000 … 00000000 3200 0.124999 8 5,529,089

Performance is reported in nodes evaluated per second.

1.1 Unbalanced Work
The tree generation method allows us to specify highly unbalanced trees by careful selection of the
parameters. For example, tree T3 has qm = 0.999992 which is close to 1 and hence yields a large total
size for T3 (about 5.5M nodes) with high variability in subtree size. The sizes of the 3200 subtrees are
shown below (note the logarithmic scale): 82% of all nodes are in a single subtree, 98% of all nodes are
contained in just 0.5% of all subtrees, and nearly 90% of the subtrees of have just a single node.

This extreme distribution of sizes necessitates a dynamic load balancing strategy for the efficient parallel
traversal of trees. Good load balance using as little as two processors to traverse T3 already requires T3’s
largest subtree to be “split up” (as it holds 82% of the work). All nodes look alike in terms of their
possible subtree size, hence it is impossible to identify a set of nodes that subtend a given amount of work
without traversing the subtrees below those nodes. Efficient parallel traversal requires ongoing fine-grain
interaction among parallel tasks to balance load.

 2

3200 subtrees (q = 0.124999, m = 8)

1

10

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

su
bt

re
e

si
ze

 (l
og

 s
ca

le
)

1.2 Available parallelism
In gross terms the available parallelism is limited by the ratio of tree size to tree height. For example, tree
T3 has about 5.5M nodes and a maximum height of about 1300. Since traversal to depth 1300 requires a
chain of 1300 dependent SHA-1 evaluations, we cannot reduce running time when more than 5.5M/1300
≈ 4000 processors are used. In practice the usable parallelism limit would be reached much earlier due to
other serialization overheads such as those introduced by the load balancing strategy. We can adjust the
available parallelism by increasing m while decreasing q to keep qm approximately constant.

2 Implementation

A variety of strategies have been proposed to dynamically balance load in parallel computation. Of these,
work-stealing strategies place the burden of finding and moving tasks to idle processors on the idle
processors themselves, minimizing the overhead to processors that are making progress. Work-stealing
strategies have been investigated theoretically and in a number of experimental settings, and have been
shown to be optimal for a broad class of problems requiring dynamic load balance [BL94].

Our initial implementations of the UTS problem have used various forms of work-stealing. However, the
UTS problem is a difficult adversary for a work-stealing strategy. By construction, the expected size of a
subtree below an unexplored node is the same no matter where the node occurs in the tree, hence there is
no way to maximize the expected work stolen other than to steal a lot of unexplored nodes. However, the
likelihood that a depth first search of a tree has T unexplored nodes on the stack at a given time varies as
1/T, hence it may be difficult to find large amounts of work to steal. This is one of the properties of the
UTS problem that makes it a challenging benchmark. It is indeed our goal to construct a benchmark that
challenges all load balancing strategies, since such a benchmark can be used to assess some key
characteristics of the implementation language, runtime environment, and computing system. For
example, distributed-memory systems that require coarse-grain communication to achieve high
performance may be fundamentally disadvantaged with such parameter settings.

2.1 UPC implementation of UTS
UPC (Unified Parallel C) is a shared-memory programming model based on a version of C extended with
global pointers and data distribution declarations for shared data [CDC99]. The model can be compiled
for shared memory or distributed memory execution. It is the compiler’s responsibility to translate
memory addresses and insert inter-processor communication. A distinguishing feature of UPC is that
global pointers may be cast into local pointers for efficient local access. Explicit one-sided

 3

communication is also supported in the UPC run-time library via routines such as upc_memput() and
upc_memget().

