
SOFTWARE ISSUES IN HIGH-PERFORMANCE COMPUTING

AND A

FRAMEWORK FOR THE DEVELOPMENT OF HPC

APPLICATIONS

PETER H. MILLS, LARS S. NYLAND, JAN F. PRINS, AND JOHN H. REIF

Abstract. We identify the following key problems faced by HPC software:

(1) the large gap between HPC design and implementation models in appli-

cation development, (2) achieving high performance for a single application

on di�erent HPC platforms, and (3) accommodating constant changes in both

problem speci�cation and target architecture as computational methods and

architectures evolve.

To attack these problems, we suggest an applicationdevelopmentmethodol-

ogy in which high-level architecture-independent speci�cations are elaborated,

through an iterative re�nement process which introduces architectural detail,

into a form which can be translated to e�cient low-level architecture-speci�c

programming notations. A tree-structured development process permits mul-

tiple architectures to be targeted with implementation strategies appropriate

to each architecture, and also provides a systematic means to accommodate

changes in speci�cation and target architecture.

We describe the Proteus system, an application development system based

on a wide-spectrum programming notation coupled with a notion of program

re�nement. This system supports the above developmentmethodologyvia: (1)

the constructionof the speci�cationand the successive designs in a uniform no-

tation, which can be interpreted to provide early feedback on functionality and

performance, (2) migration of the design towards speci�c architectures using

formal methods of program re�nement, (3) techniques for performance assess-

ment in which the computational model varies with the level of re�nement,

and (4) the automatic translation of suitably re�ned programs to low-level

parallel virtual machine codes for e�cient execution.

1. HPC Software Issues

While large scale parallel processors have greatly increased the performance po-

tential for HPC, they have also introduced substantial new software development

problems. We identify three problems that we see as the largest obstacles to the

development of HPC software.

Currently, architecture-speci�c notations are largely used to program parallel

machines. These low-level notations reect speci�c features of a target architecture

such as shared vs. distributed memory, SIMD vs. MIMD control organization, and

di�erent forms of memory and communication locality.

This work was supported by ARPA via ONR contracts N00014-91-J-1985 and N00014-92-C-

0182, and by Rome Labs Contract F30602-94-C-0037.

1



2 MILLS, NYLAND, PRINS, AND REIF

Although such low-level notations are needed to provide the detailed access to

the machinery necessary to orchestrate high performance, they are not well suited

to sustaining a large design and development activity. They are unable to generalize

the expression of concurrency with the consequence that each software development

step involves large and tedious low-level programming e�ort whose e�ect may be

di�cult to analyze. On the other hand, higher-level parallel computing models

that might be more suitable for the development of parallel software tend to rely

on generalizations of concurrency that are unrealistic or inaccurate with respect

to actual machine performance. Such models can easily lead to designs that are

completely impractical.

Thus the �rst problem is that in order to construct complex parallel applications

that achieve high performance, developers must bridge the gap between these two

levels of expression in some fashion.

The second problem has become more apparent as we enter the second or even

third generation of parallel computers: di�erent architectures and di�erent-sized

machines are now available to researchers and hence existing applications need re-

targeting in order to \track" the HPC revolution. However, the low-level notations

in which applications have been developed lack portability between architectures.

It is not a matter of simple translation between notations: the e�ect of the target

architecture can be pervasive. At a high level, di�erent architectures may require

fundamentally di�erent algorithms to achieve optimal performance; at a low level,

overall performance exhibits great sensitivity to changes in communication topology

and memory hierarchy. The retargeting problems involved are su�ciently complex

that automatic translation and optimization are unlikely to o�er a comprehensive

solution.

Consider, for example, a molecular dynamics simulation package with which

we have experience (the Cedar system, developed by J. Hermans at UNC-CH).

