
ACHIEVING SCALABLE PARALLEL MOLECULAR DYNAMICS USING
DYNAMIC SPATIAL DOMAIN DECOMPOSITION TECHNIQUES

LARS NYLAND, JAN PRINS, RU HUAI YUN, JAN HERMANS, HYE-CHUNG KUM, AND LEI WANG

ABSTRACT. To achieve scalable parallel performance in Molecular Dynamics Simulations,
we have modeled and implemented several dynamic spatial domain decomposition algo-
rithms. The modeling is based upon the Bulk Synchronous Parallel architecture model (BSP),
which describes supersteps of computation, communication, and synchronization. Using
this model, we have developed prototypes that explore the differing costs of several spatial
decomposition algorithms, and then use this data to drive implementation of our Molecular
Dynamics simulator, Sigma.

The parallel implementation is not bound to the limitations of the BSP model, allow-
ing us to extend the spatial decomposition algorithm. For an initial decomposition, we use
one of the successful decomposition strategies from the BSP study, and then subsequently
use performance data to adjust the decomposition, dynamically improving the load balance.
The motivating reason to use historical performance data is that the computation to predict
a better decomposition increases in cost with the quality of prediction, while the measure-
ment of past work often has hardware support, requiring only a slight amount of work to
modify the decomposition for future simulation steps.

In this paper, we present our adaptive spatial decomposition algorithms, the results of
modeling them with the BSP, the enhanced spatial decomposition algorithm, and its perfor-
mance results on computers available locally and at the national supercomputer centers.

Keywords: Spatial decomposition, Adaptive load balancing, BSP cost modeling, Molec-
ular dynamics, Parallel algorithms

1. INTRODUCTION

A driving goal of our research group is to develop a high performanceMolecular Dynam-
ics simulator to support biochemists in their research. Our goals are to study large timescale
behavior of molecules and to facilitate interactive simulations where the scientist can con-
trol the simulation [9]. Two main characteristics of the problem impede our goal: first is
the large number of interactions in realistic systems (solvated biomolecules), and second is
the extremely small simulated timestep that is required to adequately capture the high fre-
quency motions. Algorithmic improvements and approximation techniques have been used
to successfully improve performance, some of which will be mentioned here. However, the
primary focus of this paper is the parallelization of Molecular Dynamics simulations that
achieves scalable performance. To develop parallelization strategies that meet our goals,
we model the problem at a high-level where compelling results are developed, which are
then used as a basis for an implementation. In the implementation, additional optimiza-
tions have been introduced, requiring further modification of the parallelization strategies,
resulting in a scalable parallel implementation.

1.1. Molecular Dynamics (MD) Simulation. Molecular dynamics simulators use classi-
cal models of motion and interaction, rather than the more modern and complex models of

This work has been supported in part by the National Institutes of Health’s National Center for Research Re-
sources (grant RR08102 to the UNC/Duke/NYU Computational Structural Biology Resource).

1

2 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

quantum mechanics, to compute and apply forces. Problems such as docking a ligand in a
receptor, performing structure refinement or performing sequence analysis are among the
many problems that can be explored with MD simulation.

In the simulation, a continuous process is broken down into discrete timesteps, cho-
sen small enough that the discretization effects are minimized. At each step, the sum of
all forces on each atom is calculated, and then applied with regard to the duration of the
timestep, updating the position and velocity values. The forces originate from bonded and
non-bonded forces between the atoms. The bonded forces seek to maintain bond lengths,
bond angles, and dihedral angles on single bonds, two-bond chains and three-bond chains,
respectively. The non-bonded forces are comprised of the electrostatic forces from electri-
cal charges and the Lennard-Jones forces. The non-bonded forces are symmetric (equal and
opposite), occur between each pair of atoms, and vary as an inverse power of the distance
between the atoms involved.

One other aspect of MD that requires explanation is the handling of boundaries. There
are two choices, open boundary conditions and periodic boundary conditions. The open
boundary condition is a simulation of the molecular systems as if it is in a vacuum. In peri-
odic boundary conditions (PBC), the system of atoms is typically box-shaped, and is con-
ceptually repeated to fill space. Thus any atoms drifting out of the simulation space reenter
the space on the opposite side with the same velocity and direction. Forces are also calcu-
lated using periodic space. In the simulations described here, periodic boundary conditions
are used.

