
Dynamic Load Balancing of the Adaptive Fast Multipole Method
in Heterogeneous Systems

Robert E. Overman, Jan F. Prins Laura A. Miller Michael L. Minion
Dept. of Computer Science Dept. of Mathematics Lawrence Berkeley National Lab
UNC Chapel Hill, USA UNC Chapel Hill, USA Berkeley, CA
{reoverma,prins}@cs.unc.edu lam9@amath.unc.edu mlminion@lbl.gov
�

Abstract—Simulations of colliding galaxies or fluid
dynamics at immersed flexible boundaries are most
accurately and efficiently accomplished using the
adaptive fast multipole method (AFMM) to solve an
underlying n-body problem whose localized density
varies with the time-dependent evolution of the system
under study. Parallelization of the AFMM presents a
challenging load balancing problem that must be
addressed dynamically as the system evolves. We
consider parallelization of the AFMM for time-
dependent problems using a heterogeneous shared
memory compute node consisting of multi-core
processors and GPU accelerators. OpenMP task
parallelism is used within the CPU cores to parallelize
the construction and maintenance of the adaptive
spatial decomposition tree and its traversal to compute
far-field interactions at each leaf node in the tree.
Concurrently, GPUs evaluate all near-field interactions
using all-pairs computations. In addition to accurately
resolving many physical phenomena out of reach using
the uniform FMM, the more complex AFMM permits
the number of bodies in leaf cells to be globally and
locally varied in order to minimize the CPU and GPU
time. We present a cost model and incremental
adjustment strategy to load balance the AFMM on a
heterogeneous system. We demonstrate using these
techniques that a simulation can maintain load balance
over hundreds of time steps on a heterogeneous system
with 10 CPU cores and 4 GPUs with less than 2%
overhead, while achieving a 98X speedup over a serial
computation using a single CPU core.

Keywords – adaptive fast multipole method; dynamic
load balancing; hybrid computing; accelerators; OpenMP
task parallelism; CUDA.

I. INTRODUCTION
The Fast Multipole Method (FMM) was

introduced by Rokhlin and Greengard as an ����
time solution for an N-body problem [1]. The FMM
has been widely adopted due to the large asymptotic
advantage it offers over the ����� all-pairs method
while simultaneously providing bounded precision in
a manner more difficult to achieve using Barnes-Hut
style methods. It is used in a wide variety of
problems in astrophysics, molecular dynamics, fluid
dynamics, and electrostatics [1, 2, 3].

A. Uniform Spatial Decomposition
The original 3D FMM [1] uses a fixed-depth

octree decomposition of space. Fig. 1 shows a fixed-
depth quadtree, the 2D analog of the octree. The
underlying assumption for the FMM is that the
distribution of bodies in the problem is relatively
uniform so that all leaves in the octree hold
approximately the same number of bodies. For a
uniform 3D spatial decomposition the depth � of the
octree is then given by � � 	
���	�����	� where �
is the number of bodies in the system and � is a target
number of bodies per leaf cell. Since the octree is
complete and all leaf nodes have the same size, the
FMM has a statically determined computational
structure that simplifies parallelization [4, 5].
However when the FMM is used with a uniform
spatial decomposition to solve an N-body problem
for a non-uniform distribution of bodies, the actual
number of bodies in each leaf node will vary and in
the extreme may drive the work complexity of the
algorithm to �����. For physical systems such as
galaxies or plasmas, the local density of bodies may
vary by many orders of magnitude, rendering them
unsuitable for simulation using the FMM.

B. Adaptive Spatial Decomposition

The Adaptive FMM developed by Cheng,
Greengard and Rokhlin [6] varies the spatial
decomposition with the local density of bodies. Fig. 2
shows the 2D analog of this. The AFMM builds a
variable depth octree decomposition of space in
which a node is subdivided into eight children if it
holds more than � bodies. In this decomposition leaf
nodes may occur at any level in the octree, and the
tree will in general have varying depth.

C. The Fast Multipole Method

The basic operations of the two methods are the
same, regardless of the spatial decomposition. The
method begins by computing a multipole expansion
for the bodies in each leaf cell by use of the Particle-
to-Multipole (P2M) operation. The method then
proceeds upwards in the octree, combining
expansions from children into a single expansion
centered on the parent by application of the

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.218

1126

Multipole-to-Multipole (M2M) operation. In the
down sweep phase the method starts with a local
expansion at the root and proceeds downwards in the
tree, converting the parent local expansion to
expansions centered on each of its children by use of
the Local-to-Local (L2L) operation. In addition
multipole expansions of well-separated nodes are
converted and combined into the local expansion for
each node using the Multipole-to-Local (M2L)
operation. Upon arriving at a leaf node �, the local
expansion of � gives the total far-field interaction
experienced by bodies in � due to bodies in nodes of
the tree well-separated from �. The far-field
interactions are applied to the bodies in � using the
Local-to-Particle (L2P) operation. It remains to
incorporate the interaction with the remaining bodies
in the near-field of r. This is performed using all-
pairs computation between the bodies in � and all
bodies in nodes that are not well-separated from �
using the Particle-to-Particle (P2P) operation.