Molecular dynamics simulation is a grand-challenge problem, of great importance

to areas such as drug-design. The molecular dynamics package in question was

originally developed to run on Cray computers. It was subsequently adapted for

use on a number of other HPC platforms including mini-supercomputers, high-

performance workstations, the MasPar Computer family, the Kendall Square family,

and workstation clusters supporting the PVM services. Most of these versions

remain important because users of the Cedar software at di�erent sites have access

to di�erent kinds and sizes of HPC machines. Fundamentally di�erent algorithms

are involved in all of these versions to achieve the best performance. This is a

result not just of architectural di�erences but also of the degree of parallelism

sought relative to the problem size.

The third problem emerges when we consider that a scienti�c application such

as the Cedar system is continuously evolving as new scienti�c and algorithmic ideas

need to be incorporated. In this case small changes in the functional speci�cation

can lead to large and very di�erent program changes in each of the architecture-

speci�c implementations. The maintenance of all these implementations quickly

becomes intractable with the result that some architecture-speci�c versions become

scienti�cally obsolete while other scienti�cally current versions are not able to take

advantage of the full range of HPC resources. We see similar problems appearing

in the development and maintenance commercial and military applications.

Thus, to summarize, the key problems we see in the development of HPC software



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 3

are:

� bridging the gap between high-level parallel design models and low-level

execution models,

� targeting a single application to multiple HPC platforms, and

� managing evolution in both the application and the target architectures.

We believe that high level programming models and notations are critical to

the expression and exploration of complex designs. They also promote portability

across architectures (or at least make explicit at a higher level the design di�erences

for di�erent architectures). However, for a programming methodology based on

high-level notations to be practical it must eventually be connected to the kinds of

detailed notations that access the lower-level performance issues. We believe that

it is a mistake to use only high-level or only low-level models and notation; a useful

framework must accommodate both views.

The growing crisis in software version management as high performance applica-

tions evolve and are ported to a variety of HPC architectures over their lifetime also

suggests that di�erent views of the development are needed: a high-level view is

preferred for changes in speci�cation, while lower-level views are more appropriate

for architecture and machine changes.

The remainder of this paper is organized as follows. In Section 2 we outline a soft-

ware development methodology that addresses these problems by providing for the

architectural specialization of high-level designs couched in a single wide-spectrum

notation, the exploitation of parallel virtual machines as translation targets, and

the early assessment of prototypes using a hierarchy of parallel computational mod-

els matched to the level of design. In section 3 we describe the Proteus system, an

e�ort under way within our group to support the software development methodol-

ogy. Section 4 contains a brief overview of related work. We conclude the paper

with a discussion of requirements for realizing the above framework.

2. A Refinement-Based Approach to HPC Software Development

To address the problems raised in the previous section, we propose a re�nement-

based development methodology. Informally, by re�nement we mean the inclusion

of additional detail. The approach starts with a speci�cation that is initially re-

�ned into a high-level architecture independent design and from there successively

brought closer to a target architecture through re�nement steps which incrementally

incorporate architectural details. The most re�ned version corresponds directly to

an implementation in a low-level architecture-speci�c notation.

2.1. Tree structured program development. We represent the successive ver-

sions developed as nodes in a graph and add an edge between versions when one is

developed from another via re�nement, as shown in Figure 1. A set of architecture

dependent implementations of a single problem can be constructed using a tree

structured graph. At internal nodes of the tree, each di�erent re�nement reects a

design decisions that essentially directs the development toward one or a group of

speci�c architectures (e.g. shared memory or distributed memory machines).

If we express the re�nement steps in a formal manner, for example as program

transformations, then there is the possibility of applying these transformations



4 MILLS, NYLAND, PRINS, AND REIF

Specification

Architecture-dependent design

Implementation

Architecture-independent design

Figure 1. Program development tree

automatically in the form of development \tactics", as is done in program synthesis

systems such as KIDS [22], and the CIP system [19].

Translation

Specification

Refinement

C + Posix ThreadsC + PVM

C + CVL

High-level
Programs

Low-level
Parallel
Programs

P0

P1P2

P3P4

Figure 2. Development tree with translations to parallel implementations

An automated approach can be particularly important in this setting because

there are more versions to develop from a speci�cation than is typical in the synthe-

sis of a conventional (sequential) application. Targeting a new architecture requires

the addition of a new sequence of re�nements starting from an appropriate level of

design to an architecture-speci�c implementation. Generating a new set of imple-

mentations following a change to the high-level speci�cation (for example, adding

a new component in a simulation), in principle requires that we \replay" all re�ne-

ment steps starting with the new speci�cation to generate a new tree of versions

that incorporates the changes for each of the targeted architectures.

Of course, automated program synthesis technology and design capture are re-

search areas that require a great deal of additional development to be generally

applicable. A more pragmatic view is that a tree structured development is an

organizational concept and that the actual synthesis, re�nement and replay steps

are conducted using a mixture of manual and automatic techniques. In particu-

lar, it is likely that automated techniques may apply only near the leaves of the

development tree.

2.2. Wide-spectrum concurrent programming notation. We believe that

the best way to support the capabilities described is to represent all versions in the

development tree using a single wide-spectrum concurrent programming language.



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 5

Such a language, by unifying the various parallel programming paradigms, would

both be able to capture concurrency in an abstract high-level fashion and to provide

a uniform vehicle for re�nement towards particular architectures demanding various

paradigms such as data and process parallelism.

Using such a language, prototypes can be constructed at an architecture-independent

level and evaluated using an interpreter and tools. Re�nement of such prototypes

consists of program modi�cations or transformations that result in restrictions in

the use of the concurrency constructs. Such restrictions express the adaptation of a

high-level design to constructs e�ciently supported on a speci�c architecture. Since

the resulting program would still be in the same notation, the interpreter can again

be used to assess its functionality and some performance measures. Programs that

are suitably re�ned should be automatically translatable to e�cient parallel pro-

grams in low-level architecture-speci�c notations and run directly on the targeted

parallel machines.

2.3. Low-level parallel virtual machines. The �nal translation techniques can

gain wider applicability by targeting low-level parallel virtual machines that are

e�ciently implemented on classes of parallel architectures, rather than machine-

speci�c languages. For example the C language along with libraries such as the

vector library CVL [1], PVM [11] or POSIX threads might be appropriate as low-

level parallel virtual machine targets.

2.4. Software development process. Figure 2 illustrates the development pro-

cess we have in mind. Starting with an initial speci�cation, programs are succes-

sively transformed to incorporate speci�cation changes, to restrict the expression

of concurrency and to translate versions to architecture-speci�c low-level notations.

We thus di�erentiate transformation steps into

� elaborations, which alter the meaning of a speci�cation,

� re�nements, which preserve the meaning of the speci�cation but narrow the

choices for execution, for example by restricting the form of concurrency

employed, and

� translations, which convert the program from the high level notation to a

low-level notation.

In Figure 2 an initial executable speci�cation P0 is developed (after some elab-

oration). This formulation may or may not include any explicit concurrency. Here

we assume P0 includes only implicit data parallelism.

Several re�nement paths are shown. Each re�nement is simply a rewriting of the

program text that preserves meaning but changes the detailed form of the program

and the constructs used. For example, the re�nement from P0 to P1 might restrict

data-parallel expressions so that the resulting program is translatable to the CVL

model. Alternatively, the re�nement from P0 to P2 introduces explicit concurrency

in the program. In version P3 this concurrency is expressed in a very general

form from which it is not possible to determine communication points. For this

version, a C program spawning Posix threads and using semaphores to synchronize

would have to generated. P4 is an alternate re�nement of P2 in which the form

of the explicit concurrency is su�ciently restricted that all communication can

be statically identi�ed and a PVM program can be generated from P4. If P4 also

includes a component that uses data-parallelism, that component can be translated



6 MILLS, NYLAND, PRINS, AND REIF

to CVL. In general, a program version can translate to any number of program

segments in di�erent virtual machine models.

These re�nement operations could be accomplished by manual rewriting or by

a semi-automatic program transformation system. As one gains insight into the

principles of these re�nements, it may be possible to express them in the form of

tactics or to incorporate them into the automated translations.