By far, the most time-consuming step of the simulation is the computation of the non-
bonded forces. A single atom has bond-related forces with a limited number of other atoms,
but the non-bonded forces exist between all pairs of atoms, yielding O(n2) interactions. It
is in this part of the MD simulation where approximations are sought and accuracy is given
up, all in an effort to improve performance. One solution to reduce the calculation intro-
duces a cutoff radius, where non-bonded forces are calculated each simulation step only
when the distance between a pair of atoms is less than some preset radius,Rc. The remain-
ing longer-range forces are either calculated by some other method (the O(n) Fast Mul-
tipole Algorithm [2], or the O(n logn) Particle-Mesh Ewald method [5]), calculated less
frequently, or completely ignored.

Of course, the choice of timestep duration is another approximation, where longer timesteps
yield faster calculations with less accurate results. This is an integration process of a non-
linear system, thus the timesteps must be small enough to account for the most rapid changes
that are likely to occur. Some work has been done to find algorithmic solutions that allow
longer timesteps without reducing accuracy. Of primary importance to our group are the
“shake” algorithm [12], and Langevin Dynamics [13].

1.2. Parallel Execution. Parallelization of MD is another method that improves perfor-
mance with the benefit that accuracy is maintained. Good opportunities for parallelization
exist; all of the forces on each of the atoms are independent, so they can be computed in
parallel. Once computed, the non-bonded forces are summed and applied; again, these are
operations where parallelism can benefit the performance.

The work involved in computing the non-bonded forces is perfectly characterized by
the pairlist data structure. Each entry in the pairlist, (i; j), indicates that the non-bonded
force between atoms (or atom groups) numbered i and j needs to be computed, where a pair
(i; j) is added to the list if the distance between the atoms is less than a preset cutoff radius,
Rc. This is just one of many approximations (or optimizations) that must be considered in
parallelizing an MD simulator.

ACHIEVING SCALABLE PARALLEL MD 3

Parallelizing the non-bonded computation by splitting the pairlist into P equal parts di-
vides the computational work perfectly, as every interaction requires the same amount of
work. Accessing the atom data, however, has no particular coherence, so a processor work-
ing on its portion of the pairlist will be accessing data scattered throughout the list of atoms.
Thus, for this decomposition to perform well, each processor must have uniform access to
all memory, a feature that does not exist on most parallel computers. This decomposition
has been used by us, but it scales poorly, since communication increases withP (there tends
to be communication between all pairs of processors).

There is coherence in the pairlist that can be exploited to minimize communication. Two
nearby atoms both interact with all atoms that are withinRc of both. Thus, a parallel decom-
position based on spatial location (usually into box-shaped regions) provides two opportu-
nities for reduced communication improvingparallelization. First, the atoms placed on each
processor are near each other, thus accessing the data for many nearby atoms data will not
require communication. Second, for those interactions that require data from neighboring
regions, atomic data can be fetched once and then reused many times, due to the similarities
of interactions of nearby atoms.

The communication costs of a spatial decomposition tend to decrease with increasing
P , since the surface area of each box decreases as P increases. As long as the dimensions
of the boxes are larger than Rc, only neighboring regions share data. Once the dimensions
become smaller than Rc, the number of regions that communicate increases, however the
total communication volume per processor still decreases as P increases. Thus, latency and
bandwidth costs of accessing remote values both play an important role as P becomes large.

The atom positions change during the simulation (leading to density changes), thus there
is a need to update the pairlist. Since the atoms do not move very far during a single step of
the simulation and the recalculation of the pairlist is not trivial, the same pairlist is used for
10–50 simulation steps. Parallelizing such a dynamic simulation requires that the decom-
position be adjusted periodically to ensure the equitable distribution of work.

The use of a spatial decomposition for MD has become widespread in recent years. It is
used by AMBER [3, 11], Charmm [7], Gromos [4] and NAMD [10], all of which run in a
message-passing paradigm, as opposed to our shared-memory implementation. In general,
each of these implementations found good scaling properties, but it is difficult to compare
overall performance of the parallel MD simulators, as machine speeds have improved sig-
nificantly since publication of the cited reports.