We implemented work stealing in UPC. Instead of trying to steal procedure continuations as would be
done in Cilk, which requires cooperation from the compiler, in our UPC implementation we steal units of
work from a set of shared stacks, one for each parallel thread. The stacks hold tree nodes. Each thread
performs a depth-first traversal of some part of the tree using its own stack of nodes. A thread that
empties its stack tries to steal one or more nodes from some other thread’s nonempty stack and push them
onto its own stack for traversal. On completion the total number of nodes traversed in each thread can be
combined to yield the size of the complete tree.

local
access
only

stack top

stack bottom

shared

access

chunksize

local
access
only

stack top

stack bottom

shared

access

chunksize

We now consider the design of the stack. In addition to the usual push and pop operations, the stack must
also support concurrent stealing operations performed by other threads, which
requires the stacks to be allocated in the shared address space and that locks
be used to synchronize accesses. We must eliminate any overheads in the
depth-first traversal performed by each thread as much as possible. Thus each
thread must be able to perform push and pop operations at stack top without
incurring UPC shared address translation overheads or requiring locking
operations. The design at right shows the stack partitioned into two regions.
The region that includes the stack top can be accessed directly by the thread
with affinity to the stack using a local pointer. The remaining area is subject
to concurrent access and operations must be serialized through an access lock.
To amortize the manipulation overheads, nodes can only move in chunks of a
given size between the local and shared regions or between shared areas in
different stacks.

The stack design is easily expressed in UPC:

struct stealStack_t
{
 NODE stack[MAXDEPTH]; /* array representation of stack */
 int sharedStart; /* start index of shared portion */
 int local; /* start index of local portion */
 int top; /* index of stack top */
 upc_lock_t *stackLock; /* access lock for shared portion */
 int workAvail; /* # nodes available to steal */
};

typedef struct stealStack_t STEALSTACK;

The stealStack shared array provides a STEALSTACK for each thread. A local STEALSTACK pointer
ss provides direct access to the stack with affinity to the thread.

shared STEALSTACK stealStack[THREADS];
ss = (STEALSTACK *) &stealStack[MYTHREAD];

Using this data structure, the local push operation (for example) does not involve any shared address
references or lock operations:

 4

/* local push */
void push(STEALSTACK *s, NODE *c) {
 if (s->top >= MAXDEPTH)
 error("StealStack::push overflow");
 memcpy(&s->stack[s->top], c, sizeof(NODE));
 s->top++;
}

The release operation can be used to move a chunk of k nodes from the local to the shared region, when
the local region has built up a comfortable stack depth (at least 2k in our implementation). The chunk
then becomes eligible to be stolen. A matching acquire operation is used to move nodes from the shared
region back into the local stack when the local stack becomes empty.

/* release k nodes from local stack for shared access */
void release(STEALSTACK *s, int k) {
 upc_lock(s->stackLock);
 if (s->top - s->local >= k) {
 s->local += k;
 s->workAvail += k;
 }
 else
 error("StealStack::release do not have k nodes to release");
 upc_unlock(s->stackLock);
}

When there are no more chunks to reacquire locally, the thread must find and steal work from another
thread. A pseudo-random probe order is used to examine other stacks for available work. Since these
probes may introduce significant contention near the end of the traversal, workAvail is examined in each
stack without locking. Hence a subsequent steal operation may not succeed when the victim stack no
longer has the chunk of nodes observed during the probe. In this case the probe is retried.

If the chunk is available to be stolen, it is reserved in the critical region, and then transferred outside of
the critical region. This is to minimize the time the stack is locked. The strategy is safe because each
successful steal operation raises the stack bottom for subsequent operations. Since the number of steals is
quite small compared to the maximum stack size, this is reasonable. A more complex implementation
could reuse the space at a slightly higher cost.

When a thread out of work is unable to find any available work in any other stack, it enters a barrier and
contributes its count to the total. Because there may be a few nodes still being explored in the local
portion of a stack of some other thread, and these nodes might subsequently produce a large subtree, it is
possible that with the current implementation a thread could stop prematurely, although this is highly
unlikely. That eventuality would only have an effect in the overall performance, not the correctness of
the implementation. A proper two-phase protocol for detecting quiescence of the computation is needed
but was not implemented in the interest of expediency.