2.5. Prototyping and evaluation of designs. It is critical to this development

methodology that the intermediate versions in a development can be assessed in

some form. Through the use of an interpreter for the high-level notation, all versions

can be executed, so that some empirical measurement of functional and performance

characteristics is possible. In general it is unlikely that e�cient parallel execution

could be achieved for high-level speci�cations, and in fact it may well be that the

only way to execute such versions is by a sequential simulation performed by the

interpreter. Even with this limitation important performance and functionality

measurements could still be obtained, e.g. total work performed by a parallel

algorithm and its load distribution under some particular data decomposition.

The execution capability would support the rapid prototyping of designs and

permit the exploration of a large and complex space of alternatives in which sig-

ni�cant design trade-o�s exist. There is extensive evidence in many engineering

domains, including both the software and hardware, that information obtained by

disciplined experimentation with prototypes reduces risk and improves productiv-

ity. In the domain of parallel computation where design principles are not well

understood, the knowledge acquired from prototyping can be particularly valuable.

By re�ning prototypes toward speci�c implementations rather than throwing

them away, we improve the ability to carry information from the prototype into

implementation.

2.6. Performance prediction. A signi�cant aid in the design of e�cient paral-

lel programs is the ability to predict the performance on actual parallel machines,

allowing the early assessment of algorithmic variations without the cost of full im-

plementation. Performance analysis here encompasses both empirical measurement

of performance (e.g. through simulation) as well as static estimation of complexity

measures of time and resource utilization. For both these cases the measurements

of behavior are de�ned in terms of a mathematical model of a computing machine.

Indeed, parallel computation models which underlie both static and dynamic per-

formance analysis give an operational semantics to programs which provides an

intuitive framework that guides the very design of the algorithm. In this sense

there is little technical distinction between formal models of computation and what

are typically termed programmingmodels. Thus it is not surprising that it remains

di�cult to assess parallel program performance for many of the same reasons it is

di�cult to construct e�cient and portable parallel programs in the �rst place { the

gap between high-level models and diverse low-level machines hinders the the accu-

racy of performance estimation. To combat this problem we propose a re�nement-

based approach to performance prediction in which the computing model, chosen

from a hierarchy of recently developed more detailed models, matches the level of

program re�nement.

Historically, the PRAM is the most widely used parallel model. However, for

current parallel machines, the PRAM is often inaccurate in predicting the actual



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 7

running time of programs since it hides details which impact performance such as

the time required for network communication and synchronization as well as issues

of asynchrony and memory hierarchy. For example, this model does not reect the

current trend toward larger-grained asynchronous MIMD machines whose proces-

sors each may have their own sophisticated memory hierarchies and which commu-

nicate over relatively slow networks. This necessitates (1) a pragmatic re�nement

of parallel machine models, that is, the development of models which incorporate

realistic aspects such as communication costs and memory hierarchy while still

remaining abstract enough to be machine-independent and amenable to reason-

ing, and (2) the practical application of these theoretical models to performance

analysis, that is, the development of better techniques and tools for performance

prediction.

Models and resource metrics for parallel computation. In response to

the �rst need there have been proposed a variety of models which extend the PRAM

to incorporate realistic aspects such as asynchrony of processes (e.g., the APRAM

[9]), communication costs, such as network latency and bandwidth restrictions (e.g.,

the LogP model [10]), and memory hierarchy, reecting the e�ects of multileveled

memory such as di�ering access times for registers, local cache, main memory and

disk I/O (e.g., the P-HMM [23]). The most prevalent and promising recent models

are parameterized (or generic) models, which abstract the architectural details into

several generic parameters which we call resource metrics. Typical resource metrics

include the number of processors, communication latency, bandwidth, block transfer

capability, network topology, memory hierarchy, memory access method and degree

of asynchrony. Using such a parameterized model one can design broadly applicable

parameterized algorithms that can be tailored to speci�c machines by instantiating

the parameters, such as latency and bandwidth, to match machine characteristics.

Re�nement of models. We argue for an approach to performance analysis

that in answer to the second need { practical application of recent re�ned models

{ allies performance assessment with the incremental re�nement of design. Our

approach for performance prediction is based on (1) the use of increasingly detailed

models as the program re�nement progresses, gaining accuracy and con�dence as

development progresses, (2) the use of di�erent models for analysis of code segments

following di�erent paradigms, such as data-parallelism and message-passing, to

support the assessment of multi-paradigm programs, and (3) the extension of an

already emerging hierarchy of re�ned models as needed to support the above goals,

following principles derived from a careful examination of key issues in the design

of models of parallel computation.

The key notion in the �rst point is that the computing model used for assess-

ment varies with the level of re�nement. At each point in the stepwise re�nement

the design can be assessed; the accuracy of assessment increases with the level of

architectural detail incorporated into the design and the correspondingly more de-

tailed model used for analysis. Moreover, in terms of resource metrics, the model

should \�t" the re�ned program not just in level of detail but also in the choice of

resource metrics with which it approximates machines. As more detailed architec-

tural commitments are made in the speci�c expression of concurrency (for example

incorporating notions of message-passing) models with appropriate resource met-

rics (for example with notions of latency) can be attached to the program. Thus

a hierarchy of models expressing increasingly detailed resource metrics are used



8 MILLS, NYLAND, PRINS, AND REIF

which matches the tree-like structure of program re�nement.

For example, at the coarsest level performance prediction may be done using the

interpreter to derive simple approximations of total work. As the program is re�ned

into data-parallel code one might employ the VRAM vector model [2], or for a

shared-memory version a model akin to the APRAMmight be used for performance

evaluation. As the program is further re�ned, for example from a shared-memory

program to a more sophisticated form which corresponds to message-passing, the

LogP network model may be employed to gain more accurate assessment, with

suitable instrumentation that identi�es low-level units of communication (and work)

in order to \attach" the model to the program.

At a further stage in the re�nement process it becomes important to model

the several layers of memories which exist in many machines, since di�ering access

times to local cache and disk may strongly e�ect performance. Yet to accommodate

these more detailed performance measures, further re�nements of parallel models

might be required, since a void exists in models that accurately treat both network

communication and parallel multi-levelmemory. As a simple example of the process

of developing improved performance models, consider a new hybrid model of parallel

computation, the LogP-HMM model [14], which extends a network model (the

LogP) with a sequential hierarchical memory model (the HMM). Such a re�ned

model could be instrumented into parallel code through the use of annotations

which incorporate explicit details of memory locality. A related approach has been

used for cache-coherent shared-memory multiprocessors in the CICO project [13],

where annotations serve both for performance prediction and to guide more e�cient

code generation.

Executable Machine
Objects

External
Codes

MIFelaborate

Repository

Modification Execution

TMC CM-5

Cray C90

MasPar MP-1

KSR-1

Intel Paragon

refine

translate

execute

monitor

Current
Version analyze

P
ar

al
le

l V
irt

ua
l M

ac
hi

ne
 In

te
rf

ac
e

P
V

M
, P

os
ix

 th
re

ad
s,

 C
V

L,
 E

tc
.

Figure 3. Re�nement-based framework for software development



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 9

3. The Proteus System for the Development of HPC Software

We now briey describe Proteus, a re�nement-based system for parallel software

development which embodies the principles earlier presented. The Proteus system

is under joint development by Duke University, the University of North Carolina at

Chapel Hill, and the Kestrel Institute. Its goal is to provide improved capabilities

for exploring the design space of a parallel application using prototypes, and for

evolving a prototype into a highly-specialized and e�cient parallel implementation.

The Proteus system, illustrated in Figure 3, comprises:

� a wide-spectrum parallel programming notation that allows high-level ex-

pression of speci�cations,

� a methodology for (semi-automatic) re�nement of architecture-independent

prototypes to lower-level programs optimized for speci�c architectures, fol-

lowed by translation to portable intermediate languages,

� an execution system consisting of an interpreter, a Module Interconnection

Facility (MIF) allowing interoperability of Proteus with other programming

languages and run-time analysis tools, and

� a methodology for prototype performance evaluation integrating both dy-

namic (experimental) and static (analytical) techniques with models matched

to the level of re�nement.

We believe that, in the absence of both standard models for parallel computing

and adequate compilers, this approach gives the greatest hope of producing useful

applications for today's computers. It allows the programmer to balance execution

speed against portability and ease of development.

3.1. The Proteus language. The Proteus language is an imperative language

that provides high-level notations for expressing several fundamental forms of paral-

lelism including implicit concurrency found in data-parallel expressions, and explicit

concurrency in the form of tasks and controlled access to shared state.

Data parallel operations are expressed using the familiar mathematical notations

of set, sequence, and map comprehension. The ability to specify irregular and

nested data parallelism is a natural consequence of providing nested aggregate data

types such as sequences of sequences, sets of sets, etc. Like SETL, many of the

powerful and exible mathematical types are prede�ned in Proteus. Additional

user-de�ned data types may be speci�ed algebraically in Proteus and packaged

as parameterized theories { parameterization both generalizes polymorphism and

enhances reusability.

Process (or task) parallel computations can also be succinctly expressed with a

small set of process creation and synchronization primitives similar to those adopted

in recent languages such as PCN [7], CC++ [6], and COOL [5]. In particular,

communication is through a shared object model in which the access to shared state

is controlled through object methods and class directives which constrain mutual

exclusion of methods [16]. Prede�ned classes such as for single-assignment objects

which synchronize a producer with a consumer [12], together with provisions for

private state with barrier synchronization [17], allow the expression of a wide range

of parallel computing paradigms.

3.2. Transformation of data and process parallelism. Proteus data-parallel

expressions in a functional subset involving nested sequence datatypes can currently



10 MILLS, NYLAND, PRINS, AND REIF

be transformed and translated to C with vector operations (CVL) using the Kestrel

Data-Type Re�nement System (DTRE3) [20]. This includes irregular and nested

data-parallel expressions (as found in the parallel application of a function to each

of a collection of argument sequences of di�ering lengths), recursive parallel com-

putations (as found for example in divide-and-conquer algorithms), and high-order

parallel function application (as found in the parallel reduction of a sequence of

values using an arbitrary function).

The resultant CVL program can be e�ciently executed on diverse parallel ma-

chines such as the Cray C-90, the TMC CM-5, and the MasPar MP-2. Translation

of process parallelism is under development.

3.3. Performance prediction and measurement in Proteus. The Proteus

interpreter currently provides a rudimentary per-process clock that measures com-

putational steps. This, in conjunction with explicit instrumentation of Proteus code

is, used to develop resource requirement measures and to predict performance. Sup-

port for multiple performance-prediction models is under investigation.

3.4. Applications of the Proteus system. Several small demonstrations and

larger driving problems have been used to assess and validate our technical ap-

proach, focusing on such aspects as the prototyping process and methodology, the

expressiveness of the Proteus language, and the e�ectiveness of the Proteus tools.

One demonstration problem involves the prototyping and implementation of al-

gorithmic variants of the Fast Multipole Algorithm (FMA) for N-body simulation.

These algorithms promise performance and accuracy advantages for computation-

ally challenging problems such as molecular dynamics simulations, yet are complex

and time-consuming to implement. The FMA has many variants which generate

a design space which is not well understood. The goal of our experiments with

Proteus has been to explore this space. Our experiments have identi�ed new adap-

tive problem decompositions that yield good performance even in complex settings

where bodies are not uniformly distributed [18].

Further descriptions of the language, implementation, and demonstrations are

available from the Proteus WWW information server at

http://www.cs.unc.edu/proteus.html.

4. Related Work

There are a variety of e�orts which seek to address the problem of parallel

software development through high-level languages capable of expressing programs

executable on a broad range of parallel architectures. These e�orts may be distin-

guished in the approach they take to dealing with the tradeo�s of expressiveness, ef-

�ciency, and sophistication of compilation strategies. For example, some approaches

restrict the forms of concurrency usable in order to achieve good performance on

all platforms. This is the approach of High-Performance Fortran (HPF), for exam-

ple, which is limited to at data-parallelism, and might be said to also characterize

the current intent of HPC++. However, by restricting the notation to expressing

only what is readily compilable, a measure of expressiveness, for example nested

data-parallelism, may be sacri�ced.

Other languages attempt to provide a higher level of expression, but then face dif-

�culty in achieving good performance because of very general programming model



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 11

that can not take full advantage of architectures. This might be said to character-

ize some coordination languages with simple but widely translatable logical models

such as the distributed data structures of Linda [4]. In this camp might also be

said to fall several functional (or equational) languages. The parallelism is typically

implicit and is primarily data-parallelism. For example, a notable e�ort in this area

is NESL (Nested Sequence Language) [3], a data-parallel language that supports

the expression of nested data parallelism and is compiled to a widely implemented

lower-level vector language VCODE. Id and SISAL are other functional languages

which employ a single-assignment property to enforce determinate behavior. Fairly

sophisticated translation strategies are used in these cases to bridge the gap from

high-level language to machine and so achieve a measure of architecture indepen-

dence.

Several high-level parallel languages rely on transformation from high-level speci-

�cation to realize e�cient execution. Notable e�orts include Crystal [8] and variants

of the Bird-Meertens functional formalism [21]. Another noteworthy e�ort is Maude

[15], a language based on rewriting logic which can be transformed into a paral-

lel sublanguage (Simple Maude) which can then be compiled. In these cases the

re�nement steps are justi�ed formally through inference steps or algebraic trans-

formations.

While both Crystal and the Bird-Meertens formalisms pursue a transformational

approach in which parallel speci�cations are re�ned to parallel programs for a par-

ticular class of machine, in both cases the languages are to a degree insu�ciently

expressive. In the case of Crystal, where concurrency is implied by independence

in the equational speci�cation, not only is the equational notation somewhat re-

strictive but the user must have some knowledge of the architectural mapping in

order to guide e�cient implementation. The Bird-Meertens formalism is also re-

strictive as a design notation as it cannot express many forms of parallelism such

as process-parallelism.

Although our approach to software development is also based on the use of a

high-level language and program transformation, our language is wide-spectrum in

order to cover the intended hierarchy of designs. In contrast to other approaches,

we rely on manual re�nement to bring the design closer to the machine before

translation and so bridge a gap that can not be reliably crossed using compila-

tion techniques, thus obtaining a language which simultaneously is expressive and

capable of specifying highly e�cient concurrent programs.

5. Conclusions

We propose a methodology for parallel software development based on the use

of a wide-spectrum concurrent programming language together with re�nement as

a means of prototyping and evolving initial designs into implementations.

A realization of the above approach entails the development of a framework

with the following components, which we suggest forms part of an agenda for HPC

software development environments.

(1) wide-spectrum parallel languages which provide a uniform high-level no-

tation that uni�es the typically disjoint paradigms of data- and process-

parallelism,



12 MILLS, NYLAND, PRINS, AND REIF

(2) formal methods of program transformation which migrate the design to-

wards speci�c architectures,

(3) parallel virtual machines forming e�cient portable execution targets,

(4) models and tools for performance prediction that utilize realistic parallel

computational models matched to the level of design.

In our current e�orts we have developed the Proteus notation as a candidate wide

spectrum concurrent programming language and have constructed a framework

integrating manual, automated, and semi-automated transformation of programs

to allow exploration of the design space as well as development and maintenance

of e�cient implementations.

References

1. G. Blelloch, S. Chatterjee, J. Sipelstein, and M. Zahga. CVL: A C vector library. Draft

Technical Note, Carnegie Mellon University, December 1990.

2. G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.

3. G. E. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and M. Zagha. Implementation

of a portable nested data-parallel language. In Proc. 4th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. ACM, 1993.

4. Micholas Carriero and David Gelernter. Coordination languages and their signi�cance. Com-

munications of the ACM, 35(2):96{107, February 1992.

5. Rohit Chandra, Anoop Gupta, and John Hennessy. Integrating concurrency and data ab-

straction in the COOL parallel programming language. Technical Report CSL-TR-92-511,

Computer Systems Laboratory, Stanford University, Ca., 1992.

6. K. Mani Chandy and Carl Kesselman. Compositional C++: Compositional parallel program-

ming. In Proc. of the 4th Workshop on Parallel Computing and Compilers. Springer-Verlag,

1992.

7. K. Mani Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones and

Bartlett, Boston, 1992.

8. Marina C. Chen, Young il Choo, and Jinke Li. Crystal: Theory and pragmatics of generating

e�cient parallel code. In Boleslaw K. Szymanski, editor, Parallel Functional Languages and

Compilers, chapter 7, pages 255{308. ACM Press, 1991.

9. Richard Cole and Ofer Zajicek. The APRAM: Incorporating asynchrony into the PRAM

model. In Proc. of the First ACM Symposium on Parallel Algorithms and Architectures,

pages 169{178. ACM Press, 1989.

10. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and

T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc. 4th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 1993.

11. Jack Dongarra, G. A. Geist, Robert Manchek, and V. S. Sundaram. Integrated PVM frame-

work supports heterogeneous network computing. J. Computers in Physics, 7(2):166{175,

1993.

12. Allen Goldberg, Jan Prins, John Reif, Rik Faith, Zhiyong Li, Peter Mills, Lars Nyland, Dan

Palmer, James Riely, and Stephen Westfold. The Proteus System for the Development of

Parallel Applications. April 1994.

13. James R. Larus, Satish Chandra, and David A. Wood. CICO: A practical shared-memory

programming performance model. In Ferrante and Hey, editors, Portability and Performance

for Parallel Processors. 1994.

14. ZhiyongLi, Peter H. Mills, and John H. Reif. Models and resource metrics for parallel and dis-

tributed computation. Technical Report, Department of Computer Science, Duke University,

1994.

15. Jose �Meseguer. A logical theory of concurrent objects and its realization in the Maude lan-

guage. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Directions in

Concurrent Object-Oriented Programming, pages 314{390. MIT Press, 1993.

16. Peter H. Mills. Parallel programming using linear variables. Draft Technical Report, Depart-

ment of Computer Science, Duke University, 1994.



SOFTWARE ISSUES AND DEVELOPMENT OF HPC APPLICATIONS 13

17. Peter H. Mills, Lars S. Nyland, Jan F. Prins, John H. Reif, and RobertA. Wagner. Prototyping

parallel and distributed programs in Proteus. In Proc. of the 3rd IEEE Symposium on Parallel

and Distributed Processing, pages 10{19. IEEE, 1991.

18. Lars S. Nyland, Jan F. Prins, and John H. Reif. A data-parallel implementationof the adaptive

fast multipole algorithm. In Proc. of the 1993 DAGS/PC Symposium, Dartmouth College,

Hanover, NH, June 1993.

19. Helmut A. Partsch. Speci�cation and Transformation of Programs: A Formal Approach to

Software Development. Springer-Verlag, Berlin, 1990.

20. Jan F. Prins and DanielW. Palmer. Transforminghigh-level data-parallel programs into vector

operations. In Proc. of the 4th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 119{128. ACM, May 1993.

21. D.B. Skillicorn. Architecture-independent parallel computation. IEEE Computer, 23(12):38{

50, December 1990.

22. Douglas R. Smith. KIDS { a semi-automactic program development system. IEEE Transac-

tions on Software Engineering, 16(9):1024{1043, September 1990.

23. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory II: Hierarchical multilevel

memories. Algorithmica, 1993.

(P. Mills, J. Reif) Dept. of Computer Science, Duke University, Durham, N.C. 27708-

0129.

E-mail address: fphm,reifg@cs.duke.edu

(L. Nyland, J. Prins) Dept. of Computer Science, University of North Carolina,

Chapel Hill, N.C. 27599-3175.

E-mail address: fnyland,prinsg@cs.unc.edu