1.3. Modeling MD. To understand and evaluate the complexities of parallelizing MD sim-
ulations, we rely on a high-level model of parallel computing, the Bulk Synchronous Paral-
lel (BSP) architecture, to help us evaluate different decomposition strategies for their par-
allel efficiency. The model not only reveals characteristics of the parallel algorithm, it also
helps in regard to making choices based upon the capabilities of the parallel hardware, for
instance, weighing the cost of recomputation against sending the same result between pro-
cessors. In the next section, we describe an exercise in modeling molecular dynamics com-
putation exploring several decomposition strategies, showing results with regard to parallel
(in)efficiencies, communications costs, and synchronization costs.

1.4. Parallel Implementation. Our work continues with the parallelization of an MD sim-
ulator that was developed and is in use by biochemists in our group. We rely on the results
of the BSP modeling, but must develop the parallelization further, since the model does
not completely describe the computation. In section 4, we describe the complexities and a

4 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

decomposition strategy that adapts over the span of the simulation that efficiently and ef-
fectively rebalances the work while keeping communication costs at an insignificant level.
To show the effectiveness, performance results are shown and discussed.

We conclude with guidelines for building efficient parallel MD simulators and present
our goals for future work.

2. MODELING PARALLEL COMPUTATION WITH THE BSP MODEL

The Bulk Synchronous Parallel (BSP) model has been proposed by Valiant [14] as a
model for general-purpose parallel computation. It was further modified in [1] to provide a
normalized BSP cost of parallel algorithms, providing a more uniform comparison of algo-
rithms. The BSP model is both simple enough to quickly understand and use, but realistic
enough to achieve meaningful results for a variety of parallel hardware systems. It also aids
in the choice of tradeoffs (computation vs. communication) when parameterized by hard-
ware capabilities.

A parallel computer that is consistent with bulk synchronous parallel architecture has a
set of processor-memory pairs, a communication network that delivers messages in a point-
to-point manner, and a mechanism for efficient barrier synchronization of the processors.
There are no broadcast or combining features specified. Parallel hardware can be parame-
terized with 4 values:

1. The number of processors, P .
2. The processor speed, s, measured in floating-point operations per second.
3. The latency,L, which reflects the minimum latency to send a packet through the net-

work, which also defines the minimum time to perform global synchronization.
4. The gap g, reflecting the network communication bandwidth on a per-processor basis,

measured in floating-point operation cycles taken per floating-point value sent.

Thus, the BSP model is adequate for modeling any parallel machine that can be character-
ized by a 2-level memory hierarchy such as message-passing machines and shared-memory
machines (e.g. cache vs. shared-bus memory).

An algorithm for the BSP is written in terms of S supersteps, where a single superstep
consists of some local computation, external communication, and global synchronization.
The values communicated are not available for use until after the global synchronization.
The cost of a single superstep is:

Ci = wi + ghi + L

where wi is the maximum number of local computation steps executed by any processor
during the superstep,hi is the maximum number of values sent or received by any processor
during the superstep, and L is the cost of synchronizing all processors. The total cost of
executing a program of S steps is:

Ctot =

SX
i=1

Ci =W +Hg + SL

where

W =

SX
i=1

wi and H =

SX
i=1

hi

The normalized cost is the ratio between the BSP cost usingP processors and the optimal
work (perfectly) distributed over P processors. The optimal work Wopt is defined by an
optimal (or best known) sequential algorithm. The normalized time is expressed as

ACHIEVING SCALABLE PARALLEL MD 5

C(P) =
Ctot

Wopt=P

The normalized cost can be reformulated as

C(P) = a+ bg + cL

where

a =W=(Wopt=P); b = H=(Wopt=P); and c = S=(Wopt=P)

When the triplet (a; b; c) = (1; 0; 0), the parallelization is optimal. Values where a > 1
indicate extra work is introduced in the parallelization and/or load imbalance among the
processors. Values of b > 1=g or c > 1=L indicate that the algorithm is communication
bound, for the architecture described by particular values of g and L.

Using this model, we can develop parallel algorithms, implement them enough to ac-
quire performance metrics (operation counts, message counts, and step counts) to compute
normalized execution costs. Additionally, we can characterize typical parallel computers by
assigning values for P , g, and L, and compute values for the normalized cost of particular
algorithms (assigning values to s would give timing information as well). We demonstrate
the process in the next section exploring a variety of decompositions for MD.

3. MODELING PARALLEL MD DOMAIN DECOMPOSITIONS USING A BSP MODEL

In this section we describe a modeling procedure that helped us evaluate several domain
decomposition strategies for Molecular Dynamics computations. We describe the simpli-
fied algorithm, the domain decomposition techniques, and show the results of the the model.

