
Evaluating OpenMP 3.0 Run Time Systems on
Unbalanced Task Graphs

Stephen L. Olivier and Jan F. Prins

University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
{olivier, prins}@unc.edu

Abstract. The UTS benchmark is used to evaluate task parallelism in
OpenMP 3.0 as implemented in a number of recently released compil-
ers and run-time systems. UTS performs parallel search of an irregular
and unpredictable search space, as arises e.g. in combinatorial optimiza-
tion problems. As such UTS presents a highly unbalanced task graph
that challenges scheduling, load balancing, termination detection, and
task coarsening strategies. Scalability and overheads are compared for
OpenMP 3.0, Cilk, and an OpenMP implementation of the benchmark
without tasks that performs all scheduling, load balancing, and termina-
tion detection explicitly. Current OpenMP 3.0 implementations generally
exhibit poor behavior on the UTS benchmark.

1 Introduction

The recent addition of task parallelism support to OpenMP 3.0 [1] offers im-
proved means for application programmers to achieve performance and pro-
ductivity on shared memory platforms such as multi-core processors. However,
efficient execution of task parallelism requires support from compilers and run
time systems. Design decisions for those systems include choosing strategies for
task scheduling and load-balancing, as well as minimizing overhead costs.

Evaluating the efficiency of run time systems is difficult; the applications
they support vary widely. Among the most challenging are those based on unpre-
dictable and irregular computation. The Unbalanced Tree Search (UTS) bench-
mark [2] represents a class of such applications requiring continuous load balance
to achieve parallel speedup. In this paper, we compare the performance and scal-
ability of the UTS benchmark on three different OpenMP 3.0 implementations
(Intel icc 11, Mercurium 1.2.1, SunStudio 12) and an experimental prerelease of
gcc 4.4 that includes OpenMP 3.0 support. For comparison we also examine the
performance of the UTS benchmark using Cilk [3] tasks and using an OpenMP
implementation without tasks that performs all scheduling, load balancing, and
termination detection explicitly. Throughout this paper we will refer to the lat-
ter as the thread-level parallel implementation. Additional experiments focus on
comparing overhead costs. The primary contribution of the paper is an analysis
of the experimental results for a set of compilers that support task parallelism.

The remainder of the paper is organized as follows: Section 2 outlines back-
ground and related work on run time support for task parallelism. Section 3
describes the UTS benchmark. Section 4 presents the experimental results and
analysis. We conclude in Section 5 with some recommendations based on our
findings.

2 Background and Related Work

Many theoretical and practical issues of task parallel languages and their run
time implementations were explored during the development of earlier task par-
allel programming models, such as Cilk [4, 3]. The issues can be viewed in the
framework of the dynamically unfolding task graph in which nodes represent
tasks and edges represent completion dependencies.

The scheduling strategy determines which ready tasks to execute next on
available processing resources. The load balancing strategy keeps all processors
supplied with work throughout execution. Scheduling is typically decentralized
to minimize contention and locking costs that limit scalability of centralized
schedulers. However decentralized scheduling increases the complexity of load
balancing when a local scheduler runs out of tasks, determining readiness of
tasks, and determining global completion of all tasks.

To decrease overheads, various coarsening strategies are followed to aggregate
multiple tasks together, or to execute serial versions of tasks that elide synchro-
nization support when not needed. However such coarsening may have negative
impact on load balancing and availability of parallel work.

Cilk scheduling uses a work-first scheduling strategy coupled with a ran-
domized work stealing load balancing strategy shown to be optimal[5]. A lazy
task creation approach, developed for parallel implementations of functional lan-
guages [6], makes parallel slack accessible while avoiding overhead costs until
more parallelism is actually needed. The compiler creates a fast and a slow clone
for each task in a Cilk program. Local execution always begins via execution of
the fast clone, which replaces task creation with procedure invocation. An idle
processor may steal a suspended parent invocation from the execution stack,
converting it to the slow clone for parallel execution.

In OpenMP task support, “cutoff” methods to limit overheads were proposed
in [7]. When cutoff thresholds are exceeded, new tasks are serialized. One pro-
posed cutoff method, max-level, is based on the number of ancestors, i.e. the level
of recursion for divide-and-conquer programs. Another is based on the number
of tasks in the system, specified as some factor k times the number of threads.
The study in [7] finds that performance is often poor when no cutoff is used and
that different cutoff strategies are best for different applications. Adaptive Task
Cutoff (ATC) is a scheme to select the cutoff at runtime based on profiling data
collected early in the program’s execution [8]. In experiments, performance with
ATC is similar to performance with manually specified optimal cutoffs. However,
both leave room for improvement on unbalanced task graphs.

Iterative chunking coarsens the granularity of tasks generated in loops [9]. Ag-
gregation is implemented through compiler transformations. Experiments show
mixed results, as some improvements are in the noise compared to overheads of
the run time system.

Intel’s “workqueuing” model was a proprietary OpenMP extension for task
parallelism [10]. In addition to the task construct, a taskq construct defined
queues of tasks explicitly. A noteworthy feature was support for reductions
among tasks in a task queue. Early evaluations of OpenMP tasking made com-
parisons to Intel workqueuing, showing similar performance on a suite of seven
applications [11].

An extension of the Nanos Mercurium research compiler and run time [11]
has served as the prototype compiler and run time for OpenMP task support. An
evaluation of scheduling strategies for tasks using Nanos is presented in [7]. That

study concluded that in situations where each task is tied, i.e. fixed to the thread
on which it first executes, breadth-first schedulers perform best. They found that
programs using untied tasks, i.e. tasks allowed to migrate between threads when
resuming after suspension, perform better using work-first schedulers. A task
should be tied if it requires that successive accesses to a threadprivate variable
be to the same thread’s copy of that variable. Otherwise, untied tasks may be
used for greater scheduling flexibility.

Several production compilers have now incorporated OpenMP task support.
IBM’s implementation for their Power XLC compilers is presented in [12]. The
upcoming version 4.4 release of the GNU compilers [13] will include the first pro-
duction open-source implementation of OpenMP tasks. Commercial compilers
are typically closed source, underscoring the need for challenging benchmarks
for black-box evaluation.

3 The UTS Benchmark

The UTS problem [2] is to count the nodes in an implicitly defined tree: any
subtree in the tree can be generated completely from the description of its parent.
The number of children of a node is a function of the node’s description; in our
current study a node can only have zero or m = 8 children. The description
of each child is obtained by an evaluation of the SHA-1 cryptographic hash
function [14] on the parent description and the child index. In this fashion, the
UTS search trees are implicitly generated in the search process but nodes need
not be retained throughout the search.

Load balancing of UTS is particularly challenging since the distribution of
subtree sizes follows a power law. While the variance in subtree sizes is enormous,
the expected subtree size is identical at all nodes in the tree, so there is no
advantage to be gained by stealing one node over another. For the purpose of
evaluating run time load-balancing support, the UTS trees are a particularly
challenging adversary.

3.1 Task Parallel Implementation

To implement UTS using task parallelism, we let the exploration of each node
be a task, allowing the underlying run time system to perform load balancing as
needed. A sketch of the implementation follows below:

void Generate_and_Traverse(Node* parentNode, int childNumber) {
Node* currentNode = generateID(parentNode, childNumber);
nodeCount++; // threadprivate, combined at termination
int numChildren = m with prob q, 0 with prob 1-q
for (i = 0; i < numChildren; i++) {
#pragma omp task untied firstprivate(i)
Generate_and_Traverse(currentNode, i);

}
}

Execution is started by creating a parallel region (with a threadprivate counter
for the number of nodes counted by the thread). Within the parallel region a sin-
gle thread creates tasks to count the subtrees below the root. A single taskwait
is used to end the parallel region when the entire tree has been explored.

3.2 Thread-Level Parallel Implementation Without Tasks
Unlike the task parallel implementation of UTS, the thread-level parallel im-
plementation described in [2] using OpenMP 2.0 explicitly specifies choices for
the order of traversal (depth-first), load balancing technique (work stealing), ag-
gregation of work, and termination detection. A sketch of the implementation
follows below:
void Generate_and_Traverse(nodeStack* stack) {
#pragma omp parallel
while (1) {
if (empty(stack)) {
... steal work from other threads or terminate ...

}
currentNode = pop(stack);
nodeCount++; // threadprivate, gathered using critical later
int numChildren = m with prob q, 0 with prob q-1
for (i = 0; i < numChildren; i++) {

...initialize childNode...
childNode = generateID(currentNode, i);
push(stack, childNode);

}
}

}

Execution is started with the root node on the nodeStack of one thread; all
other threads start with an empty stack. Note that the single parallel region
manages load balancing among threads, termination detection, and the actual
tree traversal.