A key point about the six operations (P2M,
M2M, M2L, L2L, L2P, and P2P) is that each has a
predictable cost in FLOPS that can be expressed in
terms of the number of bodies in a leaf node, and the
number of retained terms � in the multipole
expansion [7] [8].

The difference between the AFMM and the
FMM is that the set of nodes involved in each of the
operations is specific to the tree structure; hence
parallelization of the AFMM cannot leverage the
fixed computational structure of the FMM problem.

It is important to note that even an initially
uniform distribution may become non-uniform over
the course of many time steps, depending on the
forces at work in the model. In this case the FMM
can become increasingly inefficient when many

Fig. 1. 2D uniform depth decomposition of space utilizing a
quadtree.

Fig. 2. Adaptive decomposition of space in 2D resulting in
leaf nodes of varying depth.

bodies accumulate in specific nodes. Adaptive FMM
implementations do not suffer from this problem
since they may rebuild the tree so that all leaf nodes
once again have a bounded size. Alternatively the
tree can be adjusted incrementally in response to
observed changes in the loading of nodes. Our
implementation uses both methods to maintain a high
degree of efficiency for the AFMM in non-uniform
or evolving distributions.

II. PROBLEMS ADDRESSED

Adaptive algorithms are challenging to parallelize
efficiently and in the case of time-dependent
problems, dynamic load balancing may be required.
Modern computing node architectures with multicore
CPUs and computational accelerators present
additional challenges in delegating different aspects
of the algorithmic work to the devices most suited to
perform them. To address these issues the following
contributions are presented in this paper:

� We implement the adaptive FMM rather than the
uniform FMM within a single heterogeneous
multicore compute node with one or more
Nvidia GPUs. Similar to [9, 7] we perform the
far-field (expansion) work on the CPU which has
larger caches and is better able to deal with
complex control paths, while performing near-
field (direct) work with very high performance
on one or more GPUs. We obtain excellent
performance in the far-field work by utilizing
OpenMP tasking directives within the sequential
AFMM algorithm and in adaptive decomposition
construction and maintenance. We also obtain
high performance on the near-field work by an
efficient implementation of multiple all-pairs
computations using one or more GPUs.

� We present a dynamic load balancing scheme for

time dependent applications of the AFMM which
minimizes runtime on heterogeneous systems
composed of multiple CPUs and GPUs across
multiple time steps. The load balancing strategy
performs fine grain local modifications to the
adaptive decomposition tree to minimize runtime
informed by a time costing model. In addition,
incremental global modifications track the
evolving distribution of bodies.

Several GPU-only strategies have been developed for
the FMM, including [12, 11, 10]. We have followed
an approach utilizing both CPUs and GPUs because
the AFMM can benefit from the considerable
performance potential of multicore CPUs particularly
in adaptive tree construction and maintenance. In

1127

addition OpenMP tasking is simple, and highly
efficient even for highly non-uniform distributions.
It is an improvement over the use of nested parallel
regions that are complicated and hard to update in a
time-dependent simulation [9]. While we focus on a
single node implementation, we expect the method
can be extended to a distributed memory cluster
using techniques such as those in [13, 9].

III. HETEROGENEOUS DESIGN
A. Overview

The key feature of this heterogeneous design
is placing the direct work on the GPUs. We carry out
the far-field work (P2M, M2M, M2L, L2L and L2P)
on the CPUs.

The basic parameter to balance the load is the
value of � since it shifts work between far-field and
near-field computation and hence between CPUs and
GPUs, as shown in Fig 3. Our tree modification
scheme also addresses a significant performance
issue that arises with load balancing a non-adaptive
FMM that we call the “Uniform Gap”, shown in Fig.
4. Since the tree depth is equal everywhere, a
uniform 3D spatial decomposition increases the
number of leaves by a factor of 8 whenever ���
exceeds a critical value. For this reason small
changes in S may yield large discontinuities in the
cost of near-field and far-field work, corresponding

Fig. 3. Adaptive distributions result in a gradual change in
the cost of the CPU and GPU work as a function of S.

Fig. 4. Three distinct cost regimes are obtained when varying
S using a uniform decomposition corresponding to different
depths of the octree., making it difficult to accurately balance
load using a uniform decomposition.

to removing or adding entire levels of the octree, as
shown in Fig. 1. Adaptive octrees can give better
results in this case by expanding only some nodes to
a greater depth, compared with a uniform
decomposition which would have to choose
exclusively between the different levels.
Through use of the load balancing operations which
we employ, we will show that we can successfully
bridge the gap between tree levels and more evenly
distribution work amongst the expansion and direct
work phases.