3.1. A Simplified MD Algorithm. The most time-consuming step of MD simulations is
the calculation of the non-bonded forces, typically exceeding 90% of the execution time.
Thus we limit our modeling study to this single aspect. Our simplified algorithm for com-
puting the non-bonded forces is shown in figure 1. It consists of an outer loop that updates
the pairlist every k steps, with an inner loop to perform the force computations and applica-
tion. Computing the pairlist is expensive and changes very little between each simulation
step. Thus, the value k ranges from 1 to 50 steps, and is often referred to as the cycle or
pairlist calculation frequency. This is yet another approximation that helps improve MD
performance, and can be used since the atoms do not move too far between pairlist recal-
culations.

In our modeling of MD, we examine the cost of executing a single cycle. This amortizes
the cost of pairlist calculation over the k interaction steps. Computing the cost of one cycle
is adequate as the cost of subsequent cycles is roughly the same, so no new information is
gained by modeling more than one cycle.

The target parallel architectures of our group are primarily shared-memory computers,
such as those currently manufactured by SGI, Convex and Intel, thus the meaning of remote
access to us is a hardware fetch from shared memory into either local memory (if it exists) or
into a processor’s cache. While this represent a bias of our group (and therefore the choices
in machine parameters), using the BSP model applies equally well (some might say better)
to message-passing computers such as the IBM SP-2.

6 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

for t = 1 to T by k {
if Processor == 0 then

distribute atoms to processors // decomposition
calculate local pairlist
for s = t to t+k - 1 {
get remote atom information // communication
synchronize
calculate forces on local atoms // computation
apply forces to update local positions/velocities

}
}

FIGURE 1. A high-level algorithm for performing parallel molecular dy-
namics computations.

3.2. The Outer Loop. The outer loop (re)distributes the atoms to processors for each cy-
cle. We modeled the implementation with three supersteps, in the following sequence:

1. Computation (P0 only): Calculate the decomposition. Communication: Send the
atoms to each assigned processor. Synchronize.

2. Computation: Sort local atoms by position, build communication lists. Communica-
tion: send atomic data of perimeter atoms to adjacent processors. Synchronize.

3. Computation: build local pairlist. Synchronize.

FIGURE 2. This figure shows the perimeter regions for each processor
that pertain to the central region in this spatial decomposition. The atoms
contained in the regions within the cutoff radius, Rc, of the edge must be
sent to the central region, as indicated by the arrows.

Figure 2 shows a spatial decomposition that indicates the perimeter atoms that must be
sent to a single processor.

3.2.1. Decomposition Calculation. The calculation of the decomposition varies substan-
tially depending on the decomposition used. The decompositions generally rely on decom-
posing the space in half along the largest dimension recursively, until the number of sub-
domains equals the number of processors. Each of the decompositions is described in detail
in section 3.4.1.

ACHIEVING SCALABLE PARALLEL MD 7

3.2.2. Building Communications Lists. Positional information for atoms that are withinRc

of any boundary is sent to the processors that share the boundaries. These atoms are referred
to as perimeter atoms and are the sole source of interprocessor communication. During this
step, each processor further subdivides the atoms into bins that are close to the cutoff radius,
Rc, on a side. This placement of atoms in bins makes the calculation of communication
lists relatively simple and dramatically reduces the pairlist calculation. All of the regions
in the spatial decomposition have neighbors on all sides, due to the nature of using periodic
boundary conditions.

3.2.3. Building Local Pairlists. Once all the perimeter data has been accumulated, each
processor can calculate which pairs of atoms interact. One choice made in this study has to
do with the symmetric nature of Newton’s third law, where Fij = �Fji. In the algorithm
described here, a processor can only update its own data, so we reuse the data from the
force calculation where atoms i and j are local, but duplicate the calculation when atom j

is a perimeter atom (atom i is always a local atom). This is not necessarily the way forces
must be calculated, but keeps the BSP MD algorithm simpler by having only one superstep
per inner-loop iteration. It has the negative effect that the amount of total work approaches
twice the sequential version as P increases, since each processor has fewer atoms (given
the same input data) and there is less reuse of an expensive calculation.

3.3. The Inner Loop. There is only one superstep in the inner loop. It consists of distribut-
ing positions of perimeter atoms to nearby processors; a synchronization barrier to ensure
all computation is using data from the same iteration; followed by a force calculation and
application. The computations performed by the inner loop are the same for all decompo-
sitions.