3.3 Cilk Implementation
For comparison, we created a cilk implementation of UTS which is close to the
OpenMP 3.0 task implementation. It differs mainly in its use of a Cilk inlet
in the search function to accumulate partial results for the tree node count as
spawned functions return. The Cilk runtime handles the required synchroniza-
tion to update the count.

4 Experimental Evaluation

We evaluate OpenMP task support by running UTS and related experiments on
an Opteron SMP system. The Opteron system consists of eight dual-core AMD
Opteron 8220 processors running at 2.8 Ghz, with 1MB cache per core.

We installed gcc 4.3.2, the Intel icc 11.0 compiler, SunStudio 12 with Ceres
C 5.10, and an experimental prerelease of gcc 4.4 (12/19/2008 build). We also
installed the Mecurium 1.2.1 research compiler with Nanos 4.1.2 run time. Since
Nanos does not yet natively support the x86-64 architecture, we built and used
the compiler for 32-bit IA32. We used cilk 5.4.6 for comparison with the OpenMP
implementations on both machines; it uses the gcc compiler as a back end. The
-O3 option is always used. Unless otherwise noted, reported results represent the
average of 10 trials.

For a few results in Section 4.4 of the paper, we used an SGI Altix running
Intel icc 11 and Nanos/Mercurium built for IA64. Details for that system are
presented in that section.

Implementation gcc 4.3.2 Intel icc 11.0 Sun Ceres 5.10 gcc 4.4.0

Task Parallel 2.60 2.45 2.38 2.60

Thread-Level Parallel 2.48 2.49 2.17 2.39

Table 1: Sequential performance on Opteron (Millions of tree nodes per second)

UTS on Opteron SMP: Cilk vs OpenMP Tasks

0

2

4

6

8

10

12

14

16

1 2 4 8 16

Threads

S
p
e
e
d
u
p

Cilk Speedup

Intel Speedup

Sun Speedup

gcc4.4 Speedup

Fig. 1: UTS using cilk and several OpenMP 3.0 task implementations: Speedup
on 16-way Opteron SMP. See Figure 7 and Section 4.4 for results using Nanos.

4.1 Sequential and Parallel Performance on UTS

Table 1 shows sequential performance for UTS on the Opteron SMP system; the
execution rate represents the number of tree nodes explored per unit time. We
use tree T3 from [2], a 4.1 million node tree with extreme imbalance. This tree is
used in experiments throughout the paper. The table gives results for both the
task parallel and the thread-level parallel implementations. They were compiled
with OpenMP support disabled.

Figure 1 shows the speedup gained on the task parallel implementation us-
ing OpenMP 3.0, as measured against the sequential performance data given
in table 1. We observe no speedup from Sun Studio and gcc. Cilk outperforms
the Intel OpenMP task implementation, but neither achieve more than 10X
speedup, though both show improved speedup as up to 16 cores are used. Fig-
ure 2 shows the speedup, over 15X in most cases, using the thread-level parallel
implementation.

4.2 Analysis of Performance

Two factors leading to poor performance are overhead costs and load imbalance.
There is a fundamental tradeoff between them, since load balancing operations

UTS on BASS: OpenMP Using User-level Work Stealing

0

2

4

6

8

10

12

14

16

1 2 4 8 16

Threads

S
p
e
e
d
u
p

gcc4.3 Speedup

Intel Speedup

Sun Speedup

gcc4.4 Speedup

Fig. 2: UTS using thread-level OpenMP parallel implementation without tasks:
Speedup on 16-way Opteron SMP. Work stealing granularity is a user-supplied
parameter. The optimal value (64 tree nodes transferred per steal operation)
was determined by manual tuning and used in these experiments.

Percent of Time Spent on Overheads

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

Number of Threads

P
e
r
c
e
n

t
o

f
T
o

ta
l
T
im

e

Intel

Sun

gcc

Fig. 3: Overheads (time not calculating SHA-1 hash) on UTS using 100 repeti-
tions of the SHA-1 hash per tree node.

incur overhead costs. Though all run time implementations are forced to deal
with that tradeoff, clever ones minimize both to the extent possible. Poor im-
plementations show both crippling overheads and poor load balance.