B. CPU Parallelism

As mentioned earlier, one goal of this
implementation was a simple yet dynamic CPU
parallelism technique for highly non-uniform octrees.
CPU parallelism is accomplished through the use of
OpenMP tasking facilities and work is carried out
parallel in space. The core OpenMP directives used
are “#pragma omp task” to spawn a task and
“#pragma omp taskwait” to wait for spawned tasks to
finish. Tasks are spawned within parallel regions and
scheduled onto threads in that region. Each thread is
bound exclusively to a specific CPU core.

The combination of tasking facilities and
recursion allow for simple spatial parallelism and
load balancing (by the task scheduler) on the CPU,
which will be shown in the results section. The
general form of this technique is as follows:

RecursiveFunction(Node�*node):�
��������//Carry�out�computation�associated�with�function�
�������DoCompute(node)�
�
��������//Recurse�down�the�octree�
��������if(node�>isParent):�
���������������for�each�child:������������������//for�each�child�spawn�a�task�
������������������������#pragma�omp�task�
������������������������RecursiveFunction(child)�
���������������#pragma�omp�taskwait����//idle�this�task�until�others�done�

Upon recursing down the tree from a parent to its
children, a task is spawned for each child. The task
does some work (possibly by spawning more tasks)
and eventually completes. The parent task is idled
until all child tasks complete.

For example, our implementation has a
DownSweep(Node *node) function that performs the
down sweep portion of the FMM. In this case the
local expansion downshift from the parent (L2L) as
well as the shifting in of multipole expansions (M2L)
would first be carried out for the node. Then, if the
node in question is a parent node, a task would be
spawned for each of its eight children to carry out the
DownSweep function on each of them. Similarly, the
UpSweep portion of the FMM is a head-recursive
function which carries out work after children return.

1128

This technique allows issues of spatial load balancing
to be dynamically resolved at runtime and avoids
messy issues of nested parallel regions and their
effects on performance as other groups encountered
[9]. The simplicity of this model is impressive given
the complex problem being solved. Another
application is construction of the spatial
decomposition by a recursive parallel partition of the
body locations into the child trees on the way down,
and lockless construction of the adaptive spatial
decomposition on the way back up.

C. GPU Parallelism

The GPU performs the direct work of the FMM
programmed in CUDA. Our implementation adapts
an all-pairs n-body algorithm developed in [14]. We
retain the general concept of giving each thread in a
warp a unique target body on which to calculate the
contribution of all point sources. However, due to the
adaptive nature of this implementation we must allow
for leaf nodes of varying size. For target nodes this
means that we simply use as many blocks as
necessary to assign one thread to each target body in
a target node. In blocks that have fewer bodies than
threads in the block, the extra threads are idle during
the computation phase. This means that we want to
avoid octrees which result in a significant number of
small target nodes which have a large number of
sources to interact with as this will decrease the
efficiency of the GPUs.

Our implementation loads sources in parallel.
Each thread in a warp fetches a source particle. The
threads then sync and perform the calculations,
marching serially through the loaded source bodies.
This procedure repeats until all sources have been
loaded and used in the calculation. The result of this
method is seen visually in Fig. 5. The current target
node � has � particles and interacts with m distinct
source nodes, each in general containing a different
number of particles.

Fig. 5. P2P computations are carried out in parallel across
target bodies, sequentially stepping through the source bodies
in lock step. Parallel loads are performed for bodies in each
target block.

In our heterogeneous model we must also

efficiently distribute the direct work across the
multiple GPUs on the compute node. For each target
node we can calculate the number of interactions it
participates in as follows:

��������������� � 	 � ! ��"��#�
$	%&�'�

Where (��� is the set of nodes that node � must
interact with directly, ��"��#� is the number of
particles within node # and � ��"����. When we
are building the data to send to the GPUs, we divide
up the work so that each GPU carries out
approximately the same number of interactions. The
implementation simply walks through the list of
interaction node pairs and counts Interactions(t) for
each target node. When the count meets or exceeds
the total number of direct interactions divided by the
number of GPUs we start counting work to send to
the next GPU. Each GPU carries out the direct work
for a unique set of target nodes. There is no target
node whose calculations are spread out over more
than one GPU. This simple division works well as
shown in the results section.

D. CPU-GPU Communication

For a single FMM solve (a single time step), a
single kernel is launched on each GPU to give that
GPU its share of the work for the time step. While
the GPU is carrying out P2P interactions, the CPU is
carrying out the expansion work portion of the FMM.

