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Abstract

The KHEPERA system is a toolkit for the rapid im-
plementation and long-term maintenance of domain
specific languages (DSLs). Our viewpoint is that
DSLs are most easily implemented via source-to-
source translation from the DSL into another lan-
guage and that this translation should be based on
simple parsing, sophisticated tree-based analysis and
manipulation, and source generation using pretty-
printing techniques. KHEPERA emphasizes the use
of familiar, pre-existing tools and provides support
for transformation replay and debugging for the DSL
processor and end-user programs. In this paper, we
present an overview of our approach, including im-
plementation details and a short example.

1 Introduction

Domain specific languages (DSL) can often be im-
plemented as a source-to-source translator composed
with a processor for another language. For example,
PIC [8], a classic “little language” for typesetting
figures, is translated into troff, a general-purpose
typesetting language. Language composition can be
extended in either direction: the CHEM language
[1], a DSL used for drawing chemical structures, is
translated into PIC, while troff is commonly trans-
lated into PostScript.

Other DSLs translate into general-purpose high-level
programming languages. For example, ControlH, a
DSL for the domain of real-time Guidance, Naviga-
tion, and Control (GN&C) software, translates into
Ada [5]; and RISLA, a DSL for financial engineering,
translates into COBOL [18].

The composition of a DSL processor with (for ex-

ample) a C compiler is attractive because it pro-
vides portability over a large class of architectures,
while achieving performance through the near uni-
versal availability of architecture-specific optimizing
C compilers.

Yet there are some drawbacks to this approach.
While DSLs are often simpler than general purpose
programming languages, the domain-specific infor-
mation available may result in a generated program
that can be much larger and substantially different
in structure than the original code written in the
DSL. This can make debugging very difficult: an
exception raised on some line of an incomprehensi-
ble C program generated by the DSL processor is a
long way removed in abstraction from the DSL input
program.

Since the DSL processor is composed with a native
high-level compiler, and does not have to perform
machine-code generation or optimization, we believe
that there are some basic differences between the
construction of a compiler for a general purpose pro-
gramming language and the construction of a trans-
lator for a DSL. Our view is that DSL translation is
most simply expressed as

1. simple parsing of input into an abstract syntax
tree (AST),

2. translation via sophisticated tree-based analysis
and manipulation, and

3. output source generation using versatile pretty-
printing techniques.

We add the additional caveat that the translation
process retain enough information to support the in-
verse mapping problem, i.e., given a locus in the out-
put source, determine the tree manipulations and in-
put source elements that are responsible for it. This
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Figure 1: Transformation Process

facility would be useful both for the DSL developer
to trace erroneous translation and for the DSL user
to trace (run-time) errors back to the input source.

For the translation step we advocate the use of arbi-
trary AST traversals and transformations. We be-
lieve that this approach is simpler for source-to-
source translation than the use of attribute gram-
mars, since it decouples the AST analysis and pro-
gram synthesis from the grammar of the input and
output languages. Further, this approach minimizes
the need for parsing “heroics”, since simple gram-
mars, close or identical to the natural specification
of the DSL syntax, can be used to generate an AST
that is specialized in subsequent analysis. By decou-
pling the input grammar, translation process, and
output grammar, this approach is better able to ac-
commodate changes during the evolution of the DSL
syntax and semantics.

Throughout this paper, we will use “AST” to refer
to abstract syntax tree derived from parsing the in-
put file, and to any intermediate tree-based repre-
sentations derived from this original AST, even if
those representations do not strictly represent an
“abstract syntax”.

In our own work we use the DSL paradigm in the
compilation of parallel programs. We are particu-
larly interested in the translation into HPF of ir-
regular computations expressed in the PROTEUS [12]
language, a DSL providing specialized notation. Our
observation was that we were spending a dispropor-
tionate amount of effort working on a custom trans-
lator implementation to incorporate changes in PRO-
TEUS syntax and improvements in the translation
scheme—thus we were motivated to investigate gen-
eral tool support for DSL translation to simplify this
process.

1.1 Goals for a DSL Implementation
Toolkit

The implementation of a DSL translator can require
considerable overhead, both for the initial implemen-
tation and as the DSL evolves. A toolkit should
leverage existing, familiar tools as much as possi-
ble. Use of such tools takes advantage of previous
implementor knowledge and the availability of com-
prehensive resources explaining these tools (which
may not be widely available for a DSL toolkit).

A transformational model for DSL design fits in well
with these high-level goals. Consider the problem of
translating a program, P, written in the domain spe-
cific language, L. In Figure 1, Tj is an AST which
represents P after the parsing phase, p. T is the
final transformed AST, and P’ is a valid program in
the output language, L', constructed from T, during
the pretty-printing phase, ¢. The transformation
process is viewed as a sequential application of var-
ious transformations functions, 741 (T%) = Th+1, to
the AsT. The determination of which transforma-
tion function to apply next may require extensive
analysis of the AST. Once the transformation func-
tions are determined, however, they can be rapidly
applied for replay or debugging.

Within a transformational model, a DSL-building
toolkit can simplify the implementation process by
providing specialized tools where pre-existing tools
are not already available, and to transparently inte-
grate support for debugging within this framework.

The KHEPERA system facilitates both the problem
of rapid DSL prototyping and the problem of long-
term DSL maintenance through the following spe-
cific design goals:

Familiar, modularized parsing components.
KHEPERA supports the use of familiar scanning and
parsing tools (e.g., the traditional lex and yacc, or
the newer PCCTS [11]) for implementation of a DSL



processor. Because KHEPERA concentrates on pro-
viding the “missing pieces” that help with rapid im-
plementation of DSLs, previous knowledge can be
utilized, thereby decreasing the slope of the learning
curve necessary for the rapid implementation of a
DSL.

Familiar, flexible, and efficient semantic anal-
ysis. KHEPERA uses the source-to-source transfor-
mational model outlined in Figure 1. This model
uses tree-pattern matching for AST manipulation,
analysis, and attribute calculation. For tedious
but common tasks, such as tree-pattern match-
ing, sub-tree creation, and sub-tree replacement,
KHEPERA provides a little language for describ-
ing tree matches and for building trees. For un-
predictable or language-specific tasks, such as at-
tribute manipulation or analysis, the KHEPERA little
language provides an escape to a familiar general-
purpose programming language (C). Standard tree
traversal algorithms are supported (e.g., bottom up,
top down), as well as arbitrarily complicated syntax-
directed sequencing. Rapid pattern matching is pro-
vided via data-structure maintenance, which can
perform rapid pattern matches in a standard tree
traversal order for many commonly-used patterns.

Familiar output mechanism. A pretty-printing
facility is provided that can output the AST in an
easily readable format at any time. One strong ad-
vantage of this pretty-printer when compared with
other systems is that it will always be able to print
the AST, regardless of how much of the transforma-
tion has been performed. If the AST is in the original
input format or the original output format, then the
pretty-printed program will probably be executable
in the input language, L, or the output language, L'.
However, if the AST being printed is one of the T}, in-
termediate trees, then the output will use some com-
bination of the syntax of L and L', with a fallback to
simple S-expressions for AST constructs which do not
have well-defined concrete syntax. While the pro-
gram printed may not be executable, it does use a
familiar syntax which may be helpful for the human
when replaying transformations while debugging.

Debugging support for DSL translation.
KHEPERA tracks transformation application and
AST modifications, can replay the transformation
sequence, and has support for answering questions
about which transformations were applied at which
points on the AST. This is helpful when writing and
debugging the DSL processor, as well as when im-
plementing a debugger for the DSL itself.

Transformations are either written in the high-
level KHEPERA language and are transformed by
KHEPERA into executable C with calls to the

KHEPERA library (as discussed in Section 4.6 and
shown in Figure 8 and Figure 9); or the transforma-
tions are written using explicit calls to the KHEPERA
library tree manipulation functions. In either case,
low-level hooks in the KHEPERA library track debug-
ging information when nodes or subtrees are created,
destroyed, copied, or replaced. This low-level in-
formation can be analyzed to provide the ability to
navigate through intermediate versions of the trans-
formed program, and the ability to answer specific
queries that support the debugging of the final trans-
formed output:

e setting breakpoints

e determining current execution location (e.g., in
response to a breakpoint or program exception)

e reporting a procedure traceback

e displaying values of variables

These tracking and debugging capabilities are the
subject of Faith’s forthcoming dissertation and will
be not be discussed in detail in this paper. An exam-
ple of setting a breakpoint will be shown in Section 4.

2 Related Work

KHEPERA is similar to some compiler construction
kits. However, these systems usually restrict the
scanning and parsing tools used [6]; specify AST
transformations using a low-level language, such
as C [17] (instead of a high-level transformation-
oriented language); or require that the AST always
conforms to a single grammar specification, making
translation from one language to another difficult
[4, 3, 14]. Further, some systems rely on an attribute
grammars for all AST transformations, without pro-
viding for a more general-purpose scheme for tree-
pattern matching and replacement.

SORCERER, from the PCCTS toolkit [11], is the most
similar, since it does not require the use of specific
scanning and parsing tools, and since it provides a
“little language” in the style of lex and yacc with
embedded procedures written in another general-
purpose programming language (e.g., C). SORCERER
and KHEPERA share abilities to describe tree struc-
tures, perform syntax-directed translations, and
support the writing of AST-based interpreters. In
contrast, KHEPERA also supports rule-based trans-
lations that do not require a complete grammar spec-
ification; KHEPERA rules are well suited for the con-
struction of “use-def” chains, data-flow dependency
graphs, and other compiler-required analyses; and
writing pretty-printer rules in KHEPERA does not



require a complete tree-grammar specification. This
allows pretty-printing to easily take place during
grammar evolution.

None of the previous systems, including SORCERER,
contain built-in support for “replay” of transforma-
tions, or for automatic and transparent tracking of
debugging information. When translating programs
from one language to another, the “discovery” of the
best order for transformation application is often dif-
ficult, involving considerable AST analysis. The code
to perform this analysis is often difficult to verify or
is undergoing constant change during the implemen-
tation phase of a DSL. However, after the transfor-
mations are discovered and recorded in a database,
a much simpler program (i.e., one that is easier to
verify) could be written that applies all of the discov-
ered transformations in the specified order, thereby
proving, by construction, that the translation pre-
serves semantics. In this case, only the seman-
tics preserving characteristics of the transformations
themselves must be proven—not the code which per-
forms analysis and discovery. While we have not
yet implemented such a prover, we have utilized the
transformation discovery and replay capabilities of
KHEPERA to implement a browser that presents in-
termediate views of the transformation process, and
which can answer typical queries posed by a debug-
ger (see Section 4.6).

3 Overview of KHEPERA

The KHEPERA library provides low-level support for:

e building an AST

e applying transformation rules to the AST (tree
traversal, matching, and replacement)

e “pretty-printing” the P’ source code from the
T, AST (pretty-printing is actually the o “trans-
formation”)

An overview of the KHEPERA system is shown in
Figure 2. KHEPERA encapsulates low-level details
of the DSL implementation: AST manipulation,
symbol and type table management, and manage-
ment of line-number and lexical information. On a
higher level, library routines are available to support
pretty-printing (currently, with a small language to
describe how to print each node type in the AST),
type inference, and the tracking functions for debug-
ging information. Further, a “little language” has
been implemented to support a high-level descrip-
tion of the transformation rules. If transformation
rules are written in the KHEPERA language, or if

they are written in an ad hoc manner using the un-
derlying KHEPERA AST manipulation library, then
the debugging tracking and transformation replay
support will be automatically provided.

An overview of how the KHEPERA system fits into a
complete DSL implementation solution is shown in
Figure 3. In the example shown in the next section,
we explain how the scanner and parser specifications
are simplified by using calls to the KHEPERA library
and will provide an example showing how other im-
portant input files are specified.

In Figure 4, the “DSL Processor” from from Fig-
ure 3 is expanded, showing the basic blocks that are
created from the source code and showing how the
DSL processor is used during the compilation of a
program written in the DSL.

4 Example

A simple language translation problem based on [12]
will be used to illustrate the KHEPERA system. The
DSL is a subset of Fortran 90 with the addition
of a sequence comprehension construct that can be
used to construct (nested) sequences. The transla-
tion problem is to remove all sequence comprehen-
sion constructs and replace them with simple data-
parallel operations, yielding a program suitable for
compilation with a standard Fortran 90 compiler.

4.1 Example DSL Syntax

The lexical elements of the DSL are:
IdNum (/ /) () +, : =in

A program is described by the following context-free
grammar (CFG):

program := statement-list
statement ::= Id = expression
statement-list ::= statement

|  statement-list statement
erpr ::= Id
| Num
| expr + expr
| length( ezpr )

| range( expr )
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| dist( expr , expr)
| (/ expr-list /)

| (/1Id in expr : expr /)

For this example, we use the array constructor nota-
tion from Fortran 90 to specify literal sequences and
a similar notation to specify the sequence compre-
hension construct. However, the sequence compre-
hension construct creates arbitrarily nested, irregu-
lar sequences. (In contrast, the array constructor
from Fortran 90 can only generate vectors or rect-
angular arrays.)

4.2 Example DSL Semantics
DSL values have types drawn from D = Int|Seq(D).
We define, Vn € Int,c € D:

/1,2,...,n/)
(/ecey...,c/)

range(n) =
dist(c,n) =

with length(dist(c,n)) = length(range(n)) = n.
For an expression, e, the sequence comprehension

(/iin A : e(i) /)

yields the sequence of successive values of e obtained
when 7 is bound to successive values in A.

For example, the sample program:

=
|

= range(3);

=(/ 1iin A: 1 +1i /);
C=(/1iin A:

(/ j in range(i): i /) /)

(o]
|

yields:
A=(1,2,3/)
B=(/2,4,6)/)
c= 1H,
72,2/,
(/3,38,3/ /)

We omit here a collection of type (inference) rules
for the language that define a well-typed program.

4.3 Example Translation

We view a program in terms of the natural AST cor-
responding to the CFG of Section 4.1. In the AST,
an application of one of the four basic operations is
written as a function application node with the op-
eration to be applied in the name attribute and a
depth attribute that is 0. The children of the node
are expression(s) for each of the arguments.

The following 3 rules can be used to eliminate all
sequence comprehension constructs from the AST:

Rule 1

(/z1ine : 1 /) — e1



Rule 2 Provided e; is an Id or Num, and ey # z,

) /)
— dist( ez, length( e;))

(/ I in €1

Rule 3
(/ z1 ineg :
fn_app( name = f,
depth = d,
args = n,
€1,...,en ) /)
— fn_app( name = f,
depth =d + 1,
args = n,
(/1 ineg : €1 /),

‘(./‘;cl iney : e, /) )

The resultant AST can be written out in as For-
tran 90 with the depth attribute supplied as an ex-
tra argument to the basic functions (add, length,
range, dist). Given an appropriate implementa-
tion of these basic four functions, the resultant pro-
gram specifies fully parallel execution of each se-
quence comprehension construct, regardless of the
degree of nesting and sequence sizes.

For example, using these rules, the program from
Section 4.2 would be transformed as follows (using
f(...) as a shorthand for fn_app(name = f,...)):

A = range(depth=0, 3)
B = add(depth=1, A, A)
C = dist(depth=1,
A,
length(depth=1,
range(depth=1, A)))

Note that functions with depth = 0 operate on
scalar arguments, whereas functions with depth =1
operate on vector arguments.

The rules shown for this example are terminating
and confluent. When the source language is more
expressive and optimization becomes an issue, the
rules used are not necessarily terminating, hence ad-
ditional sequencing rules must be added to control
rule application [10].

In the following sections, we shall show how
KHEPERA can be used to implement translations,
such as the one specified above, in an efficient man-
ner.

4.4 Parsing and AST Construction

The AST is constructed using a scanner and parser
generator of the implementor’s choice with calls to

the KHEPERA library AST construction routines. At
the level of the scanner, KHEPERA provides sup-
port for source code line number and token offset
tracking. This support is optional, but is very help-
ful for debugging. If the implementor desires line
number and token offset tracking, the scanner must
interact with KHEPERA in three ways: first, each
line of source code must be registered. In versions
of lex that support states, providing this informa-
tion is trivial (although inefficient), as show in Fig-
ure 5. For other scanner generators, or if scanning
efficiency is of great concern, other techniques can be
used. The routine src_line stores a copy of the line
using low-level string-handling support. While the
routines used in these examples are tailored for lex
semantics, the routines are generally wrapper rou-
tines for lower-level KHEPERA functions and would,
therefore, be easy to implement for other front-end
tools.

KHEPERA also handles interpretation of line number
information generated by the C preprocessor. This
requires a simple lex action:

AN src_cpp_line(yytext, yyleng);

Finally, every scanner action must advance a pointer
to the current position on the current line. This is
accomplished by having every action make a call to
src_get (yyleng), a minor inconvenience that can
be encapsulated in a macro.

The productions in the parser need only call
KHEPERA tree-building routines—all other work can
be reserved for later tree walking. This tends to sim-
plify the parser description file, and allows the imple-
mentor to concentrate on parsing issues during this
phase of development. A few example yacc produc-
tions are shown in Figure 6. The second argument to
tre_mk is a pointer to the (optional) source position
information obtained during scanning. The abstract
representation of the constructed AST is that of an
n-ary tree, and routines are available to walk the
tree using this viewpoint.!

Immediately after the parsing phase, the AST is
available for printing. Without any pretty-printer
description, the AST is printed as a nested S-
expression, as shown in Figure 7.

4.5 Pretty-printing

For pretty-printing, KHEPERA uses a modification
of the algorithm presented by [9]. This algorithm

I Physically, the tree is stored as a rotated binary tree,
although other underlying representations would also be
possible.
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<INITIAL>{
.x{NL} src_line(yytext,yyleng); yyless(0); BEGIN(OTHER);
X src_line(yytext,yyleng); yyless(0); BEGIN(OTHER);

}
L}

BEGIN(INITIAL);

Figure 5: Storing Lines While Scanning

Statement: Identifier ’=’ Expression
{ $$ = tre_mk(N_Assign, $2.src,
$1, $3, 0); }

’

StatementList: Statement
{
$$ = tre_mk(N_StatementList,
tre_src($1),

$1, 0);
}
| StatementList Statement
{
$$ = tre_append($1, $2);
}

Figure 6: Building the AST While Parsing

is linear in space and time, and does not backtrack
when printing. The implementation was straightfor-
ward, with modifications added to support source
line tracking and formatted pretty-printing. Other
algorithms for pretty printing, some of which sup-
port a finer-grain control over the formatting, are
presented in [7, 2, 15, 16].

For each node type in the AST, a short description,
using printf-like syntax, tells how to print that
node and its children. If the node can have several
different numbers of children, several descriptions
may be present, one for each variation. List nodes
may have an unknown number of children. Multiple
descriptions may be present for multiple languages,
with “fallback” from one language to another spec-
ified at printing time (so, Fortran may be printed
for all of those nodes that have Fortran-specific de-
scriptions, with initial fallback to unlabeled nodes
(perhaps for C or for the original DSL), and with fi-
nal fallback to generic S-expressions). This fallback
scheme provides usable pretty-printing during devel-

opment, even before the complete pretty-printer de-
scription is finished and debugged.

For printing which requires local analysis,
implementor-defined functions can be used to return
pre-formatted information or to force a line break.
These functions are passed a pointer to the current
node, so they have access to the complete AST from
the locus being printed. While the pretty-printer
is source-language independent and is unaware of
the specific application-defined attributes present
on the AST, the implementor-defined functions have
access to all of this information. We typically use
these functions to format type information or to
add comments to the generated source codes.

Additional pretty-printer description syntax allows
line breaks to be declared as “inconsistent” or
“consistent”?; allows for forced line breaks; and per-
mits indentation adjustment after breaks.

2See [9] for details. Each group may have several places
where a break is possible. An inconsistent break will select
one of those possible places to break the line, whereas a con-
sistent break will select all of these places if a break is needed
anywhere in the group. This allows the following formatting
to be realized (assuming breaks are possible before +):

Inconsistent

(x=a+b+c
+d+e+f)
Consistent

(x=a
+ b
+c
+d
+ e
+1)



Original Program:

= range(depth=0, 3)
(/iin A : i +1i/)
(/ iin A :
(/ j in range(depth=0, i)
i/n

QW=
1

Initial AST (with attribute values shown after the

slash):
(N_StatementList
(N_Assign
(N_Identifier/"A")
(N_Call

(N_Identifier/"range")
(N_ExpressionList
(N_Integer/3))))
(N_Assign
(N_Identifier/"B")
(N_SequenceBuilder
(N_Iterator
(N_Identifier/"i")
(N_Identifier/"A"))
(N_Add
(N_Identifier/"i")
(N_Identifier/"i"))))
(N_Assign
(N_Identifier/"C")
(N_SequenceBuilder
(N_Iterator
(N_Identifier/"i")
(N_Identifier/"A"))
(N_SequenceBuilder
(N_Iterator
(N_Identifier/"j")
(N_Call
(N_Identifier/"range")
(N_ExpressionList
(N_Identifier/"i"))))
(N_Identifier/"i")))))

Figure 7: Example Input and Initial AST

4.6 The KHEPERA Transformation
Language

KHEPERA transformations are specified in a spe-
cial “little language” that is compiled into C code
for tree-pattern matching and replacement. A sim-
ple transformation rule conditionally matches a tree,
builds a new tree, and performs a replacement. The
rule that implements the first sequence comprehen-
sion elimination transformation (Rule 1 from Sec-
tion 4.3) is shown in Figure 8.

rule eliminate_iteratorl
{
match (N_SequenceBuilder
(N_Iterator id1:N_Identifier D:.)
id2:N_Identifier)
when (tre_symbol(idl)
== tre_symbol(id2))
build new with D
replace with new

Figure 8: Simple Transformation Rule

In Figure 8, a tree pattern follows the match key-
word. Tree patterns are written as S-expressions for
convenience. The tree pattern in this example is
compiled to the pattern matching code shown in the
first part of Figure 9 (code for sections of the rule
follow the comment containing that section).

The when expression, which contains arbitrary C
code, guards the match, preventing the rest of the
rule from being executed unless the expression evalu-
ates to true. The build statement creates a new sub-
tree, taking care to copy subtrees from the matched
tree, since those subtrees are likely to be deleted by
a replace command.

The tracking necessary for debugging and transfor-
mation replay is performed at a low-level in the
KHEPERA library. However, the KHEPERA lan-
guage translator automatically adds functions (with
names starting with trk_) to the generated rules.
These functions add high-level descriptive informa-
tion which allows fine-grain navigation during trans-
formation reply, but which is not necessary for an-
swering debugger queries.

A more complicated KHEPERA rule is shown in Fig-
ure 10. This rule implements the third sequence
comprehension elimination transformation (Rule 3
from Section 4.3).

The example in Figure 10 uses the children
statement to iterate over the children of the



int rule_eliminate_iteratorl( int *_kh_flag, tre_Node _kh_node )
{

const char *_kh_rule = "rule_eliminate_iteratorl";

Node _kh_pt;

Node this = NULL; /* sym */

Node idl = NULL; /* sym */

Node D = NULL; /* sym */

Node id2 = NULL; /* sym */

Node new = NULL;

/* match (this:N_SequenceBuilder
(N_Iterator id1l:N_Identifier D:.) id2:N_Identifier) */

_kh_pt = _kh_node;
if (_kh_pt && tre_id( this = _kh_pt ) == N_SequenceBuilder) {
_kh_pt = tre_child( _kh_pt ); /* N_Node */
if (_kh_pt && tre_id( _kh_pt ) == N_Iterator) {
_kh_pt = tre_child( _kh_pt ); /* N_Node */
if (_kh_pt && tre_id( idl = _kh_pt ) == N_Identifier) {
_kh_pt = tre_right( _kh_pt );
if (_kh_pt) {
D = _kh_pt;
_kh_pt = tre_parent( _kh_pt );
_kh_pt = tre_right( _kh_pt );
if (_kh_pt && tre_id( id2 = _kh_pt ) == N_Identifier) {
_kh_pt = tre_parent( _kh_pt );
assert( _kh_pt == _kh_node );

/* when (tre_symbol(idl) == tre_symbol(id2)) */

if (tre_symbol(idl) == tre_symbol(id2)) {
trk_application( _kh_rule, _kh_node );

/* build new with D */
new = tre_copy(D);

/* replace with new */
++x_kh_flag;

trk_work( _kh_rule, _kh_node );
tre_replace( _kh_node, new );

}
}

return 0O;

Figure 9: Generated Tree-Pattern Matching Code



rule dp_func_call

match (this:N_SequenceBuilder
iter:N_Iterator
(f:N_Call
fn:N_Identifier
plist:N_ExpressionList))

build newPlist with (N_ExpressionList)
children plist {
match (p:.)
build next with (N_SequenceBuilder
iter p)
do { tre_append(newPlist, next); }

}

build call with (N_Call fn newPlist)
delete newPlist

do { call->prime = f->prime + 1; }
replace with call

Figure 10:
Rule

Iterator Distributing Transformation

N_ExpressionList node, and uses the do state-
ment as a general-purpose escape to C. This es-
cape mechanism is used to build up a new list
with the tre_append function, and to modify an
implementor-defined attribute (prime).

KHEPERA language features not discussed here in-
clude the use of a conditional if~then-else statement
in place of a when statement, the ability to break
out of a children loop, and the ability to perform
tree traversals of matched subtree sections (this is
useful when an expression must be examined to de-
termine if it is independent of some variable under
consideration).

4.7 Debugging with KHEPERA

The KHEPERA library tracks changes to the AST
throughout the transformation process. The track-
ing is performed, automatically, at the lowest levels
of AST manipulation: creation, destruction, copy-
ing, and replacement of individual nodes and sub-
trees. This tracking is transparent, assuming that
the programmer always uses the KHEPERA AST-
manipulation library, either via direct calls or via
the KHEPERA transformation language, to perform
all AsT transformations. This assumption is reason-
able because use of the KHEPERA library is required
to maintain AST integrity through the transforma-
tion process. Since the programmer does not have to

remember to add tracking capabilities to his trans-
formations, the overhead of implementing debugging
support in a DSL processor is greatly reduced.

The tracking algorithms associate the tree being
transformed (7 in Figure 1), the transformation rule
(1) being applied, and the specific changes made to
the AsT. This information can then be analyzed
to answer queries about the transformation process.
For example, the DSL implementor may have iden-
tified two intermediate ASTs, T; and T;y1, and may
ask for a summary of the changes between these two
ASTSs.

On a more sophisticated level, the user may iden-
tify a node in the DSL program and request that a
breakpoint be placed in the program output. An
example of this is show in Figure 11. Here, the
user clicked on the scalar + node in the left win-
dow. In the right window, the generated program,
after 13 transformations have been applied, is dis-
played, showing that the breakpoint should be set
on the call to the vector add function.

At this point, the user could navigate backward
and forward among the transformations, viewing the
particular intermediate ASTs which were involved in
transforming the original + into the call to add. The
ability to navigate among these views is unique to
the KHEPERA system and helps the user to under-
stand how the transformations changed the original
program. This is especially useful when many trans-
formations are composed.

The tracking algorithms can also be used to under-
stand relationships between variables in the original
and transformed programs. For example, in Fig-
ure 12, the user has selected an iterator variable i
which was removed from the final transformed out-
put. In this case, both occurrences of A are marked
in the final output, showing that these vectors cor-
respond, in some way, to the use of the scalar i in
the original input.

In addition to the “forward” tracking, described
here, KHEPERA also supports reverse tracking,
which can be used to determine the current execu-
tion point in source terms, or to map a compile or
run-time error back to the input source.

5 Conclusion and Future Work

In this paper, we have presented an overview of
our transformation-based approach to DSL proces-
sor implementation, with emphasis on how this ap-
proach provides increased ease of implementation
and more flexibility during the DSL lifetime when
compared with more traditional compiler implemen-
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tation methods.

In the previous section we have provided an overview
of the KHEPERA system using a small example.
We have shown how the KHEPERA library sup-
ports AST construction and pretty-printing, and
have demonstrated some of the capabilities of the
KHEPERA transformation language and debugging
system. Many additional features of the KHEPERA
system are difficult to demonstrate in a short paper.
These features include low-level support for common
compiler-related data structures such as hash tables,
skip lists, string pools, and symbol tables and for
high-level functionality such as type inference and
type checking. The availability of these commonly-
used features in the KHEPERA library can shorten
the time needed to implement a DSL processor.

Further, we have found that keeping lists of nodes,
by type, can dramatically improve transformation
speed. Instead of traversing the whole AST, we tra-
verse only those node types which will yield a match
for the current rule. However, since some trans-
formations may assume a pre-order or post-order
traversal of the AST, the “fast tree walk” problem
is more difficult that simply keeping node lists: the
lists must be ordered and the data structure holding
the lists must be updateable during the tree traver-
sal (this eliminates many balanced binary trees from
consideration for the underlying data structure). We
have found that an implementation based on skip
lists [13] was viable—preliminary empirical results
demonstrate a significant transformation speed com-
pared with pattern matching over the whole AST.

More details on this work will be presented in a fu-
ture paper.

Another advantage of KHEPERA is the support for
debugging via transformation replay. When the
transformation are applied to the AST using the
KHEPERA library support (with or without using
the KHEPERA transformation language), then those
transformations are tracked and can be replayed at
a later time. KHEPERA includes support for arrang-
ing the transformations in an abstract hierarchy,
thereby facilitating meaningful viewing by a DSL
implementor. As part of a complete debugging sys-
tem, KHEPERA also provides mappings which allow
loci in the output source to be mapped back through
the AST transformations to the input source (writ-
ten in the DSL). These debugging capabilities are
the subject of Faith’s forthcoming dissertation.

6 Availability

Snapshots of the KHEPERA library, including work-
ing examples similar to those discussed in this pa-
per, are available from ftp://ftp.cs.unc.edu/-
pub/projects/proteus/src/.
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