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Abstract—Simulations of colliding galaxies or fluid 
dynamics at immersed flexible boundaries are most 
accurately and efficiently accomplished using the 
adaptive fast multipole method (AFMM) to solve an 
underlying n-body problem whose localized density 
varies with the time-dependent evolution of the system 
under study.  Parallelization of the AFMM presents a 
challenging load balancing problem that must be 
addressed dynamically as the system evolves.  We 
consider parallelization of the AFMM for time-
dependent problems using a heterogeneous shared 
memory compute node consisting of multi-core 
processors and GPU accelerators.  OpenMP task 
parallelism is used within the CPU cores to parallelize 
the construction and maintenance of the adaptive 
spatial decomposition tree and its traversal to compute 
far-field interactions at each leaf node in the tree.  
Concurrently, GPUs evaluate all near-field interactions 
using all-pairs computations.  In addition to accurately 
resolving many physical phenomena out of reach using 
the uniform FMM, the more complex AFMM permits 
the number of bodies in leaf cells to be globally and 
locally varied in order to minimize the CPU and GPU 
time.  We present a cost model and incremental 
adjustment strategy to load balance the AFMM on a 
heterogeneous system.  We demonstrate using these 
techniques that a simulation can maintain load balance 
over hundreds of time steps on a heterogeneous system 
with 10 CPU cores and 4 GPUs with less than 2% 
overhead, while achieving a 98X speedup over a serial 
computation using a single CPU core. 

Keywords – adaptive fast multipole method; dynamic 
load balancing; hybrid computing; accelerators; OpenMP 
task parallelism; CUDA. 

 

I. INTRODUCTION  
The Fast Multipole Method (FMM) was 

introduced by Rokhlin and Greengard as an ���� 
time solution for an N-body problem [1]. The FMM 
has been widely adopted due to the large asymptotic 
advantage it offers over the ����� all-pairs method 
while simultaneously providing bounded precision in 
a manner more difficult to achieve using Barnes-Hut 
style methods.  It is used in a wide variety of 
problems in astrophysics, molecular dynamics, fluid 
dynamics, and electrostatics [1, 2, 3].  

A. Uniform Spatial Decomposition 
The original 3D FMM [1] uses a fixed-depth 

octree decomposition of space. Fig. 1 shows a fixed-
depth quadtree, the 2D analog of the octree. The 
underlying assumption for the FMM is that the 
distribution of bodies in the problem is relatively 
uniform so that all leaves in the octree hold 
approximately the same number of bodies.  For a 
uniform 3D spatial decomposition the depth � of the 
octree is then given by � � 	 
���	�����	� where � 
is the number of bodies in the system and � is a target 
number of bodies per leaf cell.  Since the octree is 
complete and all leaf nodes have the same size, the 
FMM has a statically determined computational 
structure that simplifies parallelization [4, 5].  
However when the FMM is used with a uniform 
spatial decomposition to solve an N-body problem 
for a non-uniform distribution of bodies, the actual 
number of bodies in each leaf node will vary and in 
the extreme may drive the work complexity of the 
algorithm to �����.  For physical systems such as 
galaxies or plasmas, the local density of bodies may 
vary by many orders of magnitude, rendering them 
unsuitable for simulation using the FMM. 

 
B. Adaptive Spatial Decomposition 

The Adaptive FMM developed by Cheng, 
Greengard and Rokhlin [6] varies the spatial 
decomposition with the local density of bodies. Fig. 2 
shows the 2D analog of this. The AFMM builds a 
variable depth octree decomposition of space in 
which a node is subdivided into eight children if it 
holds more than � bodies.  In this decomposition leaf 
nodes may occur at any level in the octree, and the 
tree will in general have varying depth. 

 
C. The Fast Multipole Method  

The basic operations of the two methods are the 
same, regardless of the spatial decomposition. The 
method begins by computing a multipole expansion 
for the bodies in each leaf cell by use of the Particle-
to-Multipole (P2M) operation. The method then 
proceeds upwards in the octree, combining 
expansions from children into a single expansion 
centered on the parent by application of the 
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Multipole-to-Multipole (M2M) operation.  In the 
down sweep phase the method starts with a local 
expansion at the root and proceeds downwards in the 
tree, converting the parent local expansion to 
expansions centered on each of its children by use of 
the Local-to-Local (L2L) operation. In addition 
multipole expansions of well-separated nodes are 
converted and combined into the local expansion for 
each node using the Multipole-to-Local (M2L) 
operation.  Upon arriving at a leaf node �, the local 
expansion of � gives the total far-field interaction 
experienced by bodies in � due to bodies in nodes of 
the tree well-separated from �. The far-field 
interactions are applied to the bodies in � using the 
Local-to-Particle (L2P) operation.  It remains to 
incorporate the interaction with the remaining bodies 
in the near-field of r.  This is performed using all-
pairs computation between the bodies in � and all 
bodies in nodes that are not well-separated from � 
using the Particle-to-Particle (P2P) operation. 