There are two CPU-GPU communication
functions called during a time step. Both are called
from the CPU. The first function performs some
initial setup work and then launches the kernels for
the GPUs. This function is called from a parallel
region by a single CPU thread. At the same time, the
start of the FMM tree traversal is called from the
same parallel region by another CPU thread. Hence
CPU and GPU work begin effectively in parallel. The
initial GPU call is non-blocking; after the kernels are
launched, the CPU thread that invoked them can now
return to pick up work spawned by the tree traversal
phases.

Once all tree traversal work is done, a single
CPU thread invokes the second function. This
function is a blocking call. If the GPUs have finished
then the calculations are immediately returned via
cudaMemcpy() calls, copying the data into known
locations for the CPU to utilize. If the GPU has not
finished then the CPU waits until the results are
ready. After the copies are done, the particle
positions are updated by the CPU and then any tree
optimizations are done to improve the run on the next
time step.

IV. OPTIMIZATION OPERATIONS
A. Overview

There are two functions used to bring the
running time back to a desirable range: Collapse and
PushDown.

1129

B. Collapse Operation
The Collapse operation has the net effect of un-

doing the subdivision of a node into eight child
nodes. It is used on parent nodes in the octree; eight
leaf nodes in the tree are “removed” and the node
which was previously their parent becomes a leaf
node in the octree. In actuality the children are just
hidden from the FMM algorithm. A flag is simply
set, signaling that the old parent node is now a leaf
node.

C. PushDown Operation

The PushDown operation has the opposite effect
of the Collapse operation. It subdivides a given leaf
node. Note that this operation has some extra expense
associated with it as compared to the collapse
operation. This is because pushing down may require
more memory. It does happen that over time steps a
node which was previously collapsed may need to be
pushed down. In this case “hidden” nodes can just be
reclaimed. But in general more space for nodes will
be necessary and so we have some node buffer
reserved in advance to minimize re-allocation.

D. Time Prediction

During the course of running the FMM,
coefficients are derived for each of the major
operations in the algorithm. These operations are the
five core FMM expansion operations: P2M, M2M,
M2L, L2L and L2P as well as the direct P2P
operation. These coefficients are observational. They
are not predicted values, but rather are derived from
actual observed times. However, these observed
coefficients will be used for prediction purposes. To
derive the coefficient, for each operation, the total
time spent on that operation is divided by the number
of times that operation was applied. For example, on
the CPU each thread keeps track of the time spent on
each FMM operation and the number of times it
carried out each operation. For each of these
operations, the times over all threads are summed and
divided by the sum of the operation count over all
threads to calculate the coefficients.

Using coefficients allows for a simplification of
complex details. The CPU coefficients allow us to
have a single value that encompasses the collective
effects of CPU speed, the number of cores, memory
speed and the number of retained terms in the
multipole expansions. This greatly simplifies
prediction calculations.

The coefficient for the P2P operation, the only
operation carried out on the GPUs, has a second use.
The GPU coefficient is calculated by dividing the
maximum kernel time by the total number of P2P
operations carried out over all the GPUs. So this
coefficient is a measure of the entire GPU system. It

serves as a high level view of the efficiency of the
GPUs. Unlike the operations carried out on the CPUs
whose cost is a function of the fixed considerations as
mentioned earlier, the P2P operation cost is a
function of many low level characteristics such as the
percentage of coalesced memory accesses and warp
occupancy on each GPU. Every particle movement
during each time step varies these low level details
and changes the P2P cost in the process. Therefore
this coefficient provides some insight into how
efficiently the GPUs are running on the current tree.

Given these coefficients, the cost of any tree
modification can be predicted. A count for the
number of times each operation will be performed for
the given tree is accumulated, call this count M(Op).
Then the following calculations are applied:

)*+	,�-�	*��.������ � 	 � /���� ! 0����
12	%3

 where 4 � 5670807080798 9798 976:
 ;*+	,�-�	*��.������ � /�676� ! 0�676�
/���� is the cost coefficient for the operation ��.
With these predicted times, decisions on whether or
not such a tree modification would be desirable can
be made without having to perform a full FMM solve
on the current tree.

V. LOAD BALANCING STATES

The load balancing machinery operates in one of

three states: search, incremental, and observation.
During the entire course of the simulation the load
balancer is always in one of these states. Each lasts
over multiple time steps. The current state of the load
balancer defines how load balancing functionality is
carried out and/or which actions shall be taken if
undesirable run times are seen.

A. Search

The search state defines the coarsest form of
optimization carried out. While in this state, after
each time step a new S value is chosen and the tree is
rebuilt. The particular value of S is chosen using a
binary search strategy. The direction (increase or
decrease) in which the new S is chosen is decided
based on how tree modifications made on the
previous time step influenced the compute time on
the current time step. It is the slowest form of load
balancing and the load balancer is only in this state at
the beginning of the simulation. This state is useful
because at the start of the simulation nothing is
known about the distribution and it is unknown in
which realm of S acceptable GPU efficiency lies. The

1130

goal of the search state is to determine an optimal
global value of S without any such prior knowledge.

