
Scalable Dynamic Load Balancing Using UPC

Stephen Olivier∗, Jan Prins
Department of Computer Science

University of North Carolina at Chapel Hill
{olivier, prins}@cs.unc.edu

Abstract

An asynchronous work-stealing implementation of dy-
namic load balance is implemented using Unified Parallel
C (UPC) and evaluated using the Unbalanced Tree Search
(UTS) benchmark [1]. The UTS benchmark presents a
synthetic tree-structured search space that is highly im-
balanced. Parallel implementation of the search requires
continuous dynamic load balancing to keep all processors
engaged in the search. Our implementation achieves bet-
ter scaling and parallel efficiency in both shared memory
and distributed memory settings than previous efforts us-
ing UPC [1] and MPI [2]. We observe parallel efficiency
of 80% using 1024 processors performing over 85,000 to-
tal load balancing operations per second continuously. The
UPC programming model provides substantial simplifica-
tions in the expression of the asynchronous work stealing
protocol compared with MPI. However, to obtain perfor-
mance portability with UPC in both shared memory and
distributed memory settings requires the careful use of one-
sided reads and writes to minimize the impact of high la-
tency communication. Additional protocol improvements
are made to improve dissemination of available work and
to decrease the cost of termination detection.

1 Introduction

Combinatorial optimization and enumeration are key
techniques in computational science and knowledge discov-
ery. These sorts of problems require exhaustive search of a
state space of possibilities. When the state space is very
large, as is often the case, a parallel search may be the only
hope for a timely answer.

Parallel search of a state space combines a search strat-
egy (e.g. depth-first search, branch-and-bound, iterative
deepening) with a load balancing strategy [3, 4]. The state
space often has unpredictable and irregular structure that

∗Stephen Olivier is supported by a National Defense Science and En-
gineering Graduate Fellowship.

can not be statically partitioned across processors, therefore
dynamic load balancing techniques are required. Moreover,
unlike many applications, there is no natural periodicity for
load balancing, since it is impossible to predict when indi-
vidual procesors will complete their portion of the search.
Consequently efficient execution of parallel search requires
asynchronous load balancing.

Parallel search and asynchronous dynamic load balanc-
ing are relatively easily implemented with reasonable per-
formance in a low-latency hardware shared-memory set-
ting. However, the most scalable HPC resources are clusters
with memory distributed among nodes. Asynchronous dy-
namic load balancing is a challenge to implement in a scal-
able fashion in these settings because communication laten-
cies are much higher and asynchronous parallel programs
are difficult to express using MPI.

This paper examines the use of Unified Parallel C (UPC)
to implement asynchronous and scalable dynamic load bal-
ancing. UPC provides a global address space that is parti-
tioned to provide an explicit notion of locality. UPC pro-
grams can be compiled for either a shared memory or a dis-
tributed memory model. Our choice of UPC is motivated
by the performance advantages of one-sided communica-
tion for asynchronous computation and by the simplified
expression of asynchronous load balancing in UPC com-
pared to MPI.

We use the Unbalanced Tree Search (UTS) bench-
mark [1] to measure efficiency and scalability of dynamic
load balance. This benchmark requires the complete traver-
sal of a large tree-structured search space. The size and im-
balance of the search tree is parameterized. For this bench-
mark, any load balancing strategy can be used, but work
stealing [5] is the most promising strategy for scalable load
balancing and is the focus of this paper.

While UPC programs can be run in shared memory or
in distributed memory settings, the performance implica-
tions of algorithmic choices can be dramatically different.
The implementation presented in [1] performs well only in
shared memory settings. In this paper, we describe a new
work-stealing implementation intended to perform well in



distributed memory settings. The contributions are stream-
lined termination detection, rapid diffusion of work, and
an asynchronous request-response protocol for work steal-
ing that minimizes overheads to threads performing useful
work. This last contribution was inspired by an MPI imple-
mentation of UTS [2], but exploits UPC’s one-sided com-
munication operations.

In our scaling experiments we use UTS parameters that
yield trees with extreme variability in subtree size at every
node in the tree. Using 1024 processors we generate and
search a tree with approximately 157 billion nodes. More
than 85,000 work stealing operations per second are per-
formed on average throughout the search as processors run
out of work and probe other processors for new parts of the
search tree to explore. Our UPC implementation obtains the
highest performance of UTS to date, achieving a search rate
of 1.7 billion nodes per second using 1024 processors, cor-
responding to a speedup of 819 and an efficiency of 80%.