A key point about the six operations (P2M, 
M2M, M2L, L2L, L2P, and P2P) is that each has a 
predictable cost in FLOPS that can be expressed in 
terms of the number of bodies in a leaf node, and the 
number of retained terms � in the multipole 
expansion [7] [8]. 

The difference between the AFMM and the 
FMM is that the set of nodes involved in each of the 
operations is specific to the tree structure; hence 
parallelization of the AFMM cannot leverage the 
fixed computational structure of the FMM problem.   

It is important to note that even an initially 
uniform distribution may become non-uniform over 
the course of many time steps, depending on the 
forces at work in the model.  In this case the FMM 
can become increasingly inefficient when many  
 

   
Fig. 1.   2D uniform depth decomposition of space utilizing a 
quadtree. 

 

  
Fig. 2.  Adaptive decomposition of space in 2D resulting in 
leaf nodes of varying depth. 

bodies accumulate in specific nodes.  Adaptive FMM 
implementations do not suffer from this problem 
since they may rebuild the tree so that all leaf nodes 
once again have a bounded size.  Alternatively the 
tree can be adjusted incrementally in response to 
observed changes in the loading of nodes.  Our 
implementation uses both methods to maintain a high 
degree of efficiency for the AFMM in non-uniform 
or evolving distributions. 
   

II.    PROBLEMS ADDRESSED 
 

Adaptive algorithms are challenging to parallelize 
efficiently and in the case of time-dependent 
problems, dynamic load balancing may be required.  
Modern computing node architectures with multicore 
CPUs and computational accelerators present 
additional challenges in delegating different aspects 
of the algorithmic work to the devices most suited to 
perform them.  To address these issues the following 
contributions are presented in this paper: 

� We implement the adaptive FMM rather than the 
uniform FMM within a single heterogeneous 
multicore compute node with one or more 
Nvidia GPUs.  Similar to [9, 7] we perform the 
far-field (expansion) work on the CPU which has 
larger caches and is better able to deal with 
complex control paths, while performing near-
field (direct) work with very high performance 
on one or more GPUs.  We obtain excellent 
performance in the far-field work by utilizing 
OpenMP tasking directives within the sequential 
AFMM algorithm and in adaptive decomposition 
construction and maintenance. We also obtain 
high performance on the near-field work by an 
efficient implementation of multiple all-pairs 
computations using one or more GPUs.  

 
� We present a dynamic load balancing scheme for 

time dependent applications of the AFMM which 
minimizes runtime on heterogeneous systems 
composed of multiple CPUs and GPUs across 
multiple time steps.  The load balancing strategy 
performs fine grain local modifications to the 
adaptive decomposition tree to minimize runtime 
informed by a time costing model.  In addition, 
incremental global modifications track the 
evolving distribution of bodies. 

 
Several GPU-only strategies have been developed for 
the FMM, including [12, 11, 10].  We have followed 
an approach utilizing both CPUs and GPUs because 
the AFMM can benefit from the considerable 
performance potential of multicore CPUs particularly 
in adaptive tree construction and maintenance.  In 
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addition OpenMP tasking is simple, and highly 
efficient even for highly non-uniform distributions.  
It is an improvement over the use of nested parallel 
regions that are complicated and hard to update in a 
time-dependent simulation [9].  While we focus on a 
single node implementation, we expect the method 
can be extended to a distributed memory cluster 
using techniques such as those in [13, 9]. 

III.    HETEROGENEOUS DESIGN 
A. Overview 

The key feature of this heterogeneous design 
is placing the direct work on the GPUs.  We carry out 
the far-field work (P2M, M2M, M2L, L2L and L2P) 
on the CPUs. 

The basic parameter to balance the load is the 
value of � since it shifts work between far-field and 
near-field computation and hence between CPUs and 
GPUs, as shown in Fig 3.  Our tree modification 
scheme also addresses a significant performance 
issue that arises with load balancing a non-adaptive 
FMM that we call the “Uniform Gap”, shown in Fig. 
4.  Since the tree depth is equal everywhere, a 
uniform 3D spatial decomposition increases the 
number of leaves by a factor of 8 whenever ��� 
exceeds a critical value.  For this reason small 
changes in S may yield large discontinuities in the 
cost of near-field and far-field work, corresponding  
 

 
Fig. 3. Adaptive distributions result in a gradual change in 
the cost of the CPU and GPU work as a function of S. 

 

 
Fig. 4. Three distinct cost regimes are obtained when varying 
S using a uniform decomposition corresponding to different 
depths of the octree., making it difficult to accurately balance 
load using a uniform decomposition. 

to removing or adding entire levels of the octree, as 
shown in Fig. 1.  Adaptive octrees can give better 
results in this case by expanding only some nodes to 
a greater depth, compared with a uniform 
decomposition which would have to choose 
exclusively between the different levels. 
Through use of the load balancing operations which 
we employ, we will show that we can successfully 
bridge the gap between tree levels and more evenly 
distribution work amongst the expansion and direct 
work phases. 
 