 5

/* steal k elts from thread i onto local stack
 * return false if k elts were not available in thread i
 */
int steal(STEALSTACK *s, int i, int k) {
 int victimLocal, victimShared, victimWorkAvail;
 int ok;

 /* lock stack in thread i and try to reserve k elts */
 upc_lock(stealStack[i].stackLock);
 victimLocal = stealStack[i].local;
 victimShared = stealStack[i].sharedStart;
 victimWorkAvail = stealStack[i].workAvail;
 ok = victimWorkAvail >= k;
 if (ok) {
 stealStack[i].sharedStart = victimShared + k;
 stealStack[i].workAvail = victimWorkAvail - k;
 }
 upc_unlock(stealStack[i].stackLock);

 /* if reservation succeeded, move elts to local stack */
 if (ok) {
 upc_memcpy(&stealStack[MYTHREAD].stack[s->top],
 &stealStack[i].stack[victimShared],
 k * sizeof(NODE)
);
 s->top += k;
 }

 return (ok);
}

Implementation size. Excluding the implementation of SHA-1, the total size of the UPC implementation
of UTS is 517 lines. If the shortcuts mentioned above were implemented properly, this would likely add
another 50% in length to the UPC code.

Performance characteristics. An important feature of the work stealing implementation is that the
chunksize can be varied independent of the problem size. The chunksize has a noticeable performance
impact, particularly in the case of distributed memory machine. If the chunksize is too small, the
overheads encountered in work stealing are not well amortized, and the performance decreases. If the
chunksize is too large, then we will only occasionally find a subtree that grows large enough to generate a
stealable chunk of work. In this case the load balance is poor, leading to lower performance.

The graph below illustrates this effect. In this case the performance and number of steals in the UTS
benchmark for tree T3 are reported using 8 processors of an SGI Origin 2000. The optimal chunk size is
around 20 in this case. Since the Origin is a shared-memory machine and efficiently supports fine grain
operations, the deterioration of performance at very small chunk size is limited, but still noticeable. The
performance impact of a large chunk size is clearly visible as the number of available steals starts to
approach the number of processors. The large variation in performance of runs with chunksize in the
range 50-200 (as shown by the error bars in the performance curve) indicate that work stealing becomes
unstable in the transition from small to large chunks.

 6

1

10

100

1000

10000

100000

1 10 100 1000 10000
steal chunk size

nu
m

be
r o

f s
te

al
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

(M

no
de

s
pe

r s
ec

on
d)

Steals
Performance

UPC – SGI Origin 2000 – 8 procs – UTS tree T3

1

10

100

1000

10000

100000

1 10 100 1000 10000
steal chunk size

nu
m

be
r o

f s
te

al
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

(M

no
de

s
pe

r s
ec

on
d)

Steals
Performance

1

10

100

1000

10000

100000

1 10 100 1000 10000
steal chunk size

nu
m

be
r o

f s
te

al
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

(M

no
de

s
pe

r s
ec

on
d)

Steals
Performance

UPC – SGI Origin 2000 – 8 procs – UTS tree T3

The impact of an overly small chunksize on the communication performance on UTS is better illustrated
when the same experiment is run using 8 processors of a Compaq Alphaserver SC (ES40), a machine with
a much higher UPC communication latency. In this case the optimal chunksize for maximal performance
is closer to 100 than 20. At this chunksize, the AlphaServer has an overall performance that is nearly
double the Origin 2000 performance at the same processor count.