3.4. Modeling Experiment. The goal of the experiment is to model four data decompo-
sition strategies using nine actual molecular data sets with varying numbers of processors
to find values of a; b, and c for each combination. Normalized execution costs can be com-
puted by choosing values of g andL (to represent available parallel computers). The values
of a, b, and c show how work and communication affect parallel performance, and are com-
puted using

a = (wouter + k � winner)=(Wopt=P)

b = (houter + k � hinner)=(Wopt=P)

c = (Souter + k � Sinner)=(Wopt=P)

to compute

C(P) = a+ bg + cL

Total costs show how the different decomposition strategies scale.

3.4.1. Decompositions Explored. The four decomposition strategies in this study are:

� Uniform Geometric Decomposition. This decomposition is the most intuitive and
easiest to compute. The decomposition simply splits the simulation space (or sub-
space) equally in half along each dimension until the number of subspaces equals the
number of processors (implying that P = 2p for some integer p).

� Orthogonal Recursive Bisection Decomposition (ORB). This method is based upon
the orthogonal recursive bisection decompositions used in some N-body simulators
[15], but is extended to partition space in addition to work. ORB is used here to re-
cursively split the longest dimension by placing a planar boundary such that half the

8 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

Decomposition Model Parameters

P the number of processors
N the total number of atoms
k the number of interaction steps per cycle
pni the number of atoms on processor i
Bi the total number of bins on processor i

AtomNeighborBinij
the number of atoms in neighbor bins for bin i on processor j.

PLi the total length of the pairlist for all atoms on processor i
Kcomm = 8 the number of values sent per atom (position, velocity, charge,

type)
Wcomp = 60 the work performed in computing the force between 2 atoms

Rc = 10 Angstroms the cutoff radius that bounds interactions

FIGURE 3. The parameter values used to determine the cost of execution
using a BSP model with various spatial decompositions.

atoms are on one side, and half are on the other. This yields an assignment of atoms
to processors that varies by at most 1.

� Pairlist Decomposition. The non-bonded work in MD simulators is directly propor-
tional to the number of entries in the pairlist. Thus a decomposition that yields perfect
load-balancing evenly decomposes the pairlist among processors, which is how this
decomposition is defined. A potential drawback is that it does not have spatial local-
ity, thus we have included it to better understand this aspect.

� Spatial Pairlist Decomposition. To remedy what might be a locality problem with
the pairlist decomposition, we also consider a spatial decomposition that is based
upon the number of entries in the pairlist assigned to each processor, placing spatial
boundaries (using ORB) based on pairlist length rather than atom count.

3.5. Model Parameters. To evaluate the cost of a decomposition, certain parametric val-
ues must be determined to evaluate a cost equation. The parameters used in the model are
shown in figure 3.

3.6. Optimal Cost. The optimal cost is needed as a basis for comparison. The times for
the outer and inner loops are expressed as:

Wopt = the work to compute the pairlist +
k � (interaction cost over all pairs + integration cost)

This includes the force symmetry optimization that if the pair (i; j) is in the pairlist, the
pair (j; i) is not.

3.7. Inner Loop Cost for All Parallel Decompositions. The cost of the inner loop can be
calculated with the same formula for all decompositions.
The work is expressed as:

winner =
h
max
i=1::P

(PLi) + max
i=1::P

(pni)
i
�Wcomp

The data transmission time is:

hinner = max
j=1::P

0
@

BjX
i=1

AtomNeighborBinij

1
A�Kcomm

ACHIEVING SCALABLE PARALLEL MD 9

And the latency incurred is:

Sinner = 2

3.8. Spatial Decomposition Costs. The cost of executing the outer loop of each decom-
position can be determined in one of two ways. Certainly, it can be determined by cost
equations similar to those above, or the cost can be counted by measuring programs that
perform the decomposition. We follow the latter scenario, counting operations performed
in the decomposition. What follows is a description of how each of the spatial decomposi-
tion strategies works.