B. CPU Parallelism 

As mentioned earlier, one goal of this 
implementation was a simple yet dynamic CPU 
parallelism technique for highly non-uniform octrees. 
CPU parallelism is accomplished through the use of 
OpenMP tasking facilities and work is carried out 
parallel in space. The core OpenMP directives used 
are “#pragma omp task” to spawn a task and 
“#pragma omp taskwait” to wait for spawned tasks to 
finish. Tasks are spawned within parallel regions and 
scheduled onto threads in that region. Each thread is 
bound exclusively to a specific CPU core. 

The combination of tasking facilities and 
recursion allow for simple spatial parallelism and 
load balancing (by the task scheduler) on the CPU, 
which will be shown in the results section. The 
general form of this technique is as follows: 
 
RecursiveFunction(Node�*node):�
��������//Carry�out�computation�associated�with�function�
�������DoCompute(node)�
�
��������//Recurse�down�the�octree�
��������if(node�>isParent):�
���������������for�each�child:������������������//for�each�child�spawn�a�task�
������������������������#pragma�omp�task�
������������������������RecursiveFunction(child)�
���������������#pragma�omp�taskwait����//idle�this�task�until�others�done�
 

Upon recursing down the tree from a parent to its 
children, a task is spawned for each child. The task 
does some work (possibly by spawning more tasks) 
and eventually completes. The parent task is idled 
until all child tasks complete. 

For example, our implementation has a 
DownSweep(Node *node) function that performs the 
down sweep portion of the FMM. In this case the 
local expansion downshift from the parent (L2L) as 
well as the shifting in of multipole expansions (M2L) 
would first be carried out for the node. Then, if the 
node in question is a parent node, a task would be 
spawned for each of its eight children to carry out the 
DownSweep function on each of them. Similarly, the 
UpSweep portion of the FMM is a head-recursive 
function which carries out work after children return. 
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This technique allows issues of spatial load balancing 
to be dynamically resolved at runtime and avoids 
messy issues of nested parallel regions and their 
effects on performance as other groups encountered 
[9]. The simplicity of this model is impressive given 
the complex problem being solved. Another 
application is construction of the spatial 
decomposition by a recursive parallel partition of the 
body locations into the child trees on the way down, 
and lockless construction of the adaptive spatial 
decomposition on the way back up.  
 
C.  GPU Parallelism 

The GPU performs the direct work of the FMM 
programmed in CUDA. Our implementation adapts 
an all-pairs n-body algorithm developed in [14]. We 
retain the general concept of giving each thread in a 
warp a unique target body on which to calculate the 
contribution of all point sources. However, due to the 
adaptive nature of this implementation we must allow 
for leaf nodes of varying size. For target nodes this 
means that we simply use as many blocks as 
necessary to assign one thread to each target body in 
a target node. In blocks that have fewer bodies than 
threads in the block, the extra threads are idle during 
the computation phase. This means that we want to 
avoid octrees which result in a significant number of 
small target nodes which have a large number of 
sources to interact with as this will decrease the 
efficiency of the GPUs. 

Our implementation loads sources in parallel. 
Each thread in a warp fetches a source particle. The 
threads then sync and perform the calculations, 
marching serially through the loaded source bodies. 
This procedure repeats until all sources have been 
loaded and used in the calculation. The result of this 
method is seen visually in Fig. 5. The current target 
node � has � particles and interacts with m distinct 
source nodes, each in general containing a different 
number of particles. 

 

 
Fig. 5. P2P computations are carried out in parallel across 
target bodies, sequentially stepping through the source bodies 
in lock step.  Parallel loads are performed for bodies in each 
target block. 

 
In our heterogeneous model we must also 

efficiently distribute the direct work across the 
multiple GPUs on the compute node. For each target 
node we can calculate the number of interactions it 
participates in as follows: 

��������������� � 	 �  ! ��"��#�
$	%&�'�

 

Where (��� is the set of nodes that node � must 
interact with directly, ��"��#� is the number of 
particles within node # and  � ��"����. When we 
are building the data to send to the GPUs, we divide 
up the work so that each GPU carries out 
approximately the same number of interactions. The 
implementation simply walks through the list of 
interaction node pairs and counts Interactions(t) for 
each target node. When the count meets or exceeds 
the total number of direct interactions divided by the 
number of GPUs we start counting work to send to 
the next GPU. Each GPU carries out the direct work 
for a unique set of target nodes. There is no target 
node whose calculations are spread out over more 
than one GPU. This simple division works well as 
shown in the results section. 
 
D.  CPU-GPU Communication 

For a single FMM solve (a single time step), a 
single kernel is launched on each GPU to give that 
GPU its share of the work for the time step. While 
the GPU is carrying out P2P interactions, the CPU is 
carrying out the expansion work portion of the FMM. 

There are two CPU-GPU communication 
functions called during a time step. Both are called 
from the CPU. The first function performs some 
initial setup work and then launches the kernels for 
the GPUs. This function is called from a parallel 
region by a single CPU thread. At the same time, the 
start of the FMM tree traversal is called from the 
same parallel region by another CPU thread. Hence 
CPU and GPU work begin effectively in parallel. The 
initial GPU call is non-blocking; after the kernels are 
launched, the CPU thread that invoked them can now 
return to pick up work spawned by the tree traversal 
phases. 