The paper is organized as follows. Section 2 presents the
UTS benchmark and describes the work stealing paradigm
for dynamic load balancing. Section 3 describes our UPC
implementation of work stealing and contrasts it against
previous UPC and MPI implementations. Section 4 pro-
vides a detailed performance analysis of implementations of
the algorithms on distributed and shared memory architec-
tures. Section 5 discusses related work. Section 6 presents
a concluding discussion and plans for future work.

2 The Unbalanced Tree Search Problem

The UTS problem [1] is to count the nodes in an implic-
itly defined tree: any subtree in the tree can be generated
completely from the description of its parent. The number
of children of a node is a function of the node’s descrip-
tion; in our current study a node can only have zero or two
children. The description of each child is obtained by an
evaluation of the SHA-1 cryptographic hash function [6] on
the parent description and the child index. In this fashion,
the UTS search trees are implicitly generated in the search
process but nodes need only be retained while on the depth-
first search stack.

Load balancing of UTS is particularly challenging since
the distribution of subtree sizes is the same for all nodes in
the search space but exhibits extreme variation. The distri-
bution of subtree sizes consists of frequent small subtrees
and occasionally enormous subtrees. The expected size of
the search starting from any node is the same, so there is no
advantage to be gained by stealing one node over another. In
this sense the UTS search space is at least as challenging as
any actual problem-specific search space, so solutions that
work well with UTS are relevant to all search problems.

In a parallel search, each thread performs a depth-first
traversal from some given node using its own stack of nodes

and counting the nodes it visits. Initially, a single thread
holds the root node. Upon completion, the total number of
nodes traversed in each thread can be combined to yield the
size of the complete tree. A thread that empties its stack
becomes idle. Load balancing is performed by moving one
or more node(s) from a non-empty stack of a working thread
to the empty stack of an idle thread.

Work stealing can be an efficient approach to the load
balancing task because it is initiated by idle threads. An
idle thread tries to steal one or more nodes from some other
thread’s nonempty stack. Since steal operations do not re-
quire the active participation of the victims, we say that they
are “one-sided.” The victim, which is actively exploring the
search tree, is not interrupted by the operation. This concept
is described in [7] as the “work-first” principle.

One key question concerns the number of nodes that are
moved between threads at a time. The larger this chunk size
k, the lower the overhead to work stealing when amortized
over the expected work in the exploration of the k nodes.
This argues for a larger value of k. However, the likelihood
that a depth first search of one of our trees has k nodes on
the stack at any given time is proportional to 1

k , hence it may
be difficult to find large amounts of work to move. Thus, the
value of k represents a tradeoff between load imbalance and
communication costs.

The performance of UTS at different choices of chunk
size is of primary interest to users of the benchmark. The
range of chunk sizes for which an implementation achieves
peak performance may be narrow or wide, and may shrink
as more threads are used. This reflects the sensitivity of
the machine to message size. In particular, the perfor-
mance at low chunk size indicates the efficiency of sending
small messages on the machine. Consequently, distributed
memory systems that require coarse-grain communication
to achieve high performance are particularly challenged by
the UTS problem.

3 Work Stealing Implementation in UPC

UPC (Unified Parallel C) is a shared-memory program-
ming model based on a version of C extended with global
pointers and data distribution declarations for shared data
[8]. The model can be compiled for shared memory or dis-
tributed memory execution. For execution on distributed
memory, it is the compiler’s responsibility to translate mem-
ory addresses and insert inter-processor communication. A
distinguishing feature of UPC is that global pointers with
affinity to one particular thread may be cast into local point-
ers for efficient local access by that same thread. One-sided
communication is also supported implicitly in shared vari-
able references and explicitly in the UPC run-time library
via routines such as upc memput() and upc memget().

In UTS, a collection of local and global state variables



Figure 1. State diagram illustrating the basic operation of parallel threads.