3.8.1. Uniform Geometric Decomposition Cost. This decomposition recursively halves space
in the longest dimension in logP steps yielding P subspaces. The cost of the outer loop is
broken down into the following components:

1. Decompose data, using P0 only.
2. Send approximatelyN �N=P atoms to other processors, according to step 1.
3. Build bins and place all atoms in bins.
4. Find the initial communications list. On each processor, all bins near the surface of

the subregion contain atoms that must be sent to other processors.
5. Send the atoms in communication list to the other processors.
6. Calculate the pairlist. Each processor examines all of its local atoms against all local

and perimeter data to compute the local pairlist (using bins).

3.8.2. Orthogonal Recursive Bisection Cost. This decomposition recursively halves each
subspace based on atom-count rather than dimension (still along the longest dimension, to
maintain as cubic a shape as possible). While this appears to require sorting of atoms by
position in the dimension being split, an O(N) algorithm for partitioning the data into two
halves can be employed for higher performance. The partitioning operation is the only dif-
ference from the uniform geometric decomposition.

3.8.3. Non-spatial Pairlist Cost. The goal of the non-spatial pairlist decomposition is to
split the pairlist intoP equal segments, assigning one segment to each processor. The pairlist
is ordered by atom number, therefore nothing is known about the spatial locality of the de-
composition (except that atoms are typically numbered sequentially along the protein back-
bone, so there is some locality between sequentially numbered atoms). Additionally, as
in other decompositions, a single atom’s entire pairlist is assigned to a single processor to
avoid an extra collection step at the end of each inner loop iteration.

To compute the pairlist in parallel, a tentative assignment of atoms to processors is made
using the uniform geometric decomposition, and then a rebalancing step takes place to re-
distribute the pairlist entries for each processor. When calculating the pairlist, we include
both interactions for a single pair ((i; j) and (j; i)), since the locality optimization cannot
be predicted.

The non-spatial pairlist decomposition follows the steps 1–5 outlined in section 3.8.1,
and then executes the following:

6. Calculate the full pairlist (n2 � n entries) using bins as before.
7. Send length of pairlist for each atom i to P0.
8. Decompose based on pairlist, splitting the pairlist intoP nearly-equal segments, keep-

ing each atom’s entire pairlist intact (assigned to a single processor).
9. Assign the atoms to processors according to pairlist decomposition in step 8.

10. Calculate communication list.

10 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

Molecular Input Data

Name Number of atoms
Alanin 66

Dipeptide (wet) 231
SS Corin 439

Water 798
Argon 1728

SS Corin (wet) 3913
Eglin 7065
Water 8640

Polio (segment) 49144

FIGURE 4. The input dataset names and number of atoms used for mea-
suring different decompositions

11. Send the atoms, their pairlists, and communication list to other processors according
to step 9 and 10.

12. Purge the local pairlist to utilize Newton’s 3rd law when both atoms are local.

3.8.4. Spatial Pairlist Decomposition Cost. The spatial pairlist decomposition follows steps
1–7 in section 3.8.3. After those are performed, the following additional steps are per-
formed.

8. Decompose based on ORB and pairlist, by using location to order the atoms and the
pairlist length as the metric for placing boundaries. We still keep each atom’s entire
pairlist intact.

9. Send atoms to other processors, according to step 8.
10. Repeat steps 3–6 in section 3.8.1.

This decomposition is similar to the non-spatial pairlist, except in step 8, the second de-
composition is based the ORB decomposition, using location to order the atoms and the
pairlist length as the metric for placing boundaries. In other words, instead of using the
atom number to decompose the pairlist, we recursively split the longest dimension by plac-
ing an orthogonal planar boundary such that the pairlist is (nearly) evenly divided. We then
eliminate all entries where j > i and atoms i and j are local. For the data sets in our study,
this elimination step produced nearly equal reduction in each processor’s pairlist.

3.9. Experimental Results. Using the estimates of computation, communication and syn-
chronization costs developed in the previous section, along with several prototype programs
that measured the costs of the various decompositions, normalized coefficients were com-
puted for all decompositions with all data sets where the cycle cost (k) was set to 50 (avail-
able in [8]).

3.9.1. The Input Data. Rather than generate atomic position data according to some prob-
ability distribution function, we chose nine input files for MD simulations. Our goal was
to explore the decompositions over a wide range of atom populations, so that we could de-
termine if any of the decomposition strategies were sensitive to data size. From each input
file, we used the positional data only, ignoring all other information. The table in figure 4
summarizes the input data sets.