B. Incremental

In the incremental state, a new determination for
the global S value is made without performing a full
binary search. In this state the S value is
incrementally adjusted in each time step. The
direction of the change (increment or decrement) is
again determined by how the compute time changed
based on the S value chosen for the tree rebuild in the
previous time step.

C. Observation

During the majority of the simulation the load
balancer sits in the observation state. In this state, the
solver marches through the time steps solving the
FMM. At the end of each time step, if the running
time is undesirable, measures are taken to enforce a
desirable running time. Next we introduce the
measures which can be taken.

VI. LOAD BALANCE ENFORCEMENT MECHANISMS

The enforcement procedure relies on the use of

two key functions. These functions utilize the
concepts introduced in the “Optimization Operations”
section.

A. Enforce_S

As particles move over time steps, leaf nodes
containing significantly more particles than the
current global S may develop. Our first line of
defense against this is the Enforce_S function. It runs
through the existing octree, enforcing the existing S
parameter for the tree. If it discovers a parent node
containing fewer than S particles, then it performs a
collapse operation on that node. If it encounters a leaf
node with more than S particles within it, it carries
out a pushdown operation on that node.

B. FineGrainedOptimize

FineGrainedOptimize() is the source of our fine
tuning. This function makes local changes to the tree
regardless of the global S value. This is a single
function call. It is not like the states described earlier
which persist for many time steps. This function
makes changes to multiple nodes at a time. If the
CPU is running too long the procedure begins by
performing the collapse operation on multiple nodes.
If the GPU is running too long, then the pushdown
operation is performed on multiple nodes. After a
group of nodes is collapsed or pushed down, the
procedure utilizes the time prediction described
earlier to predict how that change will affect the
running time on the next time step. Based on the

previous change made and the resulting predicted
running time, the procedure will continue to make
further changes until the predicted time is minimized.

VII. LOAD BALANCING WORKFLOW

A. Timing
Due to the heterogeneous nature of this model

the time necessary to minimize is the maximum of
the CPU and GPU wall clock times; we will call this
maximal time the Compute Time. Each time step has
a compute time associated with it. More concretely
we define this time as follows.

Definition: The CPU Time for a time step is the wall
clock time between the first call to the upward sweep
portion of the FMM and the completion of the last
task spawned during the downward sweep portion of
the FMM.

Definition: GPU Time is taken to be the maximum
of all the GPU kernel times in the time step. There is
one kernel per GPU. We time the kernels by placing
a cudaEvent on the event queue of each GPU
immediately prior to and after the kernel invocation.
The kernel time is taken to be the value returned by
cudaEventElapsedTime() when called on the events
enclosing the kernel.

Definition: Compute Time for a time step is the
maximum of the previously defined CPU and GPU
times.

B. Full Load Balancing and State Switching

The simulation starts in the binary search state.
On our test distributions this state typically persists
for fewer than 15 time steps. The load balancer
leaves the binary search state and moves into the
incremental state when CPU and GPU times differ by
0.15s or less.

The load balancer remains in the incremental
state until the computational unit which dominates
the runtime cost changes. For example, if the CPU
dominates the runtime, the S value is slowly
incremented up until an S value is found for which
the GPU is the dominant cost. Once this transitional
S value is found, if the CPU and GPU times differ by
more than 0.15s, then FineGrainedOptimize() is
called and upon return from this function the load
balancer enters the observation state. If the times are
already within 0.15s then the load balancer moves
directly into the observation state without calling
FineGrainedOptimize(). Before moving into the
observation state, the current compute time (which is
the best time seen thus far) is recorded.

1131

While the load balancer sits in the observation
state, nothing is done if the compute time for the
current time step is within 5% of the previously
recorded best time. If the current compute time
differs by more than 5%, then Enforce_S() is called.
After this call the compute time for the next time step
is predicted and if it is not within 5% of the best, then
FineGrainedOptimize() is called and the time is again
predicted. If the fine grained adjustment fails to bring
the predicted time within 5% of the best time, the
load balancer moves into the incremental state again
on the following time step.

VIII. EXPERIMENTAL RESULTS

A. Test Systems
Test System A: Test system A consists of two

Intel Xeon X5670 (2.93 GHz, 6 cores each) CPUs for
a total of 12 cores and four Tesla C2050 (ECC on,
single precision) GPUs. We use the Intel ICC 11.1
compiler via NVCC.

Test System B: Test System B consists of four
Intel X7560 Nehalem-EX (8 cores each) for a total of
32 cores and no GPUs. This system will be used for
showing CPU scaling only, for which we also use
ICC 11.1.