0

0.5

1

1.5

2

2.5

3

1 10 100 1000
steal chunk size

Pe
rf

or
m

an
ce

(M
no

de
s

pe
r s

ec
on

d)

UPC – Compaq AlphaServer SC (ES 40) – UTS tree T3

0

0.5

1

1.5

2

2.5

3

1 10 100 1000
steal chunk size

Pe
rf

or
m

an
ce

(M
no

de
s

pe
r s

ec
on

d)

0

0.5

1

1.5

2

2.5

3

1 10 100 1000
steal chunk size

Pe
rf

or
m

an
ce

(M
no

de
s

pe
r s

ec
on

d)

UPC – Compaq AlphaServer SC (ES 40) – UTS tree T3

The optimal chunksize also increases slightly with the number of processors due to higher contention
overheads in work stealing at larger processor counts. Note that in the following graph, the performance
is normalized per processor.

 7

UPC - SGI Origin 2000 - p processors - tree T3

0

50000

100000

150000

200000

250000

1 10 100 1000chunksize

no
de

s/
se

c
pe

r p
ro

ce
ss

or

p = 2
p = 8
p = 30

Performance variation with architectuire. We summarize the performance of the UPC implementation
of UTS on a number of different machines in the graph below. Both the T3E and the Origin 2000 exhibit
excellent scaling. The The AlphaServer SC, while offering very high single processor performance, is
handicapped by very high latencies once communication between nodes is required.

UPC - UTS tree T3

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

processors

P
er

fo
rm

an
ce

 (M
no

de
s/

se
c)

SGI Origin 2000
AlphaServer SC (ES40)
T3E (flash)

A UPC optimization strategy that might provide a large payoff on the AlphaServer would be to compile a
sequence of statements of the form lock – update –unlock on shared data, (as found in the steal procedure
above) to use an “active message” that runs the body of the update on the remote processor once the lock
is required. On the AlphaServer it appears that each reference in the critical section was sent as a separate
communication once the lock was acquired, and this long –lived critical section resulted in increased
contention from other processors. On the Origin and the T3E, with low-latency fine-grain messages, the
overhead of sending several non local references in the critical section is not as large hence did not
exhibit the poor scaling behavior.

 8

Performance variation with programming paradigm. The UTS benchmark was implemented using
OpenMP and MPI, and the performance of these implementations was compared with the UPC
implementation using a 32 processor Origin 2000. A Cilk implementation developed by Bradley
Kuszmaul at MIT was run on a slightly older model of the Origin 2000 utilizing slower processors.
While we can not directly compare the performance of the Cilk and the UPC implementations at the
moment, our preliminary results indicate their performance is very similar when taking into account the
processor speed variations.

The initial OpenMP implementation based on a work-stealing strategy that used some centralized data
structures exhibited poor performance and scaling. An alternate OpenMP version was derived directly
from the UPC implementation, and follows it quite closely (the code size is very similar at 540 lines). As
shown below, this OpenMP implementation exhibits performance very similar to the UTS implementation
on the shared-memory Origin 2000. The OpenMP version can of course not be run in a competitive
fashion on a distributed memory machine.

Another version of the work-stealing strategy developed for a distributed memory model using MPI,
exhibits lower performance and scalability. The size of this version is 1068 lines (excluding the SHA-1
implementation).

UTS T3 performance of different implementations

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Processors (SGI Origin 2000)

pe
rr

fo
m

an
ce

 (M
no

de
s/

se
c) OMP

UPC
MPI

3 Bibliography

[BL94] R. Blumofe, C. Leiserson, “Scheduling multithreaded computations by work stealing", Proc.

35th Annual Symposium on Foundations of Computer Science (FOCS), ACM, 1994.
[CDC99] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren, “Introduction to UPC

and Language Specification”, Center for Computing Sciences Technical Report CCS-TR-99-
157, May 1999.

[Har60] T. E. Harris, The Theory of Branching Processes, Springer (Berlin), 1960.
[NIST94] Secure Hash Algorithm (Technical revision SHA-1), Federal Information Processing

Standards Publication 180-1 (1994), http://www.itl.nist.gov/fipspubs/fip180-1.htm

 9

	Description of the benchmark
	Unbalanced Work
	Available parallelism

	Implementation
	UPC implementation of UTS

	Bibliography