FIGURE 5. A comparison showing the magnitude of difference between
a and b, and a and c for all (a; b; c) triplets in all decompositions in our ex-
periment. The values of a are plotted along the x-axis and are in the range
of 1–7. The b values are plotted with solid markers against a, where the
normalized b values vary from 10�4 to 0:2. Similarly, the c values are plot-
ted along the y-axis with hollow markers against a, where the c values fall
in the range of 10�8 to 10�3. The difference of several orders of mag-
nitude indicates that load-balancing and parallel overhead have far more
effect on parallel inefficiency than communication bandwidth and latency
and should be the focus of reduction to achieve efficient parallel MD sim-
ulators.

A general conclusion is that the parallel overhead plus load-imbalance (amount that a >
1) far outweighs the cost of communication and synchronization on virtually all of the re-
sults in the study. Any decomposition that seeks a more evenly balanced load (reduction
of a) will improve performance far more than solutions that seek reduced communication
(lower b) or reduced synchronization (lower c). Recall that the normalized cost is C(P) =
a+ bg + cL, where values for g fall in the range of 1 – 100, and L values are typically 25
– 10000 for most parallel machines, so it is clear that communication and synchronization
add to the cost only when g and L are very large. Thus, even parallel computers with the
slowest communications hardware will execute well-balanced, spatially-decomposed MD
simulations with good parallelism.

FIGURE 6. This graph shows the normalized cost for different decompo-
sitions as the number of processors is increased (1 is perfect paralleliza-
tion). The parametric values of (g;L) are (8; 25), representing a typical
NUMA computer.

The data in figure 6 shows the effect of using additional processors on two of the larger
data sets (Eglin and Polio) on a NUMA-class machine ((g; L) = (8; 25)) over all of the de-
fined decomposition strategies. Ideally, the normalized cost would be flat, with a value of 1,
indicating perfect parallelization. But, as can be seen, all decompositions lead to increases
in normalized cost, where it is clear that ORB and spatial pairlist decompositions perform
better than uniform and non-spatial pairlist decompositions. The increase of the normal-
ized cost on the best decompositions is reflected in large part by the diminishing reuse of
Fij = �Fji. Thus with larger and larger values of P , a normalized cost of 2 will be the
minimum that can expected.

The graph in figure 7 shows the effect of communication speed on the overall perfor-
mance of the different decompositions. In this dataset, P is set to 32, and two different ma-
chine classes are examined. The first is a uniform memory access machine (UMA), with
(g; L) = (1; 128), representing machines such as the Cray vector processors that can sup-
ply values to processors at processor speed once an initial latency has been charged. The
second is a non-uniformmemory access machine (NUMA), much like the SGI parallel com-
puters, the Convex SPP, and the now defunct KSR-1. The parameters are (g; L) = (8; 25),
indicating that it takes the same amount of time to perform 8 floating-point operations as it
does to transmit one value.

There are two interesting conclusions to be drawn from figure 7. The first is that execut-
ing MD on a machine with extremely high communication bandwidth (UMA) performs, in
normalized terms, almost identically with machines with moderate communications band-
width. This is seen in the small difference between the same data using the same decom-
position, where the normalized execution cost for both architectures is nearly the same.

The second interesting point in figure 7 is that decomposition matters much more than
communications bandwidth. The decompositions that attempt to balance work and locality
(ORB and spatial pairlist) have a bigger impact on performance than parallel computers

FIGURE 7. This graph shows the normalized execution cost on 32 pro-
cessors, comparing different decomposition strategies on machines with
differing communication performance. For the UMA architecture, (g;L) =
(1; 128); for NUMA, (g;L) = (8; 25). Note that the normalized cost of a
program on a machine with very high performance communication is only
marginally better than machines with substantially lower communication
performance (except for pairlist decomposition).

with extremely high performance communications. This is a good indication that either the
ORB or spatial pairlist decomposition should be used for a parallel implementation on any
parallel computing hardware.

3.11. Conclusions from BSP Study. The most significant conclusion drawn from this study
is that load-balancing is by far the most important aspect of parallelizing non-bonded MD
computations. This can be seen in the significantly larger values of a when compared to
values of b and c, as well as the results in figure 7 that show the improvement gained in
using load-balanced decompositions. The spatial decomposition using pairlist-length as a
measure shows the advantage that is achieved by increasing locality over the non-spatial
pairlist decomposition. Additional conclusions are that the ORB decomposition performs
as well as any in load-balancing, and that adequate performance can be achieved on small
numbers of ethernