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ABSTRACT
Motivation: In eukaryotic cells, alternative splicing expands the
diversity of RNA transcripts and plays an important role in tissue-
specific differentiation, and can be misregulated in disease. To
understand these processes, there is a great need for methods to
detect differential transcription between samples. Our focus is on
samples observed using short-read RNA sequencing (RNA-seq).
Methods: We characterize differential transcription between two
samples as the difference in the relative abundance of the transcript
isoforms present in the samples. The magnitude of differential
transcription of a gene between two samples can be measured by
the square root of the Jensen Shannon Divergence (JSD*) between
the gene’s transcript abundance vectors in each sample. We define a
weighted splice-graph representation of RNA-seq data, summarizing
in compact form the alignment of RNA-seq reads to a reference
genome. The Flow Difference Metric (FDM) identifies regions of
differential RNA-transcript expression between pairs of splice graphs,
without need for an underlying gene model or catalog of transcripts.
We present a novel non-parametric statistical test between splice
graphs to assess the significance of differential transcription, and
extend it to group-wise comparison incorporating sample replicates.
Results: Using simulated RNA-seq data consisting of four technical
replicates of two samples with varying transcription between genes,
we show that (1) the FDM is highly correlated with JSD* (r = 0.82)

when average RNA-seq coverage of the transcripts is sufficiently
deep, (2) the FDM is able to identify 90% of genes with differential
transcription when JSD* > 0.28, and coverage > 7. This represents
higher sensitivity than Cufflinks (without annotations), and rDiff
(MMD), which respectively identified 69% and 49% of the genes in
this region as differential transcribed. Using annotations identifying
the transcripts, Cufflinks was able to identify 86% of the genes
in this region as differentially transcribed. Using experimental data
consisting of four replicates each for two cancer cell lines (MCF7
and SUM102), FDM identified 1425 genes as significantly different
in transcription. Subsequent study of the samples using qRT-PCR
of several differential transcription sites identified by FDM, confirmed
significant differences at these sites.
Availability: http://csbio-linux001.cs.unc.edu/nextgen/software/FDM
Contact: darshan@email.unc.edu
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1 INTRODUCTION
The transcriptome is a key vantage point for a molecular biologist’s
study of phenotypic differences between cells that result from
environmental factors, cell specialization, or disease. Classically
this study has been conducted largely by observing differential
gene expression levels using microarrays or high-throughput
RNA sequencing technologies. However, detailed analysis of the
transcriptome has shown that significant variation is also encoded
in the diversity and relative abundance of a gene’s constituent
transcripts (Wang et al., 2008; Sultan et al., 2008; Kwan et al.,
2008). Consequently, beyond measuring differences in overall
expression of genes between samples, there is a need to measure
differences in expression at the transcript level.

We define differential transcription of a gene between samples
as a difference in the relative abundance of the gene’s transcript
isoforms in the samples. In this manner, differential transcription
is independent of the overall gene expression in the samples.

Short-read RNA sequencing technologies (RNA-seq) have
evolved rapidly to sample the transcriptome at increasing depth and
accuracy (Wang et al., 2009). Using RNA-seq datasets obtained
from samples, the locus and depth of coverage by reads aligned to
a reference genome provide the starting point for the detection of
differential transcription (Pan et al., 2008).

Recently, two approaches have emerged to detect differential
transcription between samples. The first approach is based on
transcript inference and abundance estimation of the transcripts, as
performed by tools like Cufflinks (Trapnell et al., 2010), rQuant
(Bohnert and Rätsch, 2010), Trans-Abyss (Robertson et al., 2010),
and Scripture (Guttman et al., 2010). Applying these methods to
each of two samples, differential transcription can be determined
directly for each gene using the estimated relative abundances of the
gene’s transcripts in the two samples. However, transcript inference
algorithms rely on heuristics to resolve the transcript structure
because the inference problem is, in general, underdetermined. As
a result, some transcripts may be missed or inferred incorrectly.
Abundance estimation, in turn, is not able to correctly explicate
the observed distribution of read alignments when starting from
an incomplete or incorrect transcript model. Thus differential
transcription measured in this fashion may be inaccurate.

The second approach to detect differential transcription is based
on observing loci in the reference genome at which reads from
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the two datasets align with different depth of coverage (after
appropriate normalization for differing gene expression). The idea
is that differential transcription should be revealed by different
utilization of some exons. (Stegle et al., 2010) describe two
methods along these lines. The first is based on a priori analysis of
annotated transcripts to identify regions that could reveal differential
transcription. In each region a Poisson statistical test is applied.
The second method is without dependence on known transcript
structure, and uses a non-parametric kernel-based statistical test
called Maximum Mean Discrepancy. Using synthetic data, both
methods are shown by (Stegle et al., 2010) to give accurate detection
of differential transcription.

In this paper we introduce an approach that does not depend
on annotations and instead leverages the splicing structure of
a gene uncovered by spliced read alignments using tools like
TopHat (Trapnell et al., 2009), MapSplice (Wang et al., 2010), or
PALMapper (Jean et al., 2010). Using the read alignments from
these tools, a splice graph is constructed with edges corresponding
to transcribed intervals or splices, weighted by read coverage.
We introduce the flow difference metric (FDM) to measure the
difference between two graphs in the relative utilization of edges
at splicing points. Using synthetic samples, for which we know the
transcripts and their relative abundances, we show the FDM between
two samples is highly correlated with the JSD*, provided coverage
of the edges is sufficient. Hence the FDM can serve as a metric
of differential transcription, without need to infer the underlying
transcripts, or need for any annotation.

To interpret the significance of the FDM we define a permutation
test that can be efficiently implemented on the splice graph
representation of the RNA-seq data. Since pairwise comparison of
two samples is often insufficient to draw robust conclusions about
differential transcription between two biological conditions, we
extend the statistical test to incorporate replicates in each condition,
when they are available. The test identifies differential transcription
that is significant between conditions more often than it is significant
within replicates.

2 METHODS

2.1 Jensen-Shannon Divergence as a Measure of
Differential Transcription

Let G be a gene with n different transcripts. In a given sample, the transcript
abundance vector for G gives the relative abundance of each transcript
isoform, i.e. the fraction of each isoform among all isoforms of G. One
measure of differential transcription between two samples A and B, with
transcript abundance vectors VA and VB , is the Jensen-Shannon Divergence

JSD(VA, VB) = H

(
VA + VB

2

)
−

H(VA) +H(VB)

2

where H(V ) is the Shannon entropy. The JSD itself is not a metric, but JSD*
=
√
JSD does satisfy the properties of a metric.

We adopt JSD* to measure differential transcription in this paper, because
it defines an objective measure of difference in transcript populations that is
independent of the computational methods we examine. It has also been used
to report differential transcription in other methods, e.g. CuffDiff (Trapnell
et al., 2010).
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Fig. 1. ACT-Graph: The nodes are genome coordinates. A solid (blue) edge
represents an exon or part of an exon labeled with the average depth of
read coverage along the interval. A dashed (green) edge is a splice edge
and is labeled by the number of reads that include the splice. Alternative
splicing features such as mutually exclusive exons, a retained intron, and a
skipped exon are illustrated. Nodes drawn as boxes, circles, and hexagons,
respectively represent annotated-only positions, novel-only splice positions
and both annotated and novel positions.

2.2 Aligned Cumulative Transcript Graph
(ACT-Graph)

The alignment of RNA-seq reads to a reference genome provides (1)
the genomic coordinates of transcribed bases and (2) the start and end
coordinates of splices. As a consequence of alternative splicing, transcribed
bases and splices may be part of multiple RNA transcripts and hence their
coverage by aligned reads reflects their total utilization by all transcripts.

In the literature, transcripts have been mostly represented as paths in an
acyclic directed graph with exons as nodes and splices as edges, e.g. (Heber
et al., 2002) and (Sammeth (2009) http://flux.sammeth.net/capacitor.html).
Analyzing the read coverage information with this data structure has
limitations. Firstly, this representation can only be used if all exons are
known beforehand, which is usually not the case. Secondly, if two or more
exons overlap in a region (e.g. in the case of alternative 5’ donor sites or 3’
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Fig. 2. ACT-Graph Compression (Section 2.2.2): Plot of file sizes of ACT-
Graph (ACTG), FastQ file (FASTQ) and the alignment file (SAM). As the
number of reads increases, the storage used by ACT-Graph increases orders
of magnitude more slowly than other representations.

acceptor sites), the read coverage needs to be determined separately for each
of those exons. Our graph representation addresses these limitations.

The ACT-Graph is a weighted directed acyclic multi-graph in which
nodes correspond to genomic coordinates of splice start or end sites or to
transcription start or end sites. Edges correspond to transcribed intervals
(exonic edge) or to spliced-out intervals (splice edge). The weight of an
exonic edge is its average coverage over the genomic interval it spans and
the weight of a splice edge is the number of reads that include the splice.
The direction of the edges is the direction of transcription. Each exonic edge
is transcribed as whole, i.e. it is included in its entirety in a transcript or not
at all.

In principle an ACT-Graph is the sum of weighted paths (flows), each of
which is a transcript with some specific abundance. Therefore, we named
the graph the Aligned Cumulative Transcript Graph (ACT-Graph). Figure
1 shows an example ACT-Graph. In practice, since reads are sampled non-
uniformly from transcripts due to various biases, we use average coverage as
an approximation of the total abundance.

2.2.1 ACT-Graph Construction. The following describes the step-
by-step construction of an ACT-Graph from RNA-seq data:

1. Spliced Alignment: RNA-seq reads are aligned to the reference genome
using a gapped aligner such as MapSplice (Wang et al., 2010).

2. ACT-Graph nodes: The ACT-Graph nodes are created using one of
the following: a) Splices: genomic coordinates of splice start and end
locations are obtained from spliced alignments b) Interpreting start and
end sites of transcripts: We can use inference or annotations to identify
these sites. We can infer the start of a transcript based on the observation
that the first (`-1) bases following the start coordinate, where ` is
the RNA-seq read length, show a characteristic ramp of increasing
coverage as there are increasingly many ways for a read to sample bases
further away from the start of a transcript. A transcription end site is
inferred similarly. Alternatively transcript start and end coordinates can
be taken from gene annotations, if available. Nodes introduced in this
fashion are not harmful if the transcripts happen not to be expressed.

3. ACT-Graph edges and weights: a) A splice edge is inferred from a
spliced alignment. The weight of the splice edge is the number of reads
that support the splice. The direction of the edge is inferred from the
orientation of the flanking bases in the intron for canonical splices or
it can be inferred from the direction of other splices in the gene. b)
An exonic edge connects two adjacent nodes (from the sorted list of

nodes) if the genomic interval is fully covered or nearly fully covered
and has an average coverage above threshold. We use a threshold of 1.
The weight of an exonic edge is the average coverage of that genomic
region. Averaging over the genomic region gives a better estimate of
the number of transcripts that use that genomic region.

4. ACT-Graph genes and transcribed regions: a transcribed region is a
connected component in the ACT-Graph when edges are considered
as undirected, and typically would correspond to genes. If gene
annotations are available, the regions can be restricted to known genes.
The coverage of a gene is defined as average base coverage over all the
bases of the exonic regions in the gene.

2.2.2 ACT-Graph Compressed Representation. The ACT-Graph is
stored in the standard GFF format. The field TYPE tells if the line describes a
node, a splice edge, or an exonic edge. The field SCORE is used for weight of
the edges. The ACT-Graph format is a concise summary of alignments; and
is powerful representation for quantitative analysis of alternative splicing.
Figure 2 shows the compression achieved by the ACT-Graph representation
as a function of the number of reads. The ACT-Graph is typically two to three
orders of magnitude smaller than the SAM file or the raw reads, depending
on the number of reads in the dataset and can be used for a number of
downstream analyses, such as differential transcription.

2.2.3 Alternative Splicing Features in ACT-Graph. The ACT-
Graph can be used to identify various alternative splicing features in a gene.
Each alternative splicing feature can be represented by a subgraph which
can be searched in the ACT-Graph. Figure 1 shows examples of various such
features in a gene.

2.3 Flow Difference Metric
In this section, we describe the Flow Difference Metric, which uses the
ACT-Graph to find genes with differential transcription. As stated earlier,
the ACT-Graph can be viewed as the sum of weighted paths or flows, each
of which corresponds to a transcript with some abundance. ACT-Graph
nodes that have m > 1 incoming or outgoing edges indicate that at least
m transcripts use that node. These nodes are called divergence nodes.
Divergence nodes imply alternative splicing. The m incoming/outgoing
edges are called the divergence edges. The weights of divergence edges
signify the relative abundances of alternative transcripts passing through the
divergence node. The normalized weights of all the divergence edges of a
node are grouped together in a vector called the flow vector for the node. The
difference between flow vectors in ACT-Graphs constructed from different
samples indicates the magnitude of differential transcription between the two
samples.

We measure the difference in flow vectors using a metric called the Flow
Difference Metric (FDM) which is defined as follows. Assume an ACT-
Graph has n divergence nodes. The flow vector for divergence node i of
sample A is defined as V A

i = [e(a, i)1, ..., e(a, i)m] where m is the
number of edges at node i and e(a, i)j is the normalized coverage at edge j,
such that

∑m
j=1 e(a, i)j = 1. The flow difference between samples A and

B at divergence node i is

FDi(A,B) =

m∑
j=1

|e(a, i)j − e(b, i)j |

The Flow Difference Metric (FDM) is computed as

FDM(A,B) =
1

2n

n∑
i=1

(FDi(A,B))

as illustrated in Figure 3.
It is important that ACT-Graphs of both samples have identical nodes and

edges. If a node or edge is present in only one ACT-Graph, it is added to
the other one with weight zero. The weights of exonic edges split by added
nodes are re-computed using the alignments.
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Fig. 3. FDM and JSD illustration: An example for a gene in two samples A and B is shown. The gene has two transcripts with expression ratio of 1:4 and 4:1
in the two samples, respectively. The FDM is computed using the two ACT-Graphs . The ACT-Graphs have 2 divergence nodes- node n2 has outdegree 2, and
node n5 has indegree 2. FDM(A,B) = 1

2n
(FDn2(A,B)+FDn5(A,B)) = 1

2·2 ((|0.8−0.2|+ |0.2−0.8|)+(|0.8−0.2|+ |0.2−0.8|)) = 0.6. The JSD

is computed using the ground truth knowledge of the transcript abundance vectors. VA = [0.2,0.8] and VB = [0.8,0.2]. JSD(VA, VB) = H
(

VA+VB
2

)
−

H(VA)+H(VB)
2

= 0.28. Thus JSD*= 0.53 is the magnitude of differential transcription representing ground truth.
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Fig. 4. Sensitivity and specificity of the FDM as a function of read coverage (Section 3.1.1 & 3.1.2) : Synthetic data of three sample pairs of 1500 genes each
is analyzed. The first sample pairs have low gene coverage ( coverage = [0,5]), the second sample pairs have medium gene coverage (coverage = [10,15]),
and the third sample pairs have high gene coverage (coverage of 20 or higher). (A) JSD* - FDM Correlation: The points in the scatter plots correspond to
(JSD*, FDM) values for a gene, where JSD* is ground truth and FDM is computed from ACT-Graphs. When the average gene coverage is high, the correlation
between JSD* and FDM is high. For average coverage higher than 20, the correlation is 0.819. (B) FDM as a classifier for JSD*: a gene is marked positive for
differential transcription if JSD* is more than 0.22 and negative otherwise. FDM is used to classify genes as positive or negative. Thus for each value of FDM,
we get some true positives and some false positives. By varying FDM, the complete curve is plotted. The FDM values of (0.01,0.02,0.04,0.08,0.16,0.32.0.64)
are marked on the curve. With coverage of 20 or higher, 90% of true positives can be identified with about 10% false positives.
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2.3.1 FDM Properties

Lemma: The FDM is between 0 and 1

Lemma: FDM is a metric

1. FDM(A,B) ≥ 0

2. FDM(A,B) = 0 if and only if A = B

3. FDM(A,B) = FDM(B,A)

4. FDM(A,B) ≤ FDM(A,C) + FDM(B,C)

The proofs of both lemmas are in the supplementary materials.

2.3.2 FDM Usage. FDM may be applied between ACT-Graphs
without need for normalization by the number of reads or read length,
because the FDM is based on ratios of coverage, and these factors scale
coverages linearly. Using synthetic data, we show that FDM has a high
correlation with JSD*. The details of this are in section 3.1. Since we do
not know the transcripts or their relative abundance, we use the FDM as a
metric for differential transcription.

2.4 Statistical Tests for Differential Transcription
2.4.1 Statistical test to find genes with significant differential
transcription. We use the FDM as a test statistic to find genes with
significant differential transcription between two samples. The ACT-Graph
of each gene is different, so the range of FDM values differs from one gene to
another. Thus the FDM value for a gene is in itself not sufficient to tell if the
differential transcription is significant. Instead, we devised a non-parametric
test to determine whether differential transcription is significant. We create
the null distribution of FDM for a gene, and test if the FDM value for the two
samples has a significant p-value. The null hypothesis is that the gene has no
differential transcription in two samples. The process of creating the FDM
null distribution is illustrated in Figure 6 in the supplementary materials.
Assume that there are N aligned reads in both the sample datasets. Create
ACT-Graphs for the two samples such that nodes and edges are identical.
The reads are partitioned into p equal-sized groups in both samples, and an
ACT-Graph is created from the alignments of each group of N/p reads. Thus
for each sample we have p ACT-Graphs. The 2p ACT-Graphs are randomly
shuffled into two groups of p partitions each and a composite ACT-Graph
for each group is created by simply adding the edge weights of the p ACT-
Graphs in the group. Now the FDM is computed between ACT-Graphs of
these two groups. This gives a value of the random variable which follows
the null FDM distribution. By shuffling partitions a sufficient number of
times, we get a null distribution of the FDM. In this fashion, the FDM
null distribution is created for each gene, and the p-value for the specific
partition that corresponds to the reads of the two samples can be computed.
Section 1.5 in the supplementary materials provides details on sensitivity to
the choice of p and the number of permutations.

2.4.2 Statistical test for multiple replicates. A single pairwise
comparison is often insufficient to draw robust conclusions about differential
transcription. Due to several uncontrolled factors, RNA-seq replicates may
vary considerably more than predicted from sampling error alone. Thus,
pairwise comparison between replicates may yield false positives. If we
have multiple replicates of the two samples, we can apply one more level
of permutation test to further filter the false positives. Let us assume that
there are r replicates each of the two samples. Replicates from first sample
are called group 1, and replicates from other sample are called group 2. The
FDM pairwise statistical test can be applied to all

(2r
2

)
pairs. Out of those,

r2 pairs are between replicates in different groups, and the rest are between
replicates in the same group. Now, if a gene has significant differential
transcription between groups more often than within groups, it is likely to
be true positive. The difference between groups and within groups is used as
the test statistic. By permuting the group label of the replicates, we get the

null distribution of the test statistic. The p-value of the statistic is computed
for the original labeling and tested for significance.

3 RESULTS

3.1 Experiments with Simulated Data
In biological data we typically do not know the exact set of transcripts and
their relative abundance in a sample, using which we could calculate the
JSD*. Hence we use synthetic data, for which we know the exact transcript
expression vectors for each gene, to determine (1) the correlation of the FDM
and the JSD* metrics, (2) the power of the FDM method when used as a
classifier for a particular value of JSD* under various levels of read coverage,
and (3) the advantage of the groupwise significance test.

The RNA-seq dataset is simulated as follows. We use the annotated
transcripts for human genome as a reference. Genes which have at least
two transcripts are selected. Each of the genes is assigned an expression
level sampled from an empirical distribution of observed expression levels
in human genes. The individual transcripts of the genes are each assigned a
relative abundance so that their sum is 1. The vector of relative abundances
is called the transcript expression vector. For example, a gene with two
transcripts T1 and T2 and a transcript expression vector of [p1, p2] indicates
that p1% of transcripts are T1 and p2% are T2. A read of size ` from a
transcript is a random segment of size ` taken from the transcript sequence
generated using the reference DNA. The number of reads generated from
a transcript is proportional to the product of gene coverage, transcript
expression and the length of the transcript. The alignment for every read is
known, and hence the input SAM datasets consist of reads that are uniquely
and perfectly aligned. Additional details on the datasets created can be found
in the supplementary materials.

3.1.1 FDM correlation with JSD*. We create three pairs of
simulated RNA-seq datasets each with different gene coverages. The three
pairs of datasets have 1500 genes each. They are generated by varying gene
coverages over three ranges - [0,5] , [10-15] and 20 or higher. The JSD* for
the genes is varied over the range 0.0 to 1.0.

The ACT-Graph is created for all the genes for both the samples in the
pair. The FDM is computed for each gene in the pair. From the transcript
expression vectors of the genes, the JSD*, which represents the ground truth
of differential transcription, is computed.

In Figure 4 we see that the correlation of FDM and JSD* increases as read
coverage of the gene increases. This is as expected; when gene coverage is
lower, the ACT-Graph edges will have lower weights. Since ratios are used,
a small change in edge weight caused by random effects would affect the
FDM considerably.

3.1.2 FDM as a classifier for JSD*. We tested if FDM can classify
genes as high JSD* genes and low JSD* genes. We call a gene positive for
high JSD* if the JSD* is greater than 0.22, and negative otherwise. This
threshold is arbitrary; we obtained similar results for other values. For each
gene, we create ACT-Graphs for two samples and compute the FDM. For
a constant c, if FDM > c, we classify the gene as positive. Some of the
positives are true positives (using JSD definition) and some false positives.
For each c, we get true positives and false positives. By varying c from 0.01
to 0.99 over a step of 0.01, we get the complete ROC. Figure 4 shows that
with high coverage, 90% of true positives can be identified with about 10%
of false positives.

3.1.3 FDM method over synthetic replicates. We created two
synthetic tissues over 2100 genes with at least two transcripts. The JSD*
between genes in the two tissues varies randomly over the range 0.01 to
1.00. The distribution of JSD* and log(Coverage) are in Figure 1(e) and
1(f) respectively in supplementary materials. Four replicates were created
for each of the tissues resulting in eight samples. FDM method was applied
over all the

(8
2

)
pairs of which 16 pairs were between group and 12 were
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Fig. 5. Detection of differential transcription by different methods. The circles in scatterplots (a - d) represent 2100 genes in two samples with varying
differential transcription (measured by JSD*) and varying depth of RNA-seq sampling (measured by the average coverage per transcribed nucleotide). Filled
circles correspond to genes with significant differential transcription according to each of the methods. (a) FDM consistently identifies differential transcription
when coverage is high or JSD* is high. For example, for genes with JSD* > 0.28 and log(coverage) > 0.85 (coverage > 7), FDM was able to identify 90%
of the genes as differentially transcribed. Two other methods not using annotations, (c) Cuffdiff (without annotations), and (d) rDiff (MMD), had lower
sensitivity, identifying differential transcription in 68%, and 49% of the genes in this region, respectively. (b) For comparison, when Cuffdiff with gene
annotations identifies 86% of the genes in this region as differentially transcribed.

within group comparisons. We used p-value ≥ 0.05 as significant. For
creating FDM null distribution, the number of partitions we used was 30
and the number of permutations was 1000. Section 1.5 in the supplementary
materials shows that increasing the number of partitions and permutations
has little effect on the results. The method finds 90 % of the genes which
have JSD* > 0.28 and coverage > 7 as significant.

3.1.4 Comparison with other methods. The results of FDM were
compared against other methods not using annotations, namely Cuffdiff
(without annotations) and rDiff (MMD), using synthetic RNA-seq datasets
defined in the previous section. We ran Cuffdiff as included in release
1.0.3 of the Cufflinks software. Since the data is synthetic and without
sampling bias, we deactivated the bias correction module. We used the
upper quartile normalization option in order to improve the accuracy of
the abundance estimation. All genes with p-value ≤ 0.05 were marked as

significant. We ran rDiff.web as provided in http://galaxy.tuebingen.mpg.de/.
The only option available for the software is which method to use: we
used the ”MMD-based” method. All the genes with p-value ≤ 0.05 were
marked as significant. The scatter plots in 5 show the results. For genes
with JSD* > 0.28 and coverage > 7, FDM was able to identify 90% of
the genes as differentially transcribed. This represents higher sensitivity than
Cuffdiff (without annotation) and rDiff (MMD), which identified differential
transcription between 68%, and 49% of the genes in this region, respectively.
For comparison, we also ran Cuffdiff with gene annotations, which identified
differential transcription in 86% of the genes in this region.

3.2 Experiments with Biological Data
We used RNA-seq data for 4 replicates each of the cancer cell lines MCF7
and SUM102. Each dataset has about 80 million single-ended reads of length
100 nucleotides.
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We used the FDM method to find genes with differential transcription
between SUM102 and MCF7. We used MapSplice to align the RNA-
seq datasets. Using these alignments, we created ACT-Graphs for all the
known genes. We applied the FDM statistical test to all the

(8
2

)
pairs of

replicates. Out of these 28 pairs, 6 pairs were of MCF7-MCF7, another
6 for SUM102-SUM102, and 16 were MCF7-SUM102. The number of
significantly different genes in single pair comparison are:

• MCF7-MCF7 : 1949 (average over 6 pairs)

• SUM102-SUM102: 1966 (average over 6 pairs)

• MCF7-SUM102: 2727 (average over 16 pairs)

Next we applied the statistical test for replicates to get the most significant
genes. After applying the replicates statistical test, 1425 genes were judged
to have significant differential transcription between MCF7 and SUM102.
CD46 is one of the genes found to be significantly different. The UCSC
browser bedgraph tracks for gene CD46 (Figure 6) shows that the middle
exon has a different skipping ratio in MCF7 and SUM102. Additional
examples can be found in the supplementary materials.

We performed qRT-PCR on three genes to validate the FDM results.
Details for the method can be found in Section 1.4 of the supplementary
materials. For CD46, the skipped exon (chr1:207963598-207963690) was
found to be expressed more than two fold higher in SUM102 than in
MCF7 as measured by qRT-PCR. Working from the ACT-Graphs, average
skipping ratios in the MCF7 samples were 0.16 and in the SUM102 samples
were 0.5 predicting an average 3.1 fold change. For NPC2 (shown in the
supplementary materials), the retained intron (chr14:74946991-74947405)
was expressed at least ten fold more in MCF7 than in SUM102 as measured
by qRT-PCR. Working from the ACT-Graphs, an average fold change of 25
was predicted. Both experimental results were in congruence with the FDM
results. Using Cuffdiff with annotations on our dataset, NPC2 was judged
to have significant differential transcription, but the test for CD46 failed and
thus was inconclusive.

A third gene ZNF408 (shown in the supplementary materials) gave a
different result in the biological experiment than predicted by the FDM
method. We directly resequenced cDNA derived from the mRNA from both
cell lines and genomic DNA from both cell lines. The region of interest
(chr11:46724721-46724734) has a high number of mutations in MCF7
compared to the reference genome, a common observation for cancer cell
lines and cell lines that have been propagated extensively. This caused reads
from a region of MCF7 to not align to the reference genome, and present a
difference in the ACT-Graphs. Thus the incorrect result is due to alignment
limitations, rather than to FDM.

4 DISCUSSION
4.1 FDM - JSD* correlation
Although Figure 4 shows a high correlation between FDM and
JSD*, there still are genes with high FDM and low JSD*. These
genes are artifacts of low coverage at some divergence nodes and
could be filtered out. Since FDM uses ratios, a variance in small
edge weights can cause high variance in the flow difference.

There are also some genes with high JSD* but low FDM. These
can be due to complex gene models with many transcripts giving
rise to many divergence nodes. When most transcripts have low
abundance and are unchanged between samples and just a few
similar transcripts have larger abundance changes, then JSD* can be
large, yet only a few divergence nodes observe large flow changes,
and these are attenuated by the remaining unchanged nodes to create
an FDM value that is not exceptional under permutation testing.
Focusing on divergence nodes with flow differences could improve
detection of these cases.
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Fig. 6. UCSC browser: Gene CD46 in MCF7 and SUM102 (Section 3.2).
The first 4 samples are from MCF7 and next 4 samples are from SUM102.
This gene was identified as a gene with differential expression using FDM
methodology. Note that the middle exon is skipped in different ratios in
MCF7 and SUM102. This result was verifed by qRT-PCR. Additional figures
in supplement.

4.2 FDM and sequencing bias
Sample preparation protocols can introduce significant deviations
from the assumption of uniform sampling of reads along transcript
isoforms, in ways which are not fully understood. It is useful to
consider how such sampling bias would affect FDM. Roberts et al.
(2011) cite two types of sampling bias.

Sequence-specific bias (Hansen et al., 2010) is related to the
underlying sequence of nucleotides in a transcript, resulting in
preferential locations for read starts. Sequence-specific bias affects
the count of reads whose alignment starts within an exonic edge in
the ACT-Graph the same way for all transcripts utilizing the exonic
edge. Associating average coverage with such an edge both smooths
local variation due to sequence-specific bias, and is independent of
the underlying transcripts involved. In effect, sequence-specific bias
is minimized in this fashion.

Position-specific bias (Bohnert and Rätsch, 2010) is related to
position in the transcript, and results in increased sampling at
transcript starts and ends. Position-specific bias affects both exonic
and spliced edge coverage according to the specific transcript
utilizing the edge, and this will change as the relative abundance
of transcripts changes, which will alter the magnitude of the flow
difference in a divergence node. However, we have indicated that
the magnitude of a gene’s FDM signal varies by gene, and for this
reason a non-parametric test is used to determine significance. Thus
we believe the effect of position-specific bias will not substantially
affect the determination of significance. In summary, while further
investigation and validation is needed, we expect FDM to be largely
insensitive to sequence-specific and position-specific sampling bias.
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4.3 FDM and read length
The FDM method is specifically designed to detect differential
transcription with short reads (35 - 100 nt), for which transcript
reconstruction can be unreliable and, we would argue, is not needed.
As we increase read length, read alignments become more accurate
and the coverage on ACT-Graph edges increases, both of which
improve the accuracy of the method. At the same time, if increased
read length comes at the expense of deep sampling (under a fixed
throughput assumption), then sensitivity would be expected to
decrease.

Paired end reads can improve FDM accuracy depending on
the operation of the underlying RNA-seq aligner. At the least,
paired-end reads yield higher quality alignments because of the
extra constraints on mate pair distance and alignment orientation.
MapSplice aligns paired end reads using these constraints and also
incorporates a maximum likelihood method operating on the splice
graph to infer the alignment of the complete insert, including the
unsequenced fragment, given the distribution of insert lengths (Hu
et al., 2010). This results in an effective increase in read length and
coverage and hence can improve the accuracy of FDM.

5 CONCLUSION
While splice graphs were introduced nearly a decade ago (Heber
et al., 2002), our definition is intended to record RNA-seq read
coverage in such a graph (this is also the approach taken in the
Flux Capacitor). To make such graphs efficient to analyze, we
choose a specific representation that differs from classic splice
graphs. Nodes are labeled with genomic coordinates which are
unique and help address the ambiguities caused by overlapping
exons and unannotated genomic regions. The node labels are also
well suited for computing the union of graphs from which the edge
set for comparison of coverages is easy to determine. The ACT-
Graph representation can dramatically decrease the data storage
requirement for RNA-seq data. It is not a lossless compression as
the underlying reads cannot be recovered from the ACT-Graph,
but it does suffice for the analysis of differential expression and
transcription.

The Flow Difference Metric captures the signal of differential
transcription directly from a pair of ACT-Graphs, without
knowledge or inference of the underlying transcripts, or need for
normalization. The FDM has high correlation with JSD*, which is
an independent measure of differential transcription. We showed
that FDM can be used as classifier for differential transcription.
We presented a statistical method using a permutation test on
ACT-Graphs to find genes with significant differential transcription
between pairs of samples or between groups of replicates.
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Bohnert, R. and Rätsch, G. (2010). rQuant.web: a tool for RNA-Seq-based transcript

quantitation. Nucleic Acids Research, 38(suppl 2), W348–W351.
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan,

L., Koziol, M. J., Gnirke, A., Nusbaum, C., Rinn, J. L., Lander, E. S., and Regev,
A. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse
reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology,
28(5), 503–510.

Hansen, K. D., Brenner, S. E., and Dudoit, S. (2010). Biases in Illumina transcriptome
sequencing caused by random hexamer priming. Nucleic Acids Research, 38(12),
e131.

Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., and Pevzner, P. A. (2002). Splicing
graphs and EST assembly problem. Bioinformatics, 18(suppl 1), S181–S188.

Hu, Y., Wang, K., He, X., Chiang, D. Y., Prins, J. F., and Liu, J. (2010). A probabilistic
framework for aligning paired-end RNA-seq data. Bioinformatics, 26(16), 1950–
1957.

Jean, G., Kahles, A., Sreedharan, V. T., Bona, F. D., and Rätsch, G. (2010). RNA-Seq
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FDM: Differential Transcription Analysis Supplementary Materials

1 SUPPLEMENTARY MATERIALS
1.1 FDM Properties and Proofs

Lemma: The FDM is between 0 and 1
Proof: Let A and B be the two samples. For a given gene, assume
that there are n divergence positions in the ACT-Graphs. Let V A

i

and V B
i be the flow vectors for divergence node i for samples A and

B respectively. Let V A
i = [e(a, i)1, ..., e(a, i)m].

Let FDi(A,B) be the flow difference at the divergence node i:

FDi(A,B) =

m∑
j=1

|e(a, i)j − e(b, i)j |

Since absolute value is non-negative:

FDi(A,B) =

m∑
j=1

|e(a, i)j − e(b, i)j | ≥ 0 (1)

Mathematically,

|e(a, i)j − e(b, i)j | ≤ |(e(a, i)j)|+ |(e(b, i)j)|

Thus,

m∑
j=1

|e(a, i)j − e(b, i)j | ≤
m∑

j=1

|e(a, i)j |+
m∑

j=1

|e(b, i)j |

By definition,

m∑
j=1

e(a, i)j = 1;

m∑
j=1

e(b, i)j = 1.

Also, since e(a, i)j and e(b, i)j are positive numbers,

FDi(A,B) ≤ 1 + 1 = 2 (2)

By definition,

FDM(A,B) =
1

2n

n∑
i=1

(FDi(A,B))

From equations 1 and 2,

0 ≤ FDi(A,B) ≤ 2

1

2n
· n · 0 ≤ 1

2n
·

n∑
i=1

(FDi(A,B) ≤ 1

2n
· n · 2

0 ≤ FDM(A,B) ≤ 1

The FDM always lies between 0 and 1 irrespective of gene’s size or
number of constituent transcripts.

Lemma: FDM is a metric
Proof:

1. FDM(A,B) ≥ 0

2. FDM(A,B) = 0 if and only if A = B
Proof: FDM will be zero if and only if FDi = 0 at all the
i divergence nodes. FDi = 0 if and only if percent flow at
each of the paths is exactly same. Please note that FDM will
also be zero if one ACT-Graph has all the edge weights of the
other ACT-Graph scaled up by the same factor. In that case
also, the ACT-Graphs would represent the same transcripts
with same relative abundances, though with different overall
gene expression.

3. FDM(A,B) = FDM(B,A)
Proof: FDM is sum of absolute differences, and absolute
difference is commutative.

4. FDM(A,B) ≤ FDM(A,C) + FDM(B,C)
Proof: For a divergence node i, let V A

i be flow vector for A,
V B
i be flow vector for B and V C

i be flow vector for C. Let
V A
i = [e(a, i)1, ..., e(a, i)m]. V B

i and V C
i also are similarly

defined.

FDi(A,B) =

m∑
j

|e(a, i)j − e(b, i)j |

Mathematically,

|e(a, i)j − e(b, i)j | ≤ |e(a, i)j − e(c, i)j |+|e(b, i)j − e(c, i)j |

Thus

FDi(A,B) ≤ FDi(A,C) + FDi(B,C).

Summation over all divergence nodes gives

FDM(A,B) ≤ FDM(A,C) + FDM(B,C)

Here, we assume that all the three ACT-Graph have same nodes
and edges.

1.2 Simulated Data Results
Secns 3.1.1 and 3.1.3 in the main document describe two different
experiments with different purposes. The synthetic data for the
experiments was generated from a large space of potential inputs
that can be tested for differential transcription. An input consists of
a gene (selected from genes annotated with two or more transcript
isoforms), a gene expression level (selected from an empirical
distribution of gene expression levels) for each sample, and a
relative abundance profile for the isoforms for each sample (also
selected from an empirical distribution of profiles).

For the two experiments, different conditions determined the
number of inputs (i.e. genes) to be tested. In the first experiment, the
3 intervals of coverage had different numbers of genes falling into
each interval, and the goal was to have the same number of genes
in each interval for fairness of comparison. Thus the number of
genes in each interval was limited to 1500, approximately the fewest
number in any interval. The total number of reads in this experiment
was 100 million. Since these reads were generated in one run and the
genes were separated according to interval of coverage, it is difficult
to tell how many reads pertain to each of the three categories.

In the second experiment the goal was to limit the space of
inputs to cover 3 orders of magnitude in gene expression levels
(again, empirically determined). This resulted in 2100 genes for this
experiment, and about 2.75 million 100 bp reads in each sample.
The distribution of coverage values and JSD* values in the set of
inputs is shown in 1 (c) and (d).
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Fig. 1. The rDiff (Poisson) method using gene annotations is compared with FDM on the detection of differential transcription on our synthetic dataset with
2100 genes. For genes with JSD* > 0.28 and log(coverage) > 0.85, rDiff (Poisson) identified differential transcription between 34% of the genes. The
histograms (c,d) are the distributions in our dataset of average coverage of the genes and JSD* respectively.

1.3 Biological data results
1.3.1 Examples of genes which are differentially transcribed in
MCF7 and SUM102 Figures 2, 3 and 4 provide examples of
differential transcription between two groups of samples. In each
of the figures, the first four samples are from MCF7 cancer cell line
MCF7 and the next four are from cancer cell line SUM102.

1.3.2 Example of gene where within-group differential transcription
is also significant We observed that some genes have variation
within replicates. The replicates statistical test filtered off such
genes. Figure 5 gives example of one such gene.

1.4 qRT-PCR validation
RNA was isolated from the cell lines using standard Trizol protocol
(Invitrogen, Inc.). Genomic DNA was isolated using PureGene
DNA isolation kit (Qiagen, Inc). cDNA was made from the RNA

with SuperScript cDNA synthesis kit (Invitrogen, Inc.) and oligo-
dT primers (Bioneer, Inc). PCR was performed using reagents from
New England Biolabs on an Eppendorf epGradient Mastercycler;
qRT-PCR was performed with Bio-Rad Syber Green reagents on a
C1000 five color thermocycler (Tm 54-55 C).

CD46 forward and reverse primers:
TACCTAACTGATGAGACCCACAGA and
AAGCAAACCTTTCTCTCATCTCTC.

NPC2 forward and reverse primers:
TAACCCTAGGGCAAGTTATCAGAC and
GGTTGAAGGAAAGAAGAGAGAGTG.

Sequencing of PCR products from cDNA and DNA was
performed at the UNC Genomic Analysis Facility. Sequence
cleanup was performed using 4peaks software
(http://www.mekentosj.com/).
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Fig. 2. NPC2: MCF7 shows evidence of first intron retention and second
exon skipping. The first exon retention was confirmed by qRT-PCR
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Fig. 3. ZNF408: MCF7 shows evidence of a transcript which doesn’t occur
in SUM102. This transcript uses the splice occuring only in MCF7. qRT-
PCR could not confirm this result. We directly resequenced cDNA derived
from the mRNA from both cell lines and genomic DNA from both cell lines.
The region of interest (chr11:46724721-46724734) has a high number of
mutations in MCF7 and SUM102 compared to the reference genome, a
common observation for cell lines that have been propagated extensively.
This caused errors in read alignments. FDM method uses read alignments as
input. Incorrect input caused FDM method to give incorrect results
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Fig. 4. MAT2B: First exon is different in SUM102 transcripts
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Fig. 5. TPD52: The middle exon is skipped in different ratios within MCF7
replicates and within SUM102 replicates also. FDM replicates statistical test
rejected this gene as significant
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Table 1. Parameters for FDM Runs

FDM Run num partitions num permutations num output genes

Run 1 30 1000 1010
Run 2 30 1000 999
Run 3 30 2000 998
Run 4 30 2000 1007
Run 5 30 4000 1004
Run 6 30 4000 1001
Run 7 60 1000 1013
Run 8 120 1000 999

Table 2. Results by varying number of partitions

Run 1 (1010) Run 7 (1013) Run 8 (999)

Run 1 (1010) 963 (95.3%) 962 (95.2%)
Run 7 (1013) 963 (95.0%) 957 (94.5%)
Run 8 (999) 962 (96.3%) 957 (95.8%)

Each item in the cross tab shows the number of genes, and the percentage
of genes common between the runs indicated by row and column headers.
The parameters used in all the runs are given in Table 1.

Table 3. Results by varying number of permutations

Run 1 (1010) Run 3 (998) Run 5 (1004)

Run 1 (1010) 956 (94.7%) 958 (94.9%)
Run 3 (998) 956 (95.8%) 957 (95.9%)
Run 5 (1004) 958 (95.4%) 957 (95.3%)

Each item in the cross tab shows the number of genes, and the percentage
of genes common between the runs indicated by row and column
headers.The parameters used in all the runs are given in Table 1.

Table 4. Results by not varying any parameters

First Run Second Run Common Genes

Run 1 (1010) Run 2 (999) 955 (94.6%)
Run 3 (998) Run 4 (1007) 955 (95.7%)
Run 5 (1004) Run 6 (1001) 952 (94.8%)

Each item in the cross tab shows the number of genes, and the
percentage of genes common between the runs indicated by
row and column headers.The parameters used in all the runs
are given in Table 1.

1.5 Results by varying parameters for statistical test
We ran the FDM method on synthetic data for two tissues each
having four replicates. All the samples had same set of 2600
genes. The FDM method was run multiple times by varying the
two parameters - number of partitions and number of permutations.
Table 1 describes the parameters used in the runs.

Table 2 shows that increasing the number of partitions beyond
30 had little effect on the results. The number of common genes
in all pairs of runs with different number of partitions was around
95%. Since, the p-value was set to 5%, we expect to have 5%
false positives in each run. Similarly, table 3 shows that increasing
permutationsbeyond 1000 has little effect on the results. Running
the FDM without varyingparameters gives similar results as shown
in table 4.

1.6 FDM Statistical Test
The process of creating the FDM null distribution is illustrated in
figure 6. Assume that there are N aligned reads in both the sample
datasets. Create ACT-Graphs for the two samples such that nodes
and edges are identical. The reads are partitioned into p equal-
sized groups in both samples, and an ACT-Graph is created from
the alignments of each group of N/p reads. Thus for each sample
we have p ACT-Graphs. The 2p ACT-Graphs are randomly shuffled
into two groups of p partitions each and a composite ACT-Graph
for each group is created by simply adding the edge weights of the
p ACT-Graphs in the group. Now the FDM is computed between
ACT-Graphs of these two groups. This gives a value of the random
variable which follows the null FDM distribution. By shuffling
partitions a sufficient number of times, we get a null distribution
of the FDM. In this fashion, the FDM null distribution is created for
each gene, and the p-value for the specific partition that corresponds
to the reads of the two samples can be computed.
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Fig. 6. FDM Statistical Test for a pair: The aligned reads for a gene are divided in p equal-sized partitions for both the samples. ACT-Graphs are created for
each of the 2p partition that are randomly shuffled to make two groups of p partitions. The ACT-Graphs of each group is created by directly adding the edge
weights of p ACT-Graphs. The FDM is computed for two ACT-Graphs. The last two steps are performed N times to get a null distribution for FDM for the
gene. If the FDM of the original samples is significant over the null distribution, the gene as significant differential transcription in the pair. This process is
performed for all the genes to find all the genes with significant differential transcription in the pair.
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