Load Balancing Operations Detected

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2 4 8 16

Number of Threads

T
a
s
k
s Intel

Sun

gcc

Fig. 4: Number of tasks started on different threads from their parent tasks or
migrating during task execution, indicating load balancing efforts. 4.1M tasks
are performed in each program execution.

Lost Efficiency Due to Load Imbalance

0

10

20

30

40

50

60

70

2 4 8 16

Number of Threads

P
e
r
c
e
n

t
L
o

s
t

E
ff

ic
ie

n
c
y
 (

1
-e

)

Intel

Sun

gcc

Fig. 5: UTS on Opteron: Lost efficiency due to load imbalance.

Overhead Costs Even when only a single thread is used, there are some over-
head costs incurred using OpenMP. For task parallel implementation of UTS,
Cilk achieves 96% efficiency, but efficiency is just above 70% using OpenMP 3.0
on a single processor using the Intel and Sun compilers and 85% using gcc 4.4.
The thread-level parallel implementation achieves 97-99% on the Intel and gcc
compilers and 94% on the Sun compiler.

To quantify the scaling of overhead costs in the OpenMP task run times,
we instrumented UTS to record the amount of time spent on work (calculating
SHA-1 hashes). To minimize perturbation from the timing calls, we increased the
amount of computation by performing 100 SHA-1 hash evaluations of each node.
Figure 3 presents the percent of total time spent on overheads (time not spent
on SHA-1 calculations). Overhead costs grow sharply in the gcc implementation,

Fig. 6: Work aggregated into tasks. Speedup on Opteron SMP using the Intel
OpenMP tasks implementation. Results are similar using the gcc 4.4 and Sun
compilers, though slightly poorer at the lower aggregation levels.

dwarfing the time spent on work. The Sun implementation also suffers from
high overheads, reaching over 20% of the total run time. Overheads grow slowly
from 2% to 4% in the Intel run time. Note that we increased the granularity of
computation 100-fold, so overheads on the original fine-grained problem may be
much higher still.

Load Imbalance Now we consider the critical issue of load imbalance. To in-
vestigate the number of load balancing operations, we modified UTS to record
the number of tasks that start on a different thread than the thread they were
generated from or that migrate when suspended and subsequently resumed. Fig-
ure 4 shows the results of our experiments using the same 4.1M node tree (T3),
indicating nearly 450k load balancing operations performed by the Intel and
Sun run times per trial using 8 threads. That comprises 11% of the 4.1M tasks
generated. In contrast, gcc only performs 68k load balancing operations. For all
implementations, only 30%-40% of load balancing operations occur before initial
execution of the task, and the rest as a result of migrations enabled by the untied
keyword.

Given the substantial amount of load balancing operations performed, we
investigated whether they are actually successful in eliminating load imbalance.
To that end, we recorded the number of nodes explored at each thread, shown
in Figure 11 (found on the last page of the paper). Note that since ten trials
were performed at each thread count, there are 10 data points shown for trials
on one thread, 20 shown for trials on two threads, etc. The results for the Intel
implementation (a) show good load balance, as roughly the same number of
nodes (4.1M divided by the number of threads) are explored on each thread.
With the Sun implementation, load balance is poor and worsens as more threads
are used. Imbalance is poorer still with gcc.

Even if overhead costs were zero, speedup would be limited by load imbalance.
The total running time of the program is at least the work time of the thread
that does the most work. Since each task in UTS performs the same amount
of work, one SHA-1 hash operation, we can easily determine that efficiency

Name Description

wfff work-first with FIFO local queue access, FIFO remote queue access

wffl work-first with FIFO local queue access, LIFO remote queue access

wflf work-first with LIFO local queue access, FIFO remote queue access

wfll work-first with LIFO local queue access, LIFO remote queue access

cilk wflf with priority to steal parent of current task

bff breadth-first with FIFO task pool access

bfl breadth-first with LIFO task pool access

Table 2: Nanos scheduling strategies. For more details see [7].

e is limited to the ratio of average work per thread to maximum work per
thread. The lost efficiency (1−e) for the different OpenMP task implementations
is shown in Figure 5. Poor load balance by the Sun and gcc implementations
severely limits scalability. Consider the 16-thread case: neither implementation
can achieve greater than 40% efficiency even if overhead costs were nonexistent.
On the other hand, inefficiency in the Intel implementation cannot be blamed
on load imbalance.