B. Test Problem

Unless otherwise stated, all results were
collected by solving the gravitational problem. Our
time step size was 0.0001s and the gravitational
constant used was < � =>? @ ABCD. Every particle in
this system has a mass of 1.0kg. We use a multipole
precision of	� � = retained terms in the spherical
harmonics expansion.

We also examine a fluid dynamics simulation of
immersed flexible boundaries using the method of
regularized Stokeslets as described in [15]. We will
explicitly state when the data at hand is derived from
this problem simulation.

C. Multicore Performance

Test System B allows for a more thorough
evaluation of CPU performance than System A. In
Fig. 6 we show speedup due to OpenMP CPU
parallelization when run on Test System B with ten
million particles distributed in a Plummer distribution
for a fixed S value. The resultant octree was highly
non-uniform with a depth of 16. The finest level of
refinement was at level 15 and the coarsest at level 2.
Even with this highly adaptive octree, we achieve
good load balancing of tasks and significant speedup
as a result. The baseline for the speedup shown here
is the serial execution time. As evidenced by these
numbers we have not seen significant overheads

introduced by OpenMP task creation when using this
recursive traversal of the octree and the task stealing
runtime of ICC 11.1.

A small superlinear speedup can be observed
when using up to 16 cores. This is likely a
consequence of the additional L3 cache available
across multiple sockets that enable multipole
expansions to be reused and give improved
performance relative to the single processor case. At
high thread count the speedup diminishes; we
conjecture this is due to saturation of the memory
system.

Fig. 6. CPU speedup as a function of the number of CPU
cores for a Plummer distribution of 10 million particles

D. GPU Performance

Our method for work distribution amongst the
available GPUs works well as seen in Table I. The
data collected in this table was for a fixed workload
of 10 million bodies arranged in a Plummer
distribution. The S chosen was the S which
minimized the total runtime for the system when
utilizing 10 CPU cores and 1 GPU. The problem was
carried out with this same S value while varying the
number of GPUs utilized.

Table I. GPU scaling for a fixed workload

No. GPUs Speedup
2 1.99
3 2.96
4 3.95

E. Heterogeneous Node Speedup
In order to view the overall effect of the

combination of the parallelization techniques, we
wanted to look at the speedup with a few different
CPU and GPU combinations. As our baseline we
used the time to run our implementation with a single
core on Test System A. Both the expansion and direct
work were run on this single core. The S chosen for
this serial run was the S that minimized the time for
this single core case. We then plotted speedup
relative to this time for the following cases: one GPU

1132

and four CPU Cores, one GPU and ten CPU Cores,
two GPUs and four CPU Cores, two GPUs and ten
CPU Cores, four GPUs and four CPU Cores, and four
GPUs and ten CPU Cores. A single Plummer
distribution with one million particles was used as
our test simulation. The results are shown in Fig. 7.

Fig. 7. Speedup shown for the entire heterogeneous system as
a function of S values.

The first point to be made is that even with a

relatively small N of one million and minimum
runtimes around seven tenths of a second we were
able to achieve just over 98x speedup with ten CPU
cores and 4 GPUs compared to a single CPU core.

An interesting scenario arises when we have an
underpowered CPU system as compared to the GPU
system. The difference between the 10C_2G run and
4C_4G run reflect this situation. With two GPUs and
ten CPU cores the implementation achieves 64x
speedup compared with 57x speedup with four GPUs
and 4 CPU cores. The problem with the four GPU
four CPU case is that the CPUs collectively are so
much less powerful than the GPUs collectively that
we need to send a lot of work to the GPUs. Sending a
lot of work to the GPU significantly increases the
FLOPs required to solve the problem because ����
expansion work is being converted into the
asymptotically inferior ����� direct work. Note that
we have a similar situation when comparing the
10C_1G run to the 4C_2G run, but here we are
required to send just enough work to the GPU such
the two runs achieve similar performance.

The way forward in such an unbalanced situation
is to move additional work to the GPU that can be
performed more efficiently. This can include the
P2M expansion formation and L2P expansion
evaluation.

IX. PERFORMANCE OF TIME DEPENDENT
OPTIMIZATIONS

A. Dynamic Workloads

The true test of the load balancing machinery is
on workloads that change significantly over time. To
examine this, we ran the gravitational problem
starting from a Plummer distribution. This

distribution was initially contained within 1/64th of
the simulation space. The intent here was to allow
particles that would otherwise have exited the system
(or wrapped around with periodic boundary
conditions) enough room to return back towards the
center of mass.

We examine three load balancing strategies for
this problem. In the first strategy, an optimal value
for S is chosen at the outset (using binary search), but
no adjustment of S is performed as the simulation
evolves. The value of S is never changed and the tree
structure is never modified. Particle positions are
updated after each time step, but no other changes are
made.