Shared
Access

Stack
Top

Stack
Bottom

Local
Access
Only

k

Figure 2. A thread’s
steal stack as im-
plemented in the
shared memory
algorithm.

are maintained. Remote accesses of these variables, as well
as the locks that guard them, are accomplished through
shared variable references. This greatly simplifies coding
in comparison to implementations using message passing
paradigms such as MPI. Through UPC’s shared memory
abstraction, a clear correspondence between algorithm and
implementation is maintained, unfettered by concerns over
matching sends and receives. The UTS search problem is
concerned purely with load balance, and hence uses a sim-
ple parallel depth-first exploration. For the implementation
of more complex state evaluation functions and more so-
phisticated strategies such as branch-and-bound, UPC of-
fers clear additional advantages.

Algorithms to accomplish load balancing for UTS differ
in the details of (1) management of shared access to the
local depth-first stack, (2) conditions for transition between
states, and (3) termination detection. Each thread spends
fruitful time on depth-first exploration of tree nodes from its
stack, while stealing allows nodes to be added to it and taken
from it. Each thread’s execution can be modeled as a state
machine. Figure 1 shows a broad representation of such
a state machine; details vary based on the particular load
balancing algorithm used. Termination detection is required
to determine the point at which no work is left in the system
and communicate that knowledge to all threads.

We shall first describe in detail an algorithm designed
primarily on and for shared memory systems. A UPC im-
plementation of this algorithm was evaluated in [1]. Perfor-
mance and scaling were excellent on shared memory ma-
chines, but disappointing on distributed memory machines.
We summarize the design of an existing distributed mem-
ory implementation using MPI [2]. We then describe a new
algorithm designed for distributed memory using UPC. The
two algorithms for UPC share much in common. However,
the distributed memory algorithm addresses challenges to
the “work-first” principle posed by high-latency intercon-

nects. In particular, locks are avoided and remote accesses
that may interfere with the progress of working threads are
limited.

3.1 Shared Memory Algorithm

In the shared memory algorithm, the DFS stack is par-
titioned into two regions: local and shared. A representa-
tion of a thread’s stack is shown in Figure 2. Each thread
may perform push and pop operations at stack top in the lo-
cal region without requiring locking operations. The shared
region is subject to concurrent access, and thus operations
must be serialized through a lock. Only remote accesses to
a thread’s stack incur shared address translation overheads
in UPC, and nodes are transferred through one-sided com-
munication. Steal operations are necessary to accomplish
load balancing, but they unfortunately incur remote locking
and data transfer costs. To amortize the manipulation over-
heads, nodes can only be moved in chunks of size k between
the local and shared regions or between the shared regions
of two different threads’ stacks.

The basic stages of the algorithm are illustrated in Fig-
ure 1. It is useful to consider four major states for each
thread:

• Working: While there is work on the local stack,
threads continue to pop nodes, visit the nodes, push
any children onto the stack, and move work between
the local and shared regions of the stack. The release()
operation moves a chunk of k nodes from the local to
the shared region, when the local region has built up a
comfortable stack depth (at least 2k in our implemen-
tation). The chunk then becomes eligible to be stolen.
If the local stack becomes empty, a reacquire() opera-
tion is used to move nodes from the shared region back
onto the local stack.



• Work Discovery: When no more work is available
on a thread’s own stack, a pseudo-random probe order
is used to examine other threads’ stacks for available
work. Since these probes may introduce significant
contention when many threads are looking for work,
the count of available work on a stack is examined
without locking. Hence a subsequent steal() operation
may not succeed if in the interim the state has changed.
In this case the probe proceeds to the next victim.

• Work Stealing: The steal() operation locks the stack
of a potential victim and checks if a chunk is actu-
ally available to be stolen. If so, the chunk is re-
served. Then the lock is released. The reserved chunk
is transferred outside of the critical region to minimize
the time that the stack is locked. Since the transfer is
implemented in UPC using one-sided communication,
the victim is not required to actively participate and
can continue doing work during the transfer.

• Termination Detection: When a thread out of work is
unable to find any available work in any other stack, it
enters a barrier. A thread releasing work sets a global
variable that releases idle threads waiting at the barrier,
and they resume searching for work. When all threads
have reached the barrier, the last thread to enter it sets
a termination flag.

As shown in [1], this simple algorithm performs well
on shared memory machines. On distributed memory ma-
chines, however, communication costs, locking costs, and
contention for shared variables conspire to drive down per-
formance. Consider the cost of termination detection, im-
plemented using a cancelable barrier. All threads waiting at
the barrier must spin remotely on termination/cancellation
flags, requiring an arbitrary number of remote operations.
After each release() operation, the cancelable barrier is re-
set by the thread releasing work. This is a remote operation,
and it delays a thread that might otherwise be doing useful
work. Furthermore, barrier operations are performed under
lock, adding significant remote locking costs. As another
example, locking of the shared stack to acquire or release
a chunk of work can delay a working thread despite a local
stack lock. This is because multiple remote threads attempt-
ing to steal work from the working thread can keep the stack
locked for a comparatively long time as a result of remote
references with high latency.

3.2 Message Passing Algorithm

A work stealing algorithm using message passing is de-
scribed in [2]. Stealing is performed using a message ex-
change. To initiate a steal, an idle thread sends a request to
a potential victim. Working threads poll for requests at an

interval set by a user-supplied parameter. Upon detecting a
request, the victim sends a chunk of work (if available) back
to the requesting thread. Termination detection is accom-
plished using Dijkstra’s token-passing algorithm [9]. The
MPI implementation of this work stealing algorithm is used
in Section 4.2 as a point of comparison to the UPC imple-
mentations of our shared memory and distributed memory
algorithms.

3.3 Distributed Memory Algorithm Using
UPC

Our new distributed memory algorithm using UPC ad-
dresses key weaknesses in the shared memory algorithm to
better adapt it to distributed memory machines. At the heart
of the algorithm is careful consideration, not explicitly ad-
dressed in the shared memory algorithm, for the latency of
the interconnect between the processors. The challenge is
to limit remote operations, especially locking, and accel-
erate the work discovery process. The new algorithm fea-
tures a streamlined termination detection mechanism, more
rapid diffusion of available work, and no locking of the DFS
stack. While MPI introduces many complications in the im-
plementation of work stealing, it has a clear advantage in
not using any remote locking operations.

3.3.1 Streamlining Termination Detection

The shared memory algorithm’s termination detection strat-
egy has the useful property that threads in the termination
phase quickly return to the work discovery phase when
work becomes available. However, the working threads
may be significantly slowed by frequent barrier cancella-
tions. An alternative strategy would be to have idle threads
enter the termination phase only when they are nearly cer-
tain that no more work remains.

The distributed memory algorithm adopts the latter strat-
egy. A probe of the potential victim’s work avail variable
returns distinct values for working threads with no surplus
work and threads with no work at all. If after a complete
cycle of probes, a thread searching for work finds that all
other threads are out of work, only then does it enter the
barrier. If it finds even a single thread still working, it con-
tinues searching for work and does not enter the barrier.

All threads may appear to be out of work if the locus of
remaining work moves out of phase with detecting probes.
Probing threads, observing an apparent out-of-work situa-
tion, may enter the barrier while there is still work in the
system. To accommodate this situation, which in practice
seems to occur extremely rarely, threads that have entered
the barrier continue to probe for work and leave the barrier
if they successfully steal some work. However, each thread
that has entered the barrier only inspects one other thread to



avoid overwhelming the remaining working threads, if any.
Once all threads are in the barrier, the last thread to enter the
barrier launches a tree-based termination announcement.

The advantage of the new algorithm’s termination de-
tection over that of the shared memory algorithm is that
the expensive barrier operations are performed, almost al-
ways, only once. Thus, remote communication costs, lock-
ing costs, and contention for the shared variables used to
implement the barrier are minimized.

3.3.2 Rapid Diffusion

In our shared memory algorithm, thieves steal one chunk
at a time, which may be helpful for workers to accommo-
date very many thieves. However, we observed that this
limitation can be counterproductive given the unbalanced
nature of UTS. When left undisturbed for some time and
while exploring a large subtree, a thread may generate a
large number of unexplored nodes on its DFS stack. Idle
threads steal work one chunk at time from these “work
source” threads, often completing that chunk’s work with-
out generating many new nodes. Thus, they return quickly
for another chunk. Each steal in this continued succession
of steals requires costly remote operations.

Allowing a thread to steal more than one chunk at time,
when available, minimizes the overhead costs incurred in a
situation like the one just described. Of course, the transfer
sizes per steal are larger, but recall that the one-sided opera-
tions of UPC allow the transfer to proceed while the victim
continues working. Also, larger transfers may more fully
utilize the interconnect bandwidth, mitigating the increase
in message size.

In the distributed memory algorithm, the thief thread
steals half the available chunks on the victim’s steal stack
if more than one chunk is available, or one chunk other-
wise. In addition to the benefits outlined above, the effect
is to rapidly increase the number of “work sources”–threads
with work available. Each thread that steals a large number
of chunks becomes itself a viable victim to other threads.
The addition of more work sources decreases the number
of probes required to find a victim and reduces contention
for access to the work sources’ stacks, hence leads to more
rapid diffusion of work.

3.3.3 Lock-less DFS Stack

In an effort to place the burden of load balancing work on
the idle threads, our shared memory algorithm had them
perform the steals entirely on their own. However, the steal
operations still disturb the working threads because they are
forced to wait for the shared stack to be unlocked to release
or reacquire nodes. The cost of the interfering remote lock-
ing operations is typically an order of magnitude greater
than the cost of a shared variable reference. In contrast, we

observed that a primary advantage of the MPI implemen-
tation is its avoidance of locking on the steal stack. In that
implementation, working threads poll at intervals to observe
and service steal requests by sending the work. Thus, there
are no concurrent accesses to the stack. The distributed
memory algorithm for UPC uses a similar mechanism for
the stealing process.

In the distributed memory UPC implementation, a thread
searching for work, upon detecting work available at a re-
mote thread, attempts to write its thread ID into a lock-
protected request variable at the potential victim. If the thief
successfully writes its ID, it waits for the victim thread to
respond by indicating the amount of work given and the
address of the work on the victim’s stack. Note that if
the request is denied, the indicated amount would be zero,
prompting the thief to continue probing other threads. Oth-
erwise, the thief transfers the work onto its stack in a one-
sided get operation.

Though the working thread is now responsible for
polling for steal requests, the costs are minimal since it only
involves a read of a local variable without locking. If a re-
quest is pending, two remote writes are required to service
it, and a local write resets the request variable.

From the working thread’s point of view, it has complete
control of its own stack. Since it alone assigns work to be
stolen, no locking of the stack is required. That property is
key because it eliminates any waiting for a remote thread to
finish an operation under lock, a cost incurred in the original
implementation by having the thief make the work reserva-
tion.

4 Performance Evaluation

To establish a baseline for performance, we shall first
present performance results from program execution on a
single processor. Performance is measured as the number
of tree nodes processed per second of running time. Ab-
solute performance and speedup are reported for program
execution on both distributed memory and shared memory
machines. During parallel execution, each UPC thread is
allocated a dedicated processor.

4.1 Sequential Performance

Experiments were carried out on two Dell blade clusters,
Topsail and Kitty Hawk. Each node of the Topsail cluster
has two 2.33 GHz quad-core Intel Xeon E5345 processors
with 2x4MB L2 cache. Each node of Kitty Hawk has two
2.66 GHz dual-core Intel Xeon E5150 processors with 4MB
shared L2 cache. Topsail consists of 520 compute nodes
(4160 processors), while Kitty Hawk has 66 compute nodes
(264 processors). We used the Intel icc 9.0 compiler with
-O3 for sequential compilation on the Xeon processors.



Label Explanation Details
upc-distmem UPC implementation of the distributed memory algorithm Sect. 3.3.3

(upc-term-rapdif with lock-less DFS stack)
upc-term-rapdif upc-term with rapid diffusion Sect. 3.3.2

upc-term upc-sharedmem with streamlined termination detection Sect. 3.3.1
upc-sharedmem UPC implementation of the shared memory algorithm Sect. 3.1

mpi-ws MPI work stealing implementation Sect. 3.2, [2]

Figure 3. Legend of labels used in speedup and performance graphs.

Figure 4. Speedup and absolute performance at different chunk sizes using 256 threads on the Kitty
Hawk cluster, illustrating improvements made to the UPC implementation and the importance of
work stealing granularity. See Figure 3 above for an explanation of the labels used in this graph.

The primary sample problem used for our performance
evaluation is a highly unbalanced tree of about 10.6 billion
nodes. The root node has 2000 children; all other nodes
have either two children or none at all.1 Over 99.9% of the
work is contained just one of the 2000 subtrees below the
root. Such extreme variation in subtree size occurs through-
out the tree, rendering methods such as work splitting inef-
fective. For experiments using a larger number of proces-
sors, we use a similar tree of size 157 billion nodes2.

One core of the E5345 in Topsail achieves an exploration
rate of 2.10 million nodes/sec on the sample problem. One

1For reproducibility, we give the exact UTS parameters here: The tree
is generated using the binomial distribution with a random seed r = 0.
Nodes below the root have m = 2 children with probability q = 1

2
(1 −

10−8), and no children with probability 1 − q. As stated above, the root
has b = 2000 children.

2Parameter settings: binomial distribution, r = 559, m = 2, b =
2000, q = 1

2
(1− 10−6)

core of the E5150 in Kitty Hawk achieves a rate of 2.39
million nodes/sec on this problem. The sequential rate of
depth-first search primarily reflects the speed at which the
processor can calculate SHA-1 hash evaluations.

4.2 Parallel Performance on Distributed
Memory

Within both Topsail and Kitty Hawk, compute nodes
are connected using the Infiniband high-speed interconnect.
Each node has a distinct memory, so the shared memory ab-
straction in UPC is supported by translating remote memory
references into remote reference API calls. On both Kitty
Hawk and Topsail, the Berkeley UPC run time has been
built directly upon Infiniband network driver APIs, respec-
tively VAPI and OFED for the two machines.

On both Topsail and Kitty Hawk, performance compar-
isons are made with the existing MPI implementation of



UTS using work stealing [2]. Optimal parameters for com-
munication tuning (e.g. polling intervals) were used in the
results presented here. For MPI experiments on Topsail,
MVAPICH is used; on Kitty Hawk, MVAPICH2 is used.

Figure 4 compares the speedup and performance of the
UPC implementations of the shared memory and distributed
memory algorithms with MPI work stealing implementa-
tion. Figure 3 gives an explanation of the labels used in this
graph and the graphs that follow, also pointing to the sec-
tions of the paper or references providing details on each
algorithm or implementation. Since the UPC run time is
built directly over the native VAPI drivers, one-sided com-
munications for work transfers in the UPC implementation
are fully and efficiently supported. The distributed memory
UPC implementation performs slightly better than the MPI
work stealing implementation, while the performance of the
shared memory UPC implementation lags far behind.

The performance of the UPC distributed memory imple-
mentation is particularly encouraging given that MPI library
implementation is highly tuned compared to the UPC run
time. Note that each of the refinements presented in Sec-
tions 3.3.1-3.3.3 shows an improvement in these results; the
total improvement is about 37%.

4.2.1 Work Stealing Granularity

The granularity of work stealing often has a significant im-
pact on the performance of the program. When chunk size is
very small, many load balancing operations are performed,
resulting in large overhead to working threads. When chunk
size is very large, too few load balancing operations are
performed, resulting in large idle times for some threads
despite the availability of surplus work. Between these two
extremes, there is a “sweet spot,” a range of chunk sizes that
results in the best performance. This sweet spot resembles
a plateau from which performance falls off rapidly on both
sides. As more processors are used, performance is more
sensitive to chunk size.

Figure 4 illustrates the effect of chunk size on speedup
and performance for the various implementations. Note that
the shared memory UPC version suffers extreme perfor-
mance degradation at low chunk sizes. The implementation
of the shared memory UPC algorithm behaves particularly
poorly at low chunk sizes because many more cancelable
barrier operations, involving shared variable references and
lock operations, are done to support the resulting high num-
ber of releases and steals.

4.2.2 Further Scaling

On the larger cluster, Topsail, the final implementation
shows solid performance on at least 1024 processors. As
shown in Figure 5, the best UPC implementation processes

Figure 5. Speedup and absolute performance
for a 157 billion node tree on Topsail.

Figure 6. Speedup and absolute performance
on the SGI Altix 3700.

a 157 billion node tree at a rate of over 1.7 billion nodes/sec,
a speedup of 819.

4.3 Parallel Performance on Shared Mem-
ory

To evaluate performance portability on shared memory,
we tested the UPC implementations of the shared memory
and distributed memory algorithms on an SGI Altix 3700.
Each processor of the Altix is a 1.6 GHz Intel Itanium2
with 256kB of L2 cache and 6MB of L3 cache. We used
the GNU Intrepid UPC compiler 4.0.3 with -O3 for UPC.
The sequential version of UTS, compiled with gcc 4.0.3 -
O3, processes 1.12M nodes/sec. Results are close for both



UPC implementations: near-linear speedup on up to at least
64 processors. The machine’s low latency hypercube inter-
connect efficiently supports UPC shared variable accesses.
However, the performance of the MPI implementation lags
slightly behind the UPC implementations on this platform
due to poor cache behavior and MPI overheads.

5 Related Work

Seminal work in load balancing techniques for parallel
search includes [3] and [4]. Much of the other literature
in parallel search is problem-dependent or search-strategy
dependent, identifying particular aspects of the problem or
search that can be used to ameliorate load balancing prob-
lems.

Analysis of work stealing with random probes is found
in [7] and [10]. Many implementations of work stealing,
such as the CILK language run time [11], consider shared-
memory settings that are more forgiving of solutions with
poor latency tolerance. Intel’s Thread Building Blocks
(TBB) use work stealing for efficient load balancing be-
tween threads on multi-core processors [12]. ATLAS [13]
and Satin [14] use hierarchical work stealing for clusters
and grids.

A work stealing method incorporating both load bal-
ancing and load distribution for data locality is considered
in [15]. To evaluate their algorithms, the authors present a
tool to generate task graphs with parameterized degree of
parallelism, but not parameterized imbalance as in UTS.
Randomized load balancing using work pushing for tree
structured computation is explored in [16].

Many experimental evaluations of these load balancing
schemes have been limited to small processor counts or
older machines, and on problems of varying imbalance. Our
load balancing strategies in UTS have been shown to scale
well even on distributed memory machines on extremely
unbalanced workloads.

6 Discussion

In this section we reflect on our work in a broader con-
text. First we discuss our experience using UPC as the lan-
guage for implementation. Then we consider the progress
of our approach toward our stated goal–to demonstrate scal-
able dynamic load balancing.

6.1 UPC Programmability and Efficiency

Compared with MPI, the UPC model of compiler-
generated communication with an explicit model of local-
ity presents substantial simplifications for portable parallel
programming.

In our UPC implementations, the algorithms are ex-
pressed clearly in the code, thanks to UPC’s shared mem-
ory abstraction. They could be easily augmented to use
more complex search methods such as branch-and-bound
and backtracking as needed in different applications.

Early experience with UPC model found that it encour-
aged shared-memory programming techniques that carried
extremely high cost in distributed memory settings [17].
However, UPC implementations have improved as a result
of better one-sided communication support from processor
interconnects. When combined with a more accurate model
of communication cost, it is possible to write UPC programs
that have high performance in both shared and distributed
memory settings. The implementation of our asynchronous
work stealing protocol is an example.

Nevertheless we still find that UPC performance can
have anomalous dependence on the underlying hardware
and runtime system. For example, using the Berkeley UPC
compiler we need in some places to insert calls on the com-
munication progress engine via bupc poll(). This engine
is needed when the underlying communication uses active
messages rather than hardware one-sided communication,
and this varies with details of the drivers and hardware. In
order to be more widely adopted, UPC must further move
beyond portability to performance portability.

6.2 Performance and Scalability

In the end, we were able to achieve excellent perfor-
mance and scalability using a single UPC program that is
portable across multiple machines and scales to high pro-
cessor counts. As UPC compilers, run-time systems, and
hardware support improve, we expect the development of
applications using efficient low-level protocols to become
simpler and more predictable, yielding better performance
portability across platforms.

We optimized our application using the “work-first”
principle that minimizes interference to threads making ac-
tive progress. We observe 93% efficiency of threads in the
working state compared to a single thread running opti-
mized sequential UTS. The other 7% reflects not only time
spent servicing steal requests, but also cold cache misses
after stealing and the native C compiler’s failure to fully op-
timize translated UPC source code.

Outside the working state, overhead time is spent search-
ing for work, stealing work, or in termination detection.
We could further improve the performance of our work
stealing algorithm by decreasing this time. One way we
may decrease the latency of probing for work and stealing
in large clusters of shared memory multiprocessor nodes
is to first try to steal work within a cluster node before
probing off-node. Such an implementation could use the
bupc thread distance() function in Berkeley UPC to dis-



cover which threads are located on the same node.
In conclusion, our efforts demonstrate that UPC is viable

and in some cases clearly superior for complex parallel pro-
gramming problems. For the important class of exhaustive
search problems, we have achieved performance portabil-
ity through careful consideration of communication costs
in distributed memory architectures. Our implementation
achieves strong performance and scalability while leverag-
ing the UPC shared memory abstraction.

7 Acknowledgment

The authors thank the Renaissance Computing Institute
for the use of the Kitty Hawk cluster and the University of
North Carolina for the use of the Topsail cluster and the SGI
Altix.

References

[1] Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sa-
dayappan, P., Tseng, C.W.: UTS: An unbalanced tree
search benchmark. In Almási, G., Cascaval, C., Wu,
P., eds.: Proc. LCPC 2006. Volume 4382 of LNCS.,
Springer (2007) 235–250

[2] Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan,
P., Tseng, C.W.: Dynamic load balancing of unbal-
anced computations using message passing. In: Proc.
6th Intl. Workshop Perf. Mod., Eval., Opt. Par. Dist.
Sys. (PMEO-PDS’07) / IPDPS’07., IEEE (2007)

[3] Kumar, V., Grama, A.Y., Vempaty, N.R.: Scalable
load balancing techniques for parallel computers. J.
Par. Dist. Comp. 22(1) (1994) 60–79

[4] Grama, A., Kumar, V.: State of the art in parallel
search techniques for discrete optimization problems.
IEEE Trans. Knowledge Data Engr. 11(1) (1999) 28–
35

[5] Blumofe, R.D., Papadopoulos, D.: The performance
of work stealing in multiprogrammed environments.
In: Measurement and Modeling of Computer Systems.
(1998) 266–267

[6] Eastlake, D., Jones, P.: US secure hash algorithm 1
(SHA-1). RFC 3174, Internet Engineering Task Force
(2001)

[7] Blumofe, R., Leiserson, C.: Scheduling multithreaded
computations by work stealing. In: Proc. 35th Ann.
Symp. Found. Comp. Sci. (1994) 356–368

[8] UPC Consortium: UPC language specifications, v1.2.
Technical Report LBNL-59208, Lawrence Berkeley
National Lab (2005)

[9] Dijkstra, E.W., W.H.J.Feijen, van Gasteren, A.:
Derivation of a termination detection algorithm for
distributed computations. Inf. Proc. Letters 16 (1983)
217–219

[10] Sanders, P.: A detailed analysis of random polling
dynamic load balancing. In: Intl. Symp. Par. Arch.,
Algs., Nets.(ISPAN ’94). (1994)

[11] Frigo, M., Leiserson, C.E., Randall, K.H.: The imple-
mentation of the Cilk-5 multithreaded language. In:
Proc. 1998 SIGPLAN Conf. Prog. Lang. Design Impl.
(PLDI ’98). (1998) 212–223

[12] Kukanov, A., Voss, M.: The foundations for scalable
multi-core software in intel threading building blocks.
Intel Technology Journal 11(4) (2007)

[13] Baldeschwieler, J.E., Blumofe, R.D., Brewer, E.A.:
Atlas: an infrastructure for global computing. In: EW
7: Proc. 7th ACM SIGOPS European workshop, NY,
NY, ACM (1996) 165–172

[14] van Nieuwpoort, R., Kielmann, T., Bal, H.E.: Satin:
Efficient parallel divide-and-conquer in java. In: Euro-
Par ’00: Proc. 6th Intl. Euro-Par Conf. Par. Proc., Lon-
don, UK, Springer-Verlag (2000) 690–699

[15] Berger, E., Browne, J.: Scalable load distribution
and load balancing for dynamic parallel programs. In:
WCBC 99. (1999)

[16] Chakrabarti, S., Yelick, K.: Randomized load-
balancing for tree-structured computation. In: IEEE
Scalable High Performance Computing Conf. (1994)
666–673

[17] Berlin, K., Huan, J., Jacob, M., Kochhar, G., Prins,
J., Pugh, W., Sadayappan, P., Spacco, J., Tseng, C.W.:
Evaluating the impact of programming language fea-
tures on the performance of parallel applications on
cluster architectures. In Rauchwerger, L., ed.: Proc.
LCPC 2003. Volume 2958 of LNCS. (2003) 194–208