4.3 Potential for Aggregation

The thread parallel implementation reduces overhead costs chiefly by aggregating
work. Threads do not steal nodes one at at time, but rather in chunks whose
size is specified as a parameter. A similar method could be applied within an
OpenMP run time, allowing chunks of tasks to be moved between threads at a
time.

To test possible overhead reduction from aggregation, we designed an exper-
iment in which 4M SHA-1 hashes are performed independently. To parallelize
we use a loop nest in which the outer forall generates tasks. Each task executes
a loop of k SHA-1 hashes. So k represents an aggregation factor. Since the outer
forall has 4M / k iterations equally distributed by static scheduling, there should
be little or no load balancing. Thus, performance measurements should represent
a lower bound on the size of k needed to overcome overhead costs. Figure 6 shows
speedup for aggregation of k = 1 to 100000 run using the Intel implementation.
(Results for the gcc 4.4 and Sun compilers are very similar and omitted for lack
of space.) Speedup reaches a plateau at k = 50. We could conclude that for our
tree search, enough tasks should be moved at each load balancing operation to
yield 50 tree nodes for exploration. Notice that for 8 and 16 threads, performance
degrades when k is too high, showing that too much aggregation leads to load
imbalance, i.e. when the total number of tasks is a small non-integral multiple
of the number of threads.

4.4 Scheduling Strategies and Cutoffs

As mentioned in Section 2, the Mercurium compiler and Nanos run time offer a
wide spectrum of runtime strategies for task parallelism. There are breadth-first
schedulers with FIFO or LIFO access, and work-first schedulers with FIFO or

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100

Sp
ee

du
p

maxtasks

cilk
wfff
wffl
wflf
wfll
bff
bfl

(a) maxtasks cutoff

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100

Sp
ee

du
p

maxlevel

cilk
wfff
wffl
wflf
wfll

(b) maxlevel cutoff

Fig. 7: UTS speedup on Opteron SMP using two threads with different scheduling
and cutoff strategies in Nanos. Note that ”cilk” denotes the cilk-style scheduling
option in Nanos, not the cilk compiler.

LIFO local access and FIFO or LIFO remote access for stealing. There is also a
“Cilk-like” work-first scheduler in which an idle remote thread attempts to steal
the parent task of a currently running task. In addition, the option is provided
to serialize tasks beyond a cutoff threshold, a set level of the task hierarchy
(maxlevel) or a certain number of total tasks (maxtasks). Note that a maxtasks
cutoff is imposed in the gcc 4.4 OpenMP 3.0 implementation, but the limit is
generous at 64 times the number of threads.

Figure 7 shows the results of running UTS using two threads in Nanos with
various scheduling strategies and varying values for the maxtasks and maxlevel
cutoff strategies. See Table 2 for a description of the scheduling strategies repre-
sented. The breadth-first methods fail due to lack of memory when the maxlevel
cutoff is used. There are 2000 tree nodes at the level just below the root, re-
sulting in a high number of simultaneous tasks in the breadth-first regime. As
shown in the graphs, we did not observe good speedup using Nanos regardless of
the strategies used. Though not shown, experiments confirm no further speedup
using four threads.

Limiting the number of tasks in the system (maxtasks cutoff) may not allow
enough parallel slack for the continuous load balancing required. At the higher
end of the range we tested in our experiments, there should be enough parallel
slack but overhead costs are dragging down performance. Cutting off a few levels

Fig. 8: Work aggregated into tasks. Speedup on Opteron SMP using cilk-style
scheduling in Nanos. Results are similar using other work-first scheduling strate-
gies.

below the root (maxlevel cutoff) leaves highly unbalanced work, since the vast
majority of the nodes are deeper in the tree, and UTS trees are imbalanced
everywhere. Such a cutoff is poorly suited to UTS. For T3, just a few percent
of the nodes three levels below the root subtend over 95% of the tree. Adaptive
Task Cutoff [8] would offer little improvement, since it uses profiling to predict
good cutoff settings early in execution. UTS is unpredictable: the size of the
subtree at each node is unknown before it is explored and variation in subtree
size is extreme.

We also repeated aggregation experiments from Section 4.3 using Nanos.
Figure 8 shows speedup using the cilk-like scheduling strategy with no cutoffs
imposed. Results for other work-first schedulers is similar. Noticed that compared
to the results from the same experiment using Intel compiler (Figure 6), speedup
is much poorer at lower levels of aggregation with Nanos. Whereas speedup at
10 hash operations per second is about 13X with 16 threads using the Intel
compiler, Nanos speedup is less than 1X.

Since the breadth-first methods struggle with memory constraints on the
Opteron SMP, we tried the aggregation tests on another platform: an SGI Altix
with lightweight thread support on the Nanos-supported 64-bit IA64 architec-
ture. The Altix consists of 128 Intel Itanium2 processors running at 1.6 Ghz,
each with 256kB of L2 cache and 6MB of L3 cache. We installed the Mecurium
1.2.1 research compiler with Nanos 4.1.2 run time and the Intel icc 11.0 com-
piler. Even using the breadth-first schedulers and no cutoffs, the tasks are able to
complete without exhausting memory. Figure 9 shows experiments performed on
two threads of the Altix. The Intel implementation outperforms Nanos at fine-
grained aggregation levels. Among the Nanos scheduling options, the work-first
methods are best.

4.5 The if() Clause

The OpenMP task model allows the programmer to specify conditions for task
serialization using the if() clause. To evaluate its impact, we used the if() clause
in a modified version of our task parallel implementation so that only n% percent

Fig. 9: Work aggregated into tasks. Speedup on an SGI Altix for 4M hash oper-
ations performed; work generated evenly upon two threads. The various Nanos
scheduling strategies are used without cutoffs, and Intel icc is shown for com-
parison. Note that ”cilk” denotes the cilk-style scheduling option in Nanos, not
the cilk compiler.

Fig. 10: UTS Speedup on Opteron SMP using the Intel OpenMP 3.0 task imple-
mentation with user-defined inlining specified using the if() clause.

of the tree nodes are explored in new tasks while the rest are explored in place.
We varied n exponentially from less than 0.01% to 100%. Figure 10 shows the
results on the Opteron SMP using the Intel compiler. Using the if() clause to
limit the number of tasks seems to improve speedup. However, Figure 1 showed
similar speedups using the same compiler and UTS implementation but with no
if() clause. Why would setting n = 100% not yield the same results? We suspect
that the use of the if() clause may disable a default internal cutoff mechanism
in the Intel run time system.

5 Conclusions

Explicit task parallelism provided in OpenMP 3.0 enables easier expression of
unbalanced applications. Consider the simplicity and clarity of the task parallel

UTS implementation. However, there is clearly room for further improvement in
performance for applications with challenging demands such as UTS.

Our experiments suggest that efficient OpenMP 3.0 run time support for very
unbalanced task graphs remains an open problem. Among the implementations
tested, only the Intel compiler shows good load balancing. Its overheads are
also lower than other implementations, but still not low enough to yield ideal
speedup. Cilk outperforms all OpenMP 3.0 implementations; design decisions
made in its development should be examined closely when building the next
generation of OpenMP task run time systems. A key feature of Cilk is its on-
demand conversion of serial functions (fast clone) to concurrent (slow clone)
execution. The ”Cilk-style” scheduling option in Nanos follows the work stealing
strategy of Cilk, but decides before task execution whether to inline a task or
spawn it for concurrent execution.

We cannot be sure of the scheduling mechanisms used in the commercial
OpenMP 3.0 implementations. The gcc 4.4 implementation uses a task queue and
maintains several global data structures, including current and total task counts.
Contention for these is a likely contributor to overheads seen in our experiments.
Another problematic feature of the gcc OpenMP 3.0 implementation is its use of
barrier wake operations upon new task creation to enable idle threads to return
for more work. These operations are too frequent in an applications such as UTS
that generates work irregularly. Even with an efficient barrier implementation,
they may account for significant costs.

Experiments using several different scheduling strategies with cutoffs also
show poor performance. Unbalanced problems such as UTS are not well suited
to cutoffs because they make it difficult to keep enough parallel slack available.
Aggregation of work should be considered for efficient load balancing with re-
duced overhead costs. Further work is needed to determine other ways in which
OpenMP 3.0 run time systems could potentially be improved and whether ad-
ditional information could be provided to enable better performance.

While the UTS benchmark is useful as a benchmarking and diagnostic tool
for run time systems, many of the same problems it uncovers impact real world
applications. Combinatorial optimization and enumeration lie at the heart of
many problems in computational science and knowledge discovery. For exam-
ple, protein design is a combinatorial optimization problem in which energy
minimization is used to evaluate many combinations of amino acids arranged
along the backbone to determine whether a desired protein geometry can be
obtained [15]. An example of an enumeration problem in knowledge discovery
is subspace clustering, in which subsets of objects that are similar on some sub-
set of features are identified [16]. Another example is the Quadratic Assignment
Problem (QAP) at the heart of transportation optimization. These sorts of prob-
lems typically require exhaustive search of a state space of possibilities. When
the state space is very large, as is often the case, a parallel search may be the
only hope for a timely answer.

Evaluation on a wider range of applications is needed to determine the shared
impact of the compiler and run time issues that UTS has uncovered. One issue
that we have not addressed in our experiments is locality. UTS models applica-
tions in which a task only requires a small amount data from its parent and no
other external data. We anticipate future work in which we consider applications
with more demanding data requirements.

6 Acknowledgements

Stephen Olivier is funded by a National Defense Science and Engineering Gradu-
ate Fellowship. The Opteron SMP used in this paper is a part of the BASS cluster
purchased with funding from the National Institutes of Health’s National Center
for Research Resources, through their High-End Instrumentation program award
number NIH 1S10RR023069-01 and administered by the UNC Department of
Computer Science. The authors would like to thank the anonymous reviewers for
their insightful comments, many of which have led to important improvements
in the paper.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 3.0 (May 2008)

2. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.:
UTS: An unbalanced tree search benchmark. In Almási, G., Cascaval, C., Wu, P.,
eds.: Proc. LCPC 2006. Volume 4382 of LNCS., Springer (2007) 235–250

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proc. 1998 SIGPLAN Conf. Prog. Lang. Design Impl.
(PLDI ’98). (1998) 212–223

4. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. In: PPoPP ’95: Proc. 5th ACM SIG-
PLAN symp. Princ. Pract. Par. Prog. (1995)

5. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. In: Proc. 35th Ann. Symp. Found. Comp. Sci. (Nov. 1994) 356–368

6. Mohr, E., Kranz, D.A., Robert H. Halstead, J.: Lazy task creation: a technique
for increasing the granularity of parallel programs. In: LFP ’90: Proc. 1990 ACM
Conf. on LISP and Functional Prog., New York, NY, USA, ACM (1990) 185–197

7. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In Eigenmann, R., de Supinski, B.R., eds.: IWOMP ’08. Volume 5004
of LNCS., Springer (2008) 100–110

8. Duran, A., Corbalán, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In:
SC ’08: Proceedings of the 2008 ACM/IEEE Conf. on Supercomputing, Piscataway,
NJ, USA, IEEE Press (2008) 1–11

9. Ibanez, R.F.: Task chunking of iterative constructions in openmp 3.0. In: First
Workshop on Execution Environments for Distributed Computing. (July 2007)

10. Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., Petersen, P.: Compiler support
of the workqueuing execution model for Intel(R) SMP architectures. In: European
Workshop on OpenMP (EWOMP’02). (2002)

11. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental
evaluation of the new OpenMP tasking model. In Adve, V.S., Garzarán, M.J.,
Petersen, P., eds.: LCPC. Volume 5234 of LNCS., Springer (2007) 63–77

12. Teruel, X., Unnikrishnan, P., Martorell, X., Ayguadé, E., Silvera, R., Zhang, G.,
Tiotto, E.: OpenMP tasks in IBM XL compilers. In: CASCON ’08: Proc. 2008
Conf. of Center for Adv. Studies on Collaborative Research, ACM (2008) 207–221

13. Free Software Foundation, I.: GCC, the GNU compiler collection.
http://www.gnu.org/software/gcc/

14. Eastlake, D., Jones, P.: US secure hash algorithm 1 (SHA-1). RFC 3174, Internet
Engineering Task Force (September 2001)

15. Baker, D.: Proteins by design. The Scientist (July 2006) 26–32
16. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-

tering of high dimensional data. Data Min. Knowl. Discov. 11(1) (2005) 5–33

Intel

10000

100000

1000000

10000000

N
o
d
e
s

1 thread

2 threads

4 threads

8 threads

16 threads

(a) Intel icc
Sun

10000

100000

1000000

10000000

N
o
d
e
s

1 thread

2 threads

4 threads

8 threads

16 threads

(b) Sungcc

10000

100000

1000000

10000000

N
o
d
e
s

1 thread

2 threads

4 threads

8 threads

16 threads

(c) gcc 4.4

Fig. 11: UTS on Opteron SMP: Number of nodes explored at each thread.