Once all tree traversal work is done, a single 
CPU thread invokes the second function. This 
function is a blocking call. If the GPUs have finished 
then the calculations are immediately returned via 
cudaMemcpy() calls, copying the data into known 
locations for the CPU to utilize. If the GPU has not 
finished then the CPU waits until the results are 
ready. After the copies are done, the particle 
positions are updated by the CPU and then any tree 
optimizations are done to improve the run on the next 
time step. 

IV.    OPTIMIZATION OPERATIONS 
A.  Overview 

There are two functions used to bring the 
running time back to a desirable range: Collapse and 
PushDown. 
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B.  Collapse Operation 
The Collapse operation has the net effect of un-

doing the subdivision of a node into eight child 
nodes. It is used on parent nodes in the octree; eight 
leaf nodes in the tree are “removed” and the node 
which was previously their parent becomes a leaf 
node in the octree. In actuality the children are just 
hidden from the FMM algorithm. A flag is simply 
set, signaling that the old parent node is now a leaf 
node. 
 
C.  PushDown Operation 

The PushDown operation has the opposite effect 
of the Collapse operation. It subdivides a given leaf 
node. Note that this operation has some extra expense 
associated with it as compared to the collapse 
operation. This is because pushing down may require 
more memory. It does happen that over time steps a 
node which was previously collapsed may need to be 
pushed down. In this case “hidden” nodes can just be 
reclaimed. But in general more space for nodes will 
be necessary and so we have some node buffer 
reserved in advance to minimize re-allocation. 
  
D.  Time Prediction 

During the course of running the FMM, 
coefficients are derived for each of the major 
operations in the algorithm. These operations are the 
five core FMM expansion operations: P2M, M2M, 
M2L, L2L and L2P as well as the direct P2P 
operation. These coefficients are observational. They 
are not predicted values, but rather are derived from 
actual observed times. However, these observed 
coefficients will be used for prediction purposes. To 
derive the coefficient, for each operation, the total 
time spent on that operation is divided by the number 
of times that operation was applied. For example, on 
the CPU each thread keeps track of the time spent on 
each FMM operation and the number of times it 
carried out each operation. For each of these 
operations, the times over all threads are summed and 
divided by the sum of the operation count over all 
threads to calculate the coefficients. 

Using coefficients allows for a simplification of 
complex details. The CPU coefficients allow us to 
have a single value that encompasses the collective 
effects of CPU speed, the number of cores, memory 
speed and the number of retained terms in the 
multipole expansions. This greatly simplifies 
prediction calculations. 

The coefficient for the P2P operation, the only 
operation carried out on the GPUs, has a second use. 
The GPU coefficient is calculated by dividing the 
maximum kernel time by the total number of P2P 
operations carried out over all the GPUs. So this 
coefficient is a measure of the entire GPU system. It 

serves as a high level view of the efficiency of the 
GPUs. Unlike the operations carried out on the CPUs 
whose cost is a function of the fixed considerations as 
mentioned earlier, the P2P operation cost is a 
function of many low level characteristics such as the 
percentage of coalesced memory accesses and warp 
occupancy on each GPU. Every particle movement 
during each time step varies these low level details 
and changes the P2P cost in the process. Therefore 
this coefficient provides some insight into how 
efficiently the GPUs are running on the current tree. 

Given these coefficients, the cost of any tree 
modification can be predicted. A count for the 
number of times each operation will be performed for 
the given tree is accumulated, call this count M(Op). 
Then the following calculations are applied: 

)*+	,�-�	*��.������ � 	 � /���� ! 0����
12	%3

 

    where     4 � 5670807080798 9798 976:  
    ;*+	,�-�	*��.������ � /�676� ! 0�676� 
/���� is the cost coefficient for the operation ��. 
With these predicted times, decisions on whether or 
not such a tree modification would be desirable can 
be made without having to perform a full FMM solve 
on the current tree. 

 
V.   LOAD BALANCING STATES 

 
The load balancing machinery operates in one of 

three states: search, incremental, and observation. 
During the entire course of the simulation the load 
balancer is always in one of these states. Each lasts 
over multiple time steps. The current state of the load 
balancer defines how load balancing functionality is 
carried out and/or which actions shall be taken if 
undesirable run times are seen. 
 
A.  Search  

The search state defines the coarsest form of 
optimization carried out. While in this state, after 
each time step a new S value is chosen and the tree is 
rebuilt. The particular value of S is chosen using a 
binary search strategy. The direction (increase or 
decrease) in which the new S is chosen is decided 
based on how tree modifications made on the 
previous time step influenced the compute time on 
the current time step. It is the slowest form of load 
balancing and the load balancer is only in this state at 
the beginning of the simulation. This state is useful 
because at the start of the simulation nothing is 
known about the distribution and it is unknown in 
which realm of S acceptable GPU efficiency lies. The 
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goal of the search state is to determine an optimal 
global value of S without any such prior knowledge.  

 
B.  Incremental 

In the incremental state, a new determination for 
the global S value is made without performing a full 
binary search. In this state the S value is 
incrementally adjusted in each time step. The 
direction of the change (increment or decrement) is 
again determined by how the compute time changed 
based on the S value chosen for the tree rebuild in the 
previous time step. 

 
C.  Observation 

During the majority of the simulation the load 
balancer sits in the observation state. In this state, the 
solver marches through the time steps solving the 
FMM. At the end of each time step, if the running 
time is undesirable, measures are taken to enforce a 
desirable running time. Next we introduce the 
measures which can be taken. 
 
VI.    LOAD BALANCE ENFORCEMENT MECHANISMS 

 
The enforcement procedure relies on the use of 

two key functions. These functions utilize the 
concepts introduced in the “Optimization Operations” 
section. 
 
A. Enforce_S 

As particles move over time steps, leaf nodes 
containing significantly more particles than the 
current global S may develop. Our first line of 
defense against this is the Enforce_S function. It runs 
through the existing octree, enforcing the existing S 
parameter for the tree. If it discovers a parent node 
containing fewer than S particles, then it performs a 
collapse operation on that node. If it encounters a leaf 
node with more than S particles within it, it carries 
out a pushdown operation on that node. 
 
B.  FineGrainedOptimize 

FineGrainedOptimize() is the source of our fine 
tuning. This function makes local changes to the tree 
regardless of the global S value. This is a single 
function call. It is not like the states described earlier 
which persist for many time steps. This function 
makes changes to multiple nodes at a time. If the 
CPU is running too long the procedure begins by 
performing the collapse operation on multiple nodes. 
If the GPU is running too long, then the pushdown 
operation is performed on multiple nodes. After a 
group of nodes is collapsed or pushed down, the 
procedure utilizes the time prediction described 
earlier to predict how that change will affect the 
running time on the next time step. Based on the 

previous change made and the resulting predicted 
running time, the procedure will continue to make 
further changes until the predicted time is minimized.  
 

VII.    LOAD BALANCING WORKFLOW 
 

A.  Timing 
Due to the heterogeneous nature of this model 

the time necessary to minimize is the maximum of 
the CPU and GPU wall clock times; we will call this 
maximal time the Compute Time. Each time step has 
a compute time associated with it. More concretely 
we define this time as follows. 
 
Definition: The CPU Time for a time step is the wall 
clock time between the first call to the upward sweep 
portion of the FMM and the completion of the last 
task spawned during the downward sweep portion of 
the FMM. 
 
Definition: GPU Time is taken to be the maximum 
of all the GPU kernel times in the time step. There is 
one kernel per GPU. We time the kernels by placing 
a cudaEvent on the event queue of each GPU 
immediately prior to and after the kernel invocation. 
The kernel time is taken to be the value returned by 
cudaEventElapsedTime() when called on the events 
enclosing the kernel. 
 
Definition: Compute Time for a time step is the 
maximum of the previously defined CPU and GPU 
times. 
 
B.  Full Load Balancing and State Switching 

The simulation starts in the binary search state. 
On our test distributions this state typically persists 
for fewer than 15 time steps. The load balancer 
leaves the binary search state and moves into the 
incremental state when CPU and GPU times differ by 
0.15s or less.  

The load balancer remains in the incremental 
state until the computational unit which dominates 
the runtime cost changes. For example, if the CPU 
dominates the runtime, the S value is slowly 
incremented up until an S value is found for which 
the GPU is the dominant cost. Once this transitional 
S value is found, if the CPU and GPU times differ by 
more than 0.15s, then FineGrainedOptimize() is 
called and upon return from this function the load 
balancer enters the observation state. If the times are 
already within 0.15s then the load balancer moves 
directly into the observation state without calling 
FineGrainedOptimize(). Before moving into the 
observation state, the current compute time (which is 
the best time seen thus far) is recorded. 
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While the load balancer sits in the observation 
state, nothing is done if the compute time for the 
current time step is within 5% of the previously 
recorded best time. If the current compute time 
differs by more than 5%, then Enforce_S() is called. 
After this call the compute time for the next time step 
is predicted and if it is not within 5% of the best, then 
FineGrainedOptimize() is called and the time is again 
predicted. If the fine grained adjustment fails to bring 
the predicted time within 5% of the best time, the 
load balancer moves into the incremental state again 
on the following time step. 
 
 

VIII.    EXPERIMENTAL RESULTS 
 

A.  Test Systems 
Test System A: Test system A consists of two 

Intel Xeon X5670 (2.93 GHz, 6 cores each) CPUs for 
a total of 12 cores and four Tesla C2050 (ECC on, 
single precision) GPUs. We use the Intel ICC 11.1 
compiler via NVCC. 

Test System B: Test System B consists of four 
Intel X7560 Nehalem-EX (8 cores each) for a total of 
32 cores and no GPUs. This system will be used for 
showing CPU scaling only, for which we also use 
ICC 11.1. 

 
B.  Test Problem 

Unless otherwise stated, all results were 
collected by solving the gravitational problem. Our 
time step size was 0.0001s and the gravitational 
constant used was < � =>? @ ABCD. Every particle in 
this system has a mass of 1.0kg. We use a multipole 
precision of	� � = retained terms in the spherical 
harmonics expansion. 

We also examine a fluid dynamics simulation of 
immersed flexible boundaries using the method of 
regularized Stokeslets as described in [15]. We will 
explicitly state when the data at hand is derived from 
this problem simulation. 

 
C.  Multicore Performance 

Test System B allows for a more thorough 
evaluation of CPU performance than System A. In 
Fig. 6 we show speedup due to OpenMP CPU 
parallelization when run on Test System B with ten 
million particles distributed in a Plummer distribution 
for a fixed S value. The resultant octree was highly 
non-uniform with a depth of 16. The finest level of 
refinement was at level 15 and the coarsest at level 2. 
Even with this highly adaptive octree, we achieve 
good load balancing of tasks and significant speedup 
as a result. The baseline for the speedup shown here 
is the serial execution time. As evidenced by these 
numbers we have not seen significant overheads 

introduced by OpenMP task creation when using this 
recursive traversal of the octree and the task stealing 
runtime of ICC 11.1.   

A small superlinear speedup can be observed 
when using up to 16 cores.  This is likely a 
consequence of the additional L3 cache available 
across multiple sockets that enable multipole 
expansions to be reused and give improved 
performance relative to the single processor case.  At 
high thread count the speedup diminishes; we 
conjecture this is due to saturation of the memory 
system. 
 

 
Fig. 6. CPU speedup as a function of the number of CPU 
cores for a Plummer distribution of 10 million particles 

 
D.  GPU Performance 

Our method for work distribution amongst the 
available GPUs works well as seen in Table I. The 
data collected in this table was for a fixed workload 
of 10 million bodies arranged in a Plummer 
distribution. The S chosen was the S which 
minimized the total runtime for the system when 
utilizing 10 CPU cores and 1 GPU. The problem was 
carried out with this same S value while varying the 
number of GPUs utilized. 

 
Table I. GPU scaling for a fixed workload 

No. GPUs Speedup 
2 1.99 
3 2.96 
4 3.95 

 
 

E. Heterogeneous Node Speedup 
In order to view the overall effect of the 

combination of the parallelization techniques, we 
wanted to look at the speedup with a few different 
CPU and GPU combinations. As our baseline we 
used the time to run our implementation with a single 
core on Test System A. Both the expansion and direct 
work were run on this single core. The S chosen for 
this serial run was the S that minimized the time for 
this single core case. We then plotted speedup 
relative to this time for the following cases: one GPU 
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and four CPU Cores, one GPU and ten CPU Cores, 
two GPUs and four CPU Cores, two GPUs and ten 
CPU Cores, four GPUs and four CPU Cores, and four 
GPUs and ten CPU Cores. A single Plummer 
distribution with one million particles was used as 
our test simulation. The results are shown in Fig. 7. 

 

 
Fig. 7. Speedup shown for the entire heterogeneous system as 
a function of S values.  

 
The first point to be made is that even with a 

relatively small N of one million and minimum 
runtimes around seven tenths of a second we were 
able to achieve just over 98x speedup with ten CPU 
cores and 4 GPUs compared to a single CPU core. 

An interesting scenario arises when we have an 
underpowered CPU system as compared to the GPU 
system. The difference between the 10C_2G run and 
4C_4G run reflect this situation.  With two GPUs and 
ten CPU cores the implementation achieves 64x 
speedup compared with 57x speedup with four GPUs 
and 4 CPU cores. The problem with the four GPU 
four CPU case is that the CPUs collectively are so 
much less powerful than the GPUs collectively that 
we need to send a lot of work to the GPUs. Sending a 
lot of work to the GPU significantly increases the 
FLOPs required to solve the problem because ���� 
expansion work is being converted into the 
asymptotically inferior ����� direct work. Note that 
we have a similar situation when comparing the 
10C_1G run to the 4C_2G run, but here we are 
required to send just enough work to the GPU such 
the two runs achieve similar performance.   

The way forward in such an unbalanced situation 
is to move additional work to the GPU that can be 
performed more efficiently.  This can include the 
P2M expansion formation and L2P expansion 
evaluation.  

IX.   PERFORMANCE OF TIME DEPENDENT 
OPTIMIZATIONS  

 
A. Dynamic Workloads 

The true test of the load balancing machinery is 
on workloads that change significantly over time. To 
examine this, we ran the gravitational problem 
starting from a Plummer distribution. This 

distribution was initially contained within 1/64th of 
the simulation space. The intent here was to allow 
particles that would otherwise have exited the system 
(or wrapped around with periodic boundary 
conditions) enough room to return back towards the 
center of mass. 

We examine three load balancing strategies for 
this problem. In the first strategy, an optimal value 
for S is chosen at the outset (using binary search), but 
no adjustment of S is performed as the simulation 
evolves.  The value of S is never changed and the tree 
structure is never modified. Particle positions are 
updated after each time step, but no other changes are 
made. 

The second strategy performs dynamic load 
balancing to keep the runtime minimized. Again the 
binary search state is carried out at the start. After 
exiting the binary search state, the implementation 
watches for changes in the compute time. When the 
compute time runs more than 5% slower than the best 
time seen thus far, the implementation calls 
Enforce_S. The compute time on the time step 
immediately following Enforce_S() calls becomes the 
new best time and the simulation continues. 

The third strategy is the full load balancing 
scheme we have described. All phases of load 
balancing (Search, Incremental and Observation) are 
fully utilized and both Enforce_S() and 
FineGrainedOptimized() are utilized as previously 
described in the workflow. The time spent on the sum 
of all load balancing operations and the compute time 
is shown in Fig. 8 for each of the 2000 time steps run. 
The corresponding values of S are shown in Fig. 9. 
 
 

 
Fig. 8. Total runtime for each of 2000 time steps for each of 
the three described strategies.  

 
 

 
Fig. 9. The resulting S values on each time step is shown for 
each of the three strategies.  
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By looking at the trend line for strategy one, it is 
clear that some form of correction is necessary. 
Simply maintaining the original S value and 
reinforcing it when the compute time increases 
provides much improvement as evidenced by the data 
series for the second strategy. The average time over 
all time steps for strategy two was 1.29s. The spikes 
in strategy three are instances when load balancing 
occurred. The spike is a combination of the increased 
compute time which triggered the load balancing to 
take effect as well as the load balancing cost itself. 
The most time spent on load balancing operations in 
a single time step was approximately 0.52s. The 
average compute time per time step was 0.82s. The 
largest compute time spike which triggered load 
balancing operations to take effect was 0.12s and it 
was a deviation of 14% from the best time seen thus 
far. As a result of the spikes, 34 out of the 2000 time 
steps resulted in a total time greater than the average 
time of 1.29s per time step seen in strategy two.  

A tabulated comparison of the different 
strategies is shown in Table II.  The key point is that 
the simulation completes in the shortest wall clock 
time using our load balancing strategy, while 
overhead of the strategy is small at 1.88%. The non-
incremental load balancing strategy 2 took roughly 
1.51 times longer to finish the simulation than 
strategy 3. And the strategy that performed no 
dynamic load balancing took approximately 3.91 
times longer to complete the same simulation. 
 

Table II. Strategy Summary for Dynamic Workloads 

 
Strategy 

Total 
Compute 

Total 
LB 

LB as % of 
Compute 

Relative cost 
per time step 

1 6576.17s 1.32s 0.02% 3.91 

2 2544.79s 2.78s 0.11% 1.51 

3 1651.57s 30.98s 1.88% 1.00 

Total compute and total load balance are the sums of 
compute time and load balancing time over all 2000 time 
steps, respectively. LB as % of compute is total LB / total 
compute. Relative cost per time step compares the average 
runtime per time step relative to strategy 3. 

 
B. Uniform Gap and Static Workloads 

Our load balancing scheme primarily works to 
improve the performance of workloads that vary 
significantly over the course of a simulation, but the 
FineGrainedOptimize() component can also be well 
suited for acceleration of very uniform, static 
workloads. As shown in Fig. 4, a uniform distribution 
may present a significant hurdle when optimizing a 
heterogeneous implementation like ours. The size of 
the “uniform gap” which the problem will present 
depends on many factors. CPU and GPU speed, and 

the cost of the implementation-specific expansion 
and direct work operations will have an impact on the 
specific times. Also the size of the jump in time from 
one level to the next will depend on the number of 
nodes in each of the levels in question as well as the 
number of particles in the leaf nodes, which in turn 
depends on the distribution and the S value (which 
again depends on CPU and GPU speed). 

Our gravitational problem with one million 
bodies did not have a huge gap. The speedup offered 
by the use of FineGrainedOptimize() was not large, 
around a 1% improvement on relatively small run 
times. For this reason we chose to display the results 
of our scheme on the fluid dynamics problem 
mentioned earlier. We saw much more improvement 
here on the same machine which ran the gravitational 
problem due to the fact that the M2L cost for the 
fluid dynamics problem is about 4x the M2L cost for 
the gravitational problem. 

Two simulations of 200 time steps each using ten 
million sources in a uniform distribution were carried 
out. One simulation utilized FineGrainedOptimize() 
and the other did not. Fig. 10 shows the ratio of the 
per-time step times of the two simulations. The time 
for each time step includes any optimizations made in 
addition to compute time. The first 15 time steps 
constitute the initial binary search for a good S realm. 
For the remainder of the time steps we achieve 
slightly more than a 3% advantage per time step as a 
result of using the fine grained optimizations.  
 

 
Fig. 10. For each time step we show the ratio of total time 
without using fine grained load balance to the total time 
when using fine grained load balance. 

 
Different implementations of different problems 

on different machines will be able to derive varying 
amounts of benefits from this local modification. 
Certainly instances with a very small gap between the 
running times of the varying computational units will 
not be able to extract any benefit from this setup.  

X.    CONCLUSION 
Accelerating a time-dependent N-body 

simulation using the AFMM on heterogeneous 
machines requires balancing the many sources of run 
time variation inherent to this setup.  Each problem 
instance on a specific machine will have varying 
CPU and GPU runtimes as a function of S. High level 
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modifications such as binary search work well to 
optimize the runtime but the complex nature of the 
CPU-GPU cost relationship near regions of transition 
between the dominant computational costs require 
the full load balance model to achieve peak 
performance. The discrete gaps in the uniform 
distribution costs can be handled better using the 
AFMM and our fine grained load balance procedure.  
However, even the significantly smoother case for 
the Plummer model benefits from fine grained load 
balancing to adjust the local decomposition tree 
structure in order to compensate for issues such as 
GPU efficiency, which varies greatly with S and 
depends on the current distribution of bodies in the 
leaves of the octree.  

When applied to time-dependent applications, 
the AFMM achieves excellent parallel performance 
that can be maintained even while the underlying 
system evolves considerably. 

 

ACKNOWLEDGMENTS 
This work was supported by an NSF FRG grant 

on computational bio-fluids dynamics (DMS-
0854961).  We thank R. Fowler and A. Porterfield 
and RENCI for access to computer resources 
provided under DOE SciDAC PERI (DE-FC02-
06ER25764) and SciDAC SUPER (DE-FG02-
11ER26050/DE-SC0006925). 

 

REFERENCES 
 
[1]  L. Greengard and V. Rokhlin, "A Fast Algorithm for 

Particle Simulations," Journal of Computational 
Physics, vol. 73, no. 2, pp. 325-348, 1987.  

[2]  J. A. Lupo, Z. Wang, A. M. McKenney, R. Pachter 
and W. Mattson, "A Large Scale Molecular Dynamics 
Simulation Code Using The Fast Multipole Algorithm 
(FMD): Performance and Application," Journal of 
Molecular Graphics Modeling, vol. 21, no. 2, pp. 89-
99, 2002.  

[3]  L. F. Greengard and J. Huang, "A New Version of the 
Fast Multipole Method for Screened Coulomb 
Interactions in Three Dimensions," Journal of 
Computational Physics, vol. 180, no. 2, pp. 642-658, 
2002.  

[4]  Z. Wang, J. A. Lupo, A. M. McKenney and R. 
Pachter, "Large Scale Molecular Dynamics 
Simulations with Fast Multipole Implementations," in 
ACMIEEE SC 1999 Conference SC99, 1999.  

[5]  J. Kurzak and B. Pettitt, "Massively Parallel 
Implementation of a Fast Multipole Method for 
Distributed Memory Machines," Journal of Parallel 
and Distributed Computing, vol. 65, no. 7, pp. 870-
881, 2005.  

[6]  H. Cheng, L. Greengard and V. Rokhlin, "A Fast 

Adaptive Multipole Algorithm in Three Dimensions," 
Journal of Computational Physics, vol. 155, no. 2, pp. 
468-498, 1999.  

[7] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-
A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, 
L. Ying, D. Zorin and G. Biros, "A Massively Parallel 
Adaptive Fast Multipole Method on Heterogeneous 
Architectures," Communications of the ACM, vol. 55, 
no. 5, pp. 101-109, May 2012.  

[8] H. Dachsel, M. Hofmann, J. Lang and G. Rünger, 
"Automatic Tuning of the Fast Multipole Method 
Based on Integrated Performance Prediction," in IEEE 
14th International Conference on High Performance 
Computing and Communication, Liverpool, UK, 2012. 

[9] Q. Hu, N. A. Gumerov and R. Duraiswami, "Scalable 
Fast Multipole Methods on Distributed Heterogeneous 
Architectures," in SC '11 Proceedings of 2011 
International Conference for High Performance 
Computing, Networking, Storage and Analysis, 2011. 

[10] N. A. Gumerov and R. Duraiswami, "Fast multipole 
methods on graphics processors," Journal of 
Computationla Physics, vol. 227, no. 18, p. 8290–
8313, 2008.  

[11] R. Yokota and L. A. Barba, "Treecode and Fast 
Multipole Method for N-Body Simulation with 
CUDA," in GPU Computing Gems Emerald Edition, 
Morgan Kaufmann, 2011.  

[12] J. Bédorf, E. Gaburov and S. Portegies Zwart, "A 
sparse octree gravitational N-body code that runs 
entirely on the GPU processor," Journal of 
Computational Physics, vol. 231, no. 7, pp. 2825-
2839, 2012.  

[13] I. Lashuk, G. Biros, A. Chandramowlishwaran, H. 
Langston, T.-A. Nguyen, R. Sampath, A. 
Shringarpure, R. Vuduc, L. Ying and D. Zorin, "A 
Massively Parallel Adaptive Fast-Multipole Method 
on Heterogeneous Architectures," in Proceedings of 
the Conference on High Performance Computing 
Networking Storage and Analysis SC 09 p. 1, 2009.  

[14] L. Nyland, M. Harris and J. Prins, "Fast N-body 
Simulation with CUDA," GPU Gems, vol. 3, no. 1, 
pp. 677-696, 2007.  

[15] R. Cortez, L. Fauci and A. Medovikov, "The method 
of regularized Stokeslets in three dimensions: 
Analysis, validation, and application to helical 
swimming," Physics of Fluids, vol. 17, no. 3, 2005.  

 
�

�

1135