The second strategy performs dynamic load
balancing to keep the runtime minimized. Again the
binary search state is carried out at the start. After
exiting the binary search state, the implementation
watches for changes in the compute time. When the
compute time runs more than 5% slower than the best
time seen thus far, the implementation calls
Enforce_S. The compute time on the time step
immediately following Enforce_S() calls becomes the
new best time and the simulation continues.

The third strategy is the full load balancing
scheme we have described. All phases of load
balancing (Search, Incremental and Observation) are
fully utilized and both Enforce_S() and
FineGrainedOptimized() are utilized as previously
described in the workflow. The time spent on the sum
of all load balancing operations and the compute time
is shown in Fig. 8 for each of the 2000 time steps run.
The corresponding values of S are shown in Fig. 9.

Fig. 8. Total runtime for each of 2000 time steps for each of
the three described strategies.

Fig. 9. The resulting S values on each time step is shown for
each of the three strategies.

1133

By looking at the trend line for strategy one, it is
clear that some form of correction is necessary.
Simply maintaining the original S value and
reinforcing it when the compute time increases
provides much improvement as evidenced by the data
series for the second strategy. The average time over
all time steps for strategy two was 1.29s. The spikes
in strategy three are instances when load balancing
occurred. The spike is a combination of the increased
compute time which triggered the load balancing to
take effect as well as the load balancing cost itself.
The most time spent on load balancing operations in
a single time step was approximately 0.52s. The
average compute time per time step was 0.82s. The
largest compute time spike which triggered load
balancing operations to take effect was 0.12s and it
was a deviation of 14% from the best time seen thus
far. As a result of the spikes, 34 out of the 2000 time
steps resulted in a total time greater than the average
time of 1.29s per time step seen in strategy two.

A tabulated comparison of the different
strategies is shown in Table II. The key point is that
the simulation completes in the shortest wall clock
time using our load balancing strategy, while
overhead of the strategy is small at 1.88%. The non-
incremental load balancing strategy 2 took roughly
1.51 times longer to finish the simulation than
strategy 3. And the strategy that performed no
dynamic load balancing took approximately 3.91
times longer to complete the same simulation.

Table II. Strategy Summary for Dynamic Workloads

Strategy

Total
Compute

Total
LB

LB as % of
Compute

Relative cost
per time step

1 6576.17s 1.32s 0.02% 3.91

2 2544.79s 2.78s 0.11% 1.51

3 1651.57s 30.98s 1.88% 1.00

Total compute and total load balance are the sums of
compute time and load balancing time over all 2000 time
steps, respectively. LB as % of compute is total LB / total
compute. Relative cost per time step compares the average
runtime per time step relative to strategy 3.

B. Uniform Gap and Static Workloads

Our load balancing scheme primarily works to
improve the performance of workloads that vary
significantly over the course of a simulation, but the
FineGrainedOptimize() component can also be well
suited for acceleration of very uniform, static
workloads. As shown in Fig. 4, a uniform distribution
may present a significant hurdle when optimizing a
heterogeneous implementation like ours. The size of
the “uniform gap” which the problem will present
depends on many factors. CPU and GPU speed, and

the cost of the implementation-specific expansion
and direct work operations will have an impact on the
specific times. Also the size of the jump in time from
one level to the next will depend on the number of
nodes in each of the levels in question as well as the
number of particles in the leaf nodes, which in turn
depends on the distribution and the S value (which
again depends on CPU and GPU speed).

Our gravitational problem with one million
bodies did not have a huge gap. The speedup offered
by the use of FineGrainedOptimize() was not large,
around a 1% improvement on relatively small run
times. For this reason we chose to display the results
of our scheme on the fluid dynamics problem
mentioned earlier. We saw much more improvement
here on the same machine which ran the gravitational
problem due to the fact that the M2L cost for the
fluid dynamics problem is about 4x the M2L cost for
the gravitational problem.

Two simulations of 200 time steps each using ten
million sources in a uniform distribution were carried
out. One simulation utilized FineGrainedOptimize()
and the other did not. Fig. 10 shows the ratio of the
per-time step times of the two simulations. The time
for each time step includes any optimizations made in
addition to compute time. The first 15 time steps
constitute the initial binary search for a good S realm.
For the remainder of the time steps we achieve
slightly more than a 3% advantage per time step as a
result of using the fine grained optimizations.

Fig. 10. For each time step we show the ratio of total time
without using fine grained load balance to the total time
when using fine grained load balance.

Different implementations of different problems

on different machines will be able to derive varying
amounts of benefits from this local modification.
Certainly instances with a very small gap between the
running times of the varying computational units will
not be able to extract any benefit from this setup.

X. CONCLUSION
Accelerating a time-dependent N-body

simulation using the AFMM on heterogeneous
machines requires balancing the many sources of run
time variation inherent to this setup. Each problem
instance on a specific machine will have varying
CPU and GPU runtimes as a function of S. High level

1134

modifications such as binary search work well to
optimize the runtime but the complex nature of the
CPU-GPU cost relationship near regions of transition
between the dominant computational costs require
the full load balance model to achieve peak
performance. The discrete gaps in the uniform
distribution costs can be handled better using the
AFMM and our fine grained load balance procedure.
However, even the significantly smoother case for
the Plummer model benefits from fine grained load
balancing to adjust the local decomposition tree
structure in order to compensate for issues such as
GPU efficiency, which varies greatly with S and
depends on the current distribution of bodies in the
leaves of the octree.

When applied to time-dependent applications,
the AFMM achieves excellent parallel performance
that can be maintained even while the underlying
system evolves considerably.

ACKNOWLEDGMENTS
This work was supported by an NSF FRG grant

on computational bio-fluids dynamics (DMS-
0854961). We thank R. Fowler and A. Porterfield
and RENCI for access to computer resources
provided under DOE SciDAC PERI (DE-FC02-
06ER25764) and SciDAC SUPER (DE-FG02-
11ER26050/DE-SC0006925).

REFERENCES

[1] L. Greengard and V. Rokhlin, "A Fast Algorithm for

Particle Simulations," Journal of Computational
Physics, vol. 73, no. 2, pp. 325-348, 1987.

[2] J. A. Lupo, Z. Wang, A. M. McKenney, R. Pachter
and W. Mattson, "A Large Scale Molecular Dynamics
Simulation Code Using The Fast Multipole Algorithm
(FMD): Performance and Application," Journal of
Molecular Graphics Modeling, vol. 21, no. 2, pp. 89-
99, 2002.

[3] L. F. Greengard and J. Huang, "A New Version of the
Fast Multipole Method for Screened Coulomb
Interactions in Three Dimensions," Journal of
Computational Physics, vol. 180, no. 2, pp. 642-658,
2002.

[4] Z. Wang, J. A. Lupo, A. M. McKenney and R.
Pachter, "Large Scale Molecular Dynamics
Simulations with Fast Multipole Implementations," in
ACMIEEE SC 1999 Conference SC99, 1999.

[5] J. Kurzak and B. Pettitt, "Massively Parallel
Implementation of a Fast Multipole Method for
Distributed Memory Machines," Journal of Parallel
and Distributed Computing, vol. 65, no. 7, pp. 870-
881, 2005.

[6] H. Cheng, L. Greengard and V. Rokhlin, "A Fast

Adaptive Multipole Algorithm in Three Dimensions,"
Journal of Computational Physics, vol. 155, no. 2, pp.
468-498, 1999.

[7] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-
A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc,
L. Ying, D. Zorin and G. Biros, "A Massively Parallel
Adaptive Fast Multipole Method on Heterogeneous
Architectures," Communications of the ACM, vol. 55,
no. 5, pp. 101-109, May 2012.

[8] H. Dachsel, M. Hofmann, J. Lang and G. Rünger,
"Automatic Tuning of the Fast Multipole Method
Based on Integrated Performance Prediction," in IEEE
14th International Conference on High Performance
Computing and Communication, Liverpool, UK, 2012.

[9] Q. Hu, N. A. Gumerov and R. Duraiswami, "Scalable
Fast Multipole Methods on Distributed Heterogeneous
Architectures," in SC '11 Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011.

[10] N. A. Gumerov and R. Duraiswami, "Fast multipole
methods on graphics processors," Journal of
Computationla Physics, vol. 227, no. 18, p. 8290–
8313, 2008.

[11] R. Yokota and L. A. Barba, "Treecode and Fast
Multipole Method for N-Body Simulation with
CUDA," in GPU Computing Gems Emerald Edition,
Morgan Kaufmann, 2011.

[12] J. Bédorf, E. Gaburov and S. Portegies Zwart, "A
sparse octree gravitational N-body code that runs
entirely on the GPU processor," Journal of
Computational Physics, vol. 231, no. 7, pp. 2825-
2839, 2012.

[13] I. Lashuk, G. Biros, A. Chandramowlishwaran, H.
Langston, T.-A. Nguyen, R. Sampath, A.
Shringarpure, R. Vuduc, L. Ying and D. Zorin, "A
Massively Parallel Adaptive Fast-Multipole Method
on Heterogeneous Architectures," in Proceedings of
the Conference on High Performance Computing
Networking Storage and Analysis SC 09 p. 1, 2009.

[14] L. Nyland, M. Harris and J. Prins, "Fast N-body
Simulation with CUDA," GPU Gems, vol. 3, no. 1,
pp. 677-696, 2007.

[15] R. Cortez, L. Fauci and A. Medovikov, "The method
of regularized Stokeslets in three dimensions:
Analysis, validation, and application to helical
swimming," Physics of Fluids, vol. 17, no. 3, 2005.

�

�

1135

