
Work-Efficient Nested Data-Parallelism†

Daniel W. Palmer and Jan F. Prins
Department of Computer Science

University of North Carolina
Chapel Hill NC 27599-3175
{palmerd,prins}@cs.unc.edu

Stephen Westfold
Kestrel Institute

Palo Alto, CA 94304
westfold@kestrel.edu

Abstract

An apply-to-all construct is the key mechanism for
expressing data-parallelism, but data-parallel
programming languages like HPF and C* significantly
restrict which operations can appear in the construct.
Allowing arbitrary operations substantially simplifies the
expression of irregular and nested data-parallel
computations. The technique of flattening nested
parallelism introduced by Blelloch, compiles data-parallel
programs with unrestricted apply-to-all constructs into
vector operations, and has achieved notable success,
particularly with irregular data-parallel programs.
However, these programs must be carefully constructed so
that flattening them does not lead to suboptimal work
complexity due to unnecessary replication in index
operations. We present new flattening transformations
that generate programs with correct work complexity.
Because these transformations may introduce concurrent
reads in parallel indexing, we developed a randomized
indexing that reduces concurrent reads while maintaining
work-efficiency. Experimental results show that the new
rules and implementations significantly reduce memory
usage and improve performance.

1 Introduction
1.1 Data-parallelism

A notation permits the expression of data-parallelism if
it includes aggregate values such as sets or sequences and
the ability to independently apply a function to every
element of such an aggregate. A familiar example of
data-parallelism is the comprehension construct of set
theory: { f(x) | x ∈ A } denotes the set of results obtained
as the function f is applied to each value drawn from a set
A. This expresses parallelism because all applications of f

† This research supported in part by ARPA via ONR Contract
N00014-92-C-0182.

are independent and hence can be performed
simultaneously.

Data parallelism is the main source of concurrency in
variants of Fortran developed for architecture-independent
parallel programming [1,8,10]. Other languages such as
C* and Modula-2* also rely on data-parallelism to express
concurrency. In all of these languages the aggregates are
restricted to rectangular arrays, and the functions that may
be applied in parallel are restricted to a fixed set of
elementwise operations, reductions, and parallel prefix
operations. While these restrictions simplify the
generation of efficient code, they also limit the
expressiveness of data parallelism.

These limitations appear in attempts to express
irregular parallel computations with a restricted data-
parallel language. Consider implementing a parallel
version of quicksort in any variety of data parallel Fortran.
At each recursive step a list is divided into potentially
unequal parts. Mapping these irregular sized sub-
problems onto a rectangular aggregate wastes space and
serializing the computation wastes time. The programmer
is faced with the explicit bookkeeping and data-dependent
choice of operations required to manually simulate
irregular structures with one-dimensional aggregates.
This convoluted task clearly illustrates the price, in terms
of expressiveness, of restricting the applicability of apply-
to-all constructs.

A more natural way to express irregular computations
is with nested data-parallelism. Turning back to set
theory, we define a set valued function f (A,p) =
{(p,q) | q ∈ A and 1 ≤ q ≤ p}. Since sets may contain sets
as members, when A = {1, 2, 3} the expression denotes
{{(1,1)}, {(2,1), (2,2)}, {(3,1), (3,2), (3,3)}}, a set of sets.
The parallelism it expresses is nested . For each value p of
A, { f(A,p) | p ∈ A} specifies an invocation of f that may
be executed in parallel. Each f generates a "nested" set of
values for q which may in turn be evaluated in parallel.
The distinguishing characteristics of nested data-
parallelism are that arbitrary functions are applicable in

parallel over an aggregate and that aggregates are
nestable, that is, they can contain aggregates as values.

The expressive utility of nested data-parallelism was
recognized long ago in high level sequential programming
languages like SETL [16] and APL2 [11]. Parallel
execution of nested data-parallelism has been realized by
recent languages such as Paralation Lisp [15], NESL [3]
and Proteus [7,9]

In Proteus, our high-level, wide-spectrum parallel
language, all data-parallelism is expressed using an
iterator construct which is analogous to the
comprehension construct of set theory. For example, if A
is a sorted sequence of integers and S is an arbitrary
sequence of integers, the iterator expression

[x in S: binsearch(A,x)] (1.1)

specifies that for each binding of x to a value from S, the
corresponding element of the result sequence is the
evaluation of binsearch(A,x). In this case binsearch is
the sequential definition of binary search with signature
Seq(Int) × Int → Int.

Nested data parallelism is particularly important in
specifying work-efficient irregular parallel computations.
The sizes of aggregates within a nested aggregate are
independent and can therefore be used to represent the
different sized sub-problems specified in irregular
computations. For example, suppose we alter expression
(1.1) to search several different sized lists for the same
element. If D is a nested sequence with non-uniformly
sized sub-sequences, then the expression

[S in D: binsearch(S,c)] (1.2)

yields the sequence of locations at which c appears in
each sub-sequence. Since the number of elements in each
invocation of binsearch may differ over the different sub-
problems, it specifies irregular parallelism and must
operate on a ragged data-structure.

1.2 Flattening nested data-parallelism
Nested data-parallelism has been slow to be adopted

into parallel programming notations since it has been
thought difficult to implement because of its
unpredictable and fine-grain variations in work. Recently,
however, Blelloch [2] described a technique known as
f lattening to reduce nested parallelism to vector
operations. The technique is formalized as a set of
program transformations in [13] and used in a number of
high level languages.

The result of flattening (1.1) is

binsearch1(distribute(A,length(S)),S) (1.3)

where distribute function generates a copy of the
source sequence A for each element of S and length
returns the number of elements in a sequence. The
function binsearch1 is a data-parallel version of binary
search with the signature Seq(Seq(Int)) × Seq(Int) →
Seq(Int) that was constructed by flattening the user-
defined binsearch function. Each step in binsearch1

corresponds to one simultaneous step of all invocations of
binsearch, and is implemented with a constant number
of vector operations.

The flattening technique can yield competitive code.
Blelloch et. al . reported that "[Compiled NESL programs]
perform[ed] competitively with native code for regular
data and often superior on irregular data." [4]. The same
portable NESL program was compared against optimized
CM-Fortran code on a CM-2 and Fortran77 on the Cray
C90 and in some cases performed better by an order of
magnitude.

1.3 Work inefficiency
While the technique of flattening nested parallelism is

sound [6, 14], it incurs some practical problems in its
application. In (1.3), A is replicated to match the number
of values in S in order to agree with the signature for
binsearch1. As a result binsearch1 is supplied a
distinct copy of A for each value of S. We would expect
that the total work in evaluating (1.1) would be
O(|S| log2|A |), but the replication of A already requires
O(|S |•|A |) work to be performed, so (1.3) is not work
efficient. The problem is that each instance of binsearch
is indexing a separate copy of A; this is not necessary if
concurrent reads are permitted. The replication of
indexed values is a general problem in the flattening of
nested data-parallelism and not limited to our
implementation. Blelloch reports this increased work
complexity in NESL and recommends that the
programmer be aware of the problem and not use
indexing in sequence comprehensions [3, appendix C].
To aid the programmer in avoiding such uses of indexing,
NESL provides many primitives that, in parallel, select
values from sequences in common access patterns.

These support primitives maintain work efficiency, but
because they must be applied outside of iterators, they
interfere with function modularity. Flattening expression
(1.1) yields work-inefficient code because the function
binsearch contains an indexing operation. However,
avoiding the inefficiency by using the selection primitives
requires the programmer to move pieces of the function
body across the function boundary and outside the
surrounding iterator. Because the selection operations can
depend on other function parameters and variables within
the function's scope, all functions that contain indexing
must be specialized for each invocation of the function

d

detach
nesting
structure

re-attach
nesting
structure

f

1f
Figure 2

occurring inside an iterator . This is extremely
cumbersome and difficult to implement, yet necessary in
order to generate efficient code.

1.4 Contributions
Our goal is to generate work efficient code for all data

parallel expressions. This paper addresses the problems
that arise from the data-parallel application of indexing
operations and functions that contain indexing. In section
2 we give an overview of the flattening process and
present new flattening transformations that improve on
those we presented in [13]. In section 3 we describe three
approaches to eliminating or reducing the cost of
replications in the generated code. The most important of
these, work-efficient indexing, solves the increase in
asymptotic work complexity and is presented in section 4.
Finally, in section 5 we present our experimental results
using these techniques.

2. Flattening nested data-parallelism
2.1 Overview

The data-parallel subset of Proteus that is translated to
vector operations is applicative and includes a single
assignment construct (let ... in ...), a value-returning
conditional expression (if ... then ... else ...) and the
iterator construct ([x in D: e]). The values in the
subset are numbers, tuples, nested sequences and
functions. Nested sequences are homogeneous and of
fixed depth. The subset can be statically typed.

All parallelism in the Proteus data-parallel subset is
specified using the iterator construct. Flattening is
accomplished by eliminating iterators. This is done by
defining rules to transform iterators through all the
constructs of the Proteus language. Iterators surrounding
the leaves of an abstract syntax tree(AST) are replaced by
equivalent iterator-free sequence operations. In this
fashion all iterators can be eliminated from a Proteus
program, and the resulting program is expressed entirely
in terms of a small number of basic data-parallel sequence
operations (see figure 1). Most data-parallel operations
are implemented using a constant number of vector
operations, some require O(depth of sequence) vector
operations.

A[i] B[i]

+

*

+_p

*_p

[i in [1..n]: A[i]]

[i in [1..n]: B[i]]

[i in [1..n]: C[i]]

*_p

+_p
A B

C

AST with Iterator at Root

C[i]

[i in [1..n]:]
AST with Iterator at Leaves

Data-Parallel AST

[i in [1..n]: (A[i] + B[i]) * C[i]]

Figure 1

When an iterator is transformed through a function
application, a data-parallel version of the function must be

applied. Instead of repeatedly evaluating single argument
values, the data-parallel function evaluates sequences of
arguments in parallel. Parallel versions of all primitives
have been implemented directly with vector operations,
but data parallel versions of user-defined functions that
appear in iterators must be generated through additional
transformations. To do so, an iterator is placed around the
function body and the same iterator-eliminating
transformations are applied, removing the introduced
iterator and yielding the data-parallel version of the
function.

For an arbitrary function f, we use f 1 to denote the
data-parallel version which applies f to all elements of a
sequence in parallel. Signatures of the data-parallel
versions are related to the original function definition by:

f n:α→β implies f n+1:Seq(α) → Seq(β) (2.1)

f d indicates a version of f that applies f in parallel to
all elements at the dth level of a nested sequence; its
signature is Seqd(α) → Seqd(β). Fortunately, since the
parallel function applications are independent, we can
avoid the need for f d where d>1 by peeling away the
nesting structure of the arguments and using f 1 in all
contexts. (see figure 2)

Data-Parallel Library Primitives Signature of Basic Operation Time Work

arith-ops arithmetic & logical operations Num × Num → Num O(1) O(n)

index extract an element from a sequence Seqd(α) × (Int1×...×Intk)→ Seqd-1 (α) O(d) O(dn)

length count the elements in a sequence Seq (α) → Int O(1) O(1)

distribute replicate values to form a sequence α × Int → Seq (α) O(1) O(nr)

range enumerate an integer interval Int × Int → Seq (Int) O(1) O(n)

restrict pack a sequence according to a mask Seq (Bool) × Seq (α) → Seq (α) O(d) O(n)

combine merge two sequences based on a mask Seq (Bool) × Seq (α) × Seq (α) → Seq (α) O(d) O(n+m)

extract peel off a sequence's nesting structure Seqk(α) × Int → Seqk-n(α) O(1) O(1)

insert reattach nesting structure to a sequence Seqk(α) × Seqd(α) × Int → Seqk+n (α) O(1) O(1)

Table 1: n, m = number of elements in a sequence; d,k = depth of a sequence; r is the number of copies. Work and time
complexity are given for the data-parallel versions of the primitives and are specified in the vector model where scan and reduce

are O(1) time operations.

2.2 Nested sequence primitive operations
The data parallel operations remaining after application

of the rules constitute the instruction set of an abstract
data-parallel machine. We have implemented this abstract
machine using C and a C-callable Data Parallel Library
(DPL) [12] to support nested sequences and their
operations. All nested sequence operations in the abstract
machine specify work proportional to the length of the
nested sequence and time either constant or proportional
to the depth of the nested sequence (see table, note that
the work and time complexity are specified in terms of the
vector model where scan and reduce are O(1) time
operations). DPL is implemented with vector operations
provided by the C Vector Library (CVL) [5]. DPL
provides both parallel execution and architecture
independence by building upon these same features in
CVL. Hence transformed programs may be run
efficiently on a wide variety of machines, including the
Cray C90, the TMC CM5, the MasPar MP-2 and UNIX
workstations.

In general, the signature of the data-parallel versions of
these operations can be derived using (2.1). For example,
the signature of the data-parallel version of the
d i s t r i b u t e operation, distribute1 , is
Seq(α) × Seq(Int) → Seq(Seq(α)).

We present improved transformation rules to flatten
nested data-parallelism in Proteus. These new rules
reflect an approach that transforms a single iterator at a
time which differs from our previous strategy of
transforming groups of iterators [13]. When iterators are
nested, these rules are first applied at the innermost
iterator, eliminating it but possibly introducing new
function calls. The rules are then applied to the new
innermost iterator, and repeated until no iterators remain.

These are the baseline transformation rules and we will
use them for comparison against the new rules we
introduce.

Rule 0: Eliminate restriction clauses in iterators

[v in D|c :e] ≡ [v in restrict(c,D):e]

Rule 1: Distribution of iterator over function application

[v in D: f n(e1,...ek)] ≡
f n+1([v in D: e1],...,[v in D: ek])

Rule 2: Distribution of iterator over single assignment

[v in D: let t = e1 in e2] ≡
let

T = [v in D: e1]
in

[i in [1..#T]: e2]
with every occurrence of t in e2 replaced by T[i] and every
occurrence of v in e2 replaced by D [i]

Rule 3: Distribution of iterator over conditional statement

[v in D: if e1 then e2 else e3] ≡
let

M = [v in D: e1]
T = [k in restrict(M,D): e2]
with every occurrence of v in e2 replaced by k.
E = [k in restrict(not(M),D): e3]
with every occurrence of v in e3 replaced by k.

in
combine(M,T,E)

Rule 4: Iterator Elimination

[v in D: v] ≡ D
[v in D: u] ≡ distribute(u, length(D))

where u is a constant or variable

Rule 5: Introduction of data-parallel functions

For each function:
function g(x1, ... , xn) = ret

generate:

function g1(V1, ... , Vn) =
return

if empty(V1) &&...&& empty(Vn)
then []
else [i in [1..#V1]: e] with all xk's in e replaced by Vk[i]

Rule 6: Implementation of deep data-parallel functions

f d (e1, e2, ...,en) ≡
let V1=e1,..,Vn=en
in

insert
 (f 1 (extract(V1,d - 1),

...
extract(Vn,d - 1)),

V1,d-1)

3 Reducing replication costs
3.1 Expression hoisting

Iterator expressions that are either completely or
partially independent of the iterator variable are replicated
unnecessarily causing inefficient evaluation and in many
cases, increased asymptotic work complexity. We use
expression hoisting, a well-established technique from
code optimization, to move expressions outside of the
iterators that they do not depend upon. A new
transformation rule allows the expression to be evaluated
once and only its result is replicated.

[v in D: e] ≡ let x = e
in [v in D: x]

where e is a non-simple expression independent of v

Consider the following example.

R = [v in D: [w in E: 3 + v]] (3.1)

Since the innermost expression is independent of the inner
iterator, it can be hoisted out.

R = [v in D: let x = 3 + v
 in [w in E: x]]

The code generated by transforming (3.1) without code
hoisting,

n = length(D);
T = length1(distribute(E,n));
R = plus2(distribute1(distribute(3,n),T),

distribute1(D,T));

specifies two distribute1 operations, which are
implemented with costly general communication. By
transforming (3.1) using the code hoisting transformation,
we generate:

T = plus1(distribute(3, length(D)), D);
R = distribute1(T, length1(distribute(E,

length(T))));

This requires only one general communication and
specifies less work because the addition is performed at a
lower multiplicity and its result is replicated.

3.2 Efficient scalar replication
Consider a nesting of iterators around a constant.

[i in [1..n]: [j in [1..i]:c]] (3.2)

The transformation rules transform (3.2) to the following.

distribute1(distribute(c,length(range(1,n))),
 length1(range(1,n)));

This specifies an inefficient, multi-stage, replication that
requires general communication. Since the value being
replicated is a scalar, regardless of the shapes of the
intermediate sequences and the number of replications, we
can implement the operation with a single, inexpensive
broadcast (see figure 3).

cc cc

c

cc cc cc c cc c

c
broadcast

general
communication

broadcast

cc cc cc c cc c

Replication of Constants
[i in [1..4]:[j in [1..i]: c]]

Figure 3

We introduce the promote operation, which has a
signature of Num × Seqk(Int) → Seqk(Num). It replicates
a scalar input using broadcast communication to the same
size and nesting structure as its second parameter. For
example promote(3,[[1,2,9],[5,8]]) yields
[[3,3,3],[3,3]].

To support this operation, we must introduce two new
transformation rules: the first specializes baseline
transformation rule 4 for scalars and the second
specializes rule 1 for the promote function.

[v in D: c] ≡ promote(c,D)
[v in E: promote(c,D)] ≡

promote(c,[v in E:D])

These new rules transform expression (3.1) to simpler,
more efficient generated code

promote(c,range1(distribute(1,n),range(1,n)))

which avoids general communication.

3.3 Work efficient indexing operation
An index operation selects a value from a nested

source sequence based on a set of indices. If we represent
a nested sequence as a tree, as in figure 4, then the height
of the tree corresponds to the depth of the source sequence
and each index is a tuple that specifies a path through the

tree. From a given node, the next index specifies to which
child node the index path continues. The result of an
indexing operation is a nested sequence represented by the
sub-tree rooted at the node where the path terminates.

S =[[[2,7],[3,9,8]],[[3],[4,3,2]]]

Simple Indexing

2

22

22

1

1

1

1

1 11 2 3 3

2 7 3 9 8 3 4 3 2

index(S,(1,2,1))
Result: 3

index(S, (2,2))
Result: [4,3,2]

Tree Representation of S

Figure 4

To perform multiple indexing operations in parallel, at
each step we advance along the next edge of all index
paths through the tree simultaneously. We repeat this
operation until we have exhausted the indices, yielding a
sequence of results.

The straightforward implementation of indexing has
the signature Seq(Seq(α)) × Seq(Int × ... × Int) → Seq(α).
We call this rep_index, because the source sequence is
replicated. Using it with the transformation of the
following expression, [v in D: A[v]], yields

rep_index1(distribute(A, length(D)),(D)) (3.3)

This operation creates a copy of the sequence A to
positionally correspond with each value in D . This
correlation specifies that the i th index of D is used to
select an element from the i th copy of A. In cases where
multiple iterators surround an indexing operation, the
source sequence will be replicated by the product of the
sizes of the iterator domains. The positional
correspondence is the source of the increased asymptotic
work complexity and simply too costly to maintain.

We avoid the work inefficiency by defining a new
indexing operation that removes the correspondence
requirement. We call it eff_index and it has the
signature Seq(α) × Seq(Int × ... × Int) → Seq(α). Instead
of replicating the source sequence, it is shared among all
the elements of the index sequence. We can express [v
in D: A[v]] without the increased work complexity of
(3.3), as

eff_index1(A, (D))

In practice, source sequences may be dependent on
some iterators and independent of others. When a source
is dependent on a surrounding iterator, such as the
transformation of expression (1.2), the source sequence
must be evaluated according to the dependency,
increasing its depth and generating many different sub-
sequences. In this case, there is an implicit positional

correlation between the source sequence and the sequence
of indices that must be retained.

To handle this we observe that eff_index can emulate
positional correspondence by introducing another index.
The new index is an enumeration to the size of the domain
of the iterator. For example if B is
[[1,2,3],[4,5,6,7],[8,9],[0]], then the expression
[i in [1..4]: B[i][1]], which yields [1,4,8,0],
can be expressed using either implementation of index.

rep_index1(distribute(B,4), ([1,1,1,1]))

eff_index1(B, ([1,2,3,4], [1,1,1,1])) (3.4)

Thus we add another transformation rule 1, that treats
the function index as a special case.

[v in D: eff_indexd(E,(e1,...,ek))] ≡
if E depends on v

eff_indexd+1([v in D: E], (extend(D,e1),
 [v in D: e1],..,[v in D: ek]))

otherwise
eff_indexd+1(E, ([v in D: e1],..,

[v in D: ek]))

We again have introduced a primitive to support the
new rule. The extend operation has a signature of
Seq(Int) × Seqk(Int) → Seqk+1(Int). It extends each
element of the first sequence to the size and shape of the
second sequence. We use it to insure that introduced
indices, such as the enumeration in expression (3.4), will
conform to existing indices. Note that extend is
transformed as any arbitrary function.

4 Implementation of efficient Indexing
4.1 Colliding indices

Parallel indexing using rep_index performs multiple
simple indexing operations by following index paths
through separate copies of the source index tree. We have
introduced new transformations that avoid replicating the
source sequence. As a result, performing parallel
indexing with eff_index follows all index paths through
the same source tree guaranteeing that the indices will
collide. On the first step of a parallel index operation,
there are as many attempts to access the root of the tree as
there are indices. These colliding accesses may lead to
inefficient parallel execution because of the implicit costs
of concurrent reads.

4.2 Node extension
To make work efficient indexing viable, we must

address the concurrent reads. We present a workable
compromise using a technique called node-extension .
Instead of replicating the full representation of a nested
sequence, nodes within the tree representations are
replicated different amounts. After the replication, each

level in the tree will have O(# of indices) nodes. If, at
some level in the tree, there are n nodes, each of these
nodes is replicated by (1/n * # of indices). When this
product is less than or equal to 1, no replication is done.
The resulting structure is a node-extended tree (see figure
5) that reduces the number of concurrent reads, but
maintains the asymptotic work complexity because the
replication is bounded by the number of the indices.

Indexing using a node-extended tree representation for
nested sequence requires that the index be adjusted by a
random value. When extending the index path, there may
be many edges that lead to the "same" child. By
randomly distributing the access requests for a specific
node among its copies, we reduce the number of
concurrent reads. With this structure, on the first step of
parallel indexing there are still O(# of indices) attempts to
access the root, but now there are an equal number of
copies of the root available and it is expected that the
number of concurrent reads will be small. Clearly the
performance is dependent on the characteristics of the
indices, but, as our experimental observations bear out,
the additional copies and the randomizing factor yield
better performance.

S =[[7,0],[9]]
eff_index(S,([1,1,2,1,2,2],[2,1,1,2,1,1]))
result is [0,7,9,0,9,9]

2

2 1

7 0 9

2

2

7

1

0 9

2 2 2 2 2

22 1 1

907

Node Extension

Figure 5

4.4 Interfunction indexing
To achieve work efficient performance, source

sequences for index operations must not be replicated by
any independent iterator, even those outside the
invocation of a function that contains indexing operations.
The baseline transformation rule for function application
replicates all the parameters, sabotaging any subsequent
indexing transformation. When a function parameter is
used only as the source sequence to an indexing operation
within the function, this information must be propagated
up to the level of the function definition. Then, a new
transformation rule that does not replicate source
sequence parameters, can be applied.

[v in D: f d(only_indexed(A))] ≡
if A depends on v

f d+1(only_indexed([v in D: A],D))
otherwise

f d+1(only_indexed(A))

[v in D: f d(only_indexed(A,e))] ≡

if A depends on v
f d+1(only_indexed([v in D: A],

extend(D,e),[v in D: e]))
otherwise

f d+1(only_indexed(A,[v in D: e]))

A new primitive, only_indexed, accumulates any
introduced indices due to dependency on iterators, as in
3.4, and attaches them to the representation of the source
sequences. This allows the necessary information to
traverse a function boundary without violating the
function's modularity. Inside the function, the indexing
operation retrieves the added indices and applies them to
the source sequence prior to any explicitly expressed
indices.

Whether to wrap an invocation of only_indexed
around an actual parameter of a function call is
determined through static analysis of the function
definition. If a parameter is only used as source sequence
of indexing either in body of the function being examined
or in the body of some subsequently invoked function, it
is marked as only indexed.

These transformations provides work efficient
execution for functions that directly call indexing, but
they are also applicable to functions that indirectly call
indexing through other functions. The source dependency
can be propagated up to the top level of the program and
all replication of the sequence can be avoided. This
transformation is needed to avoid replication in the calls
to binsearch.

5. Discussion
5.1 Results

We generated parallel code for the parallel binary
search expression (1.1),

[x in S: binsearch(A,x)]

two different ways: first using the baseline
transformations and replicating indexing, and then using
the additional transformations presented in this paper and
work-efficient indexing with node-extension.

The first approach generated code with asymptotic
work complexity O(|S|•|A| log2|A |), while the second
strategy produced code with asymptotic work complexity
O(|S| log2|A|) with some additional costs due to unavoided
concurrent reads. The source sequence A consisted of an
enumeration of positive integers up to the specified size.
The search values in S consisted of random values in the
range of the source sequence. The algorithm was written
recursively using Proteus and then transformed to C and
nested sequence operations implemented using DPL.

0.1

1

1 0

1 1 0 100 1000 104 1 0
5

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds
 o

n
8K

 M
P-

1

Number of Values to Search For (size of S)

Runtime of Binary Search for
Replicated and Efficient Indexing

rep_index |A| = 10
eff_index |A| = 10
rep_index |A| = 1000
eff_index |A| = 1000

Figure 6

Figure 6 gives the running times of the resultant codes for
several different sizes of A and S on an 8K processor
MasPar MP-1.

In figure 6 the performance is compared at two values
of |A |. When |A | = 10, since |S |>>|A |, the number of
concurrent reads would be high without the node
extension strategy. Even in this setting, the work-efficient
indexing performed better at all values for |S| than the
replicated indexing. This indicates that the node
replication strategy is highly effective in keeping the
number of concurrent references small.

 For fixed |A|, the performance is linear or even sublinear
in |S|. By avoiding the replication of A, the node-extension

version was also able to execute much larger problem
sizes. This is clearly visible as |A| is increased to 1000 and
|S| two orders of magnitude larger than the maximum size
rep_index can easily handle. At larger values of |A| the
additional work due to replication becomes a dominant
factor in the cost.

5.2 Conclusions
Nested sequences and fully general nested apply-to-all

constructs dramatically simplify the expression of
complex parallel computations. The flattening technique
enables such expression to be translated to efficient and
highly parallel vectors operations.

Since one of the key features of this style of parallel
programming is that it permits the succinct expression of
irregular but work-efficient parallel computations, it is
particularly important that all constructs of the notation
have the optimal work efficiency. Indexing is a
particularly important and practical operation for which
this property had not yet been achieved.

Our technique provides the opportunity to achieve the
improved performance without sacrificing the expressive
and conceptually intuitive indexing operation. We have
described an approach to realize work-efficient data-
parallel indexing based on bounding the amount of
replication and randomly dispersing concurrent reads. We
are currently applying these techniques to large algorithms
and are highly encouraged by our preliminary results.

Bibliography
[1] J. Adams, W. Brainerd, J. Martin, B. Smith and J. Wagener,

Fortran 90 Handbook, Intertext-McGraw Hill, 1992.
[2] G. Blelloch, Vector Models for Data-Parallel Computing,

The MIT Press, 1990.
[3] G. Blelloch, “NESL: A Nested Data-Parallel

Language(2.6),” Technical Report CMU-CS-93-129,
Carnegie Mellon University, 1993.

[4] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M.
Zagha, “Implementation of a Portable Nested Data-Parallel
Language,” Proceedings of Fourth ACM Symposium on
Principles and Practices of Parallel Programming, May
1993.

[5] G. Blelloch, S. Chatterjee, J. Sipelstein and M. Zahga,
“CVL: A C vector library,” Draft Technical Report,
Carnegie Mellon University, March 1993.

[6] G. Blelloch and G. Sabot, “Compiling Collection-Oriented
Languages onto Massively Parallel Computers,” Journal of
Parallel and Distributed Computing , 1990.

[7] R. Faith, L. Nyland, D. Palmer, and J. Prins, “The Proteus
NS Grammer,” Technical Report TR94-029, UNC-CH,
1994.

[8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U.
Kremer, C. Tseng, and M. Wu, Fortran D Language

Specification, Report COMP TR90-141(Rice) and SCCS-
42c (Syracuse), Rice University and Syracuse University,
1991.

[9] A. Goldberg, J. Prins, J. Reif, R. Faith, Z. Li, P. Mills, L.
Nyland, D. Palmer, J. Riely, and S. Westfold, The Proteus
System for the Development of Parallel Applications, in M.
Harrison, editor, Prototyping Technologies: The ARPA
ProtoTech Project. Kluwer Academic Publishers, to appear.

[10] High Performance Fortran Forum, “High Performance
Fortran Language Specification,” January, 1993.

[11] T. More, “The Nested Rectangular Array as a Model of
Data,” APL79 Conference Proceedings. ACM 1979.

[12] D. Palmer, “DPL - Data Parallel Library Manual,” Technical
Report TR93-064, UNC-CH, November, 1993.

[13] J. Prins and D. Palmer, “Transforming High-Level Data-
Parallel Programs into Vector Operations,” Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and

–2–

Practice of Parallel Programming, San Diego, CA, p. 119-
128, 1993.

[14] J. Riely, S. Purushothoman Iyer, and J. Prins, “Compilation
of Nested Parallel Programs: Soundness and Efficiency,”
Technical Report, UNC-CH, 1994.

[15] G. Sabot, The Paralation Model : Architecture-
Independent Parallel Programming, MIT Press, 1988.

[16] J. Schwartz, “Set Theory as a Language for Program
Specification and Programming,” Technical Report
Computer Science Department, Courant Institute of
Mathematical Sciences, New York University, 1970.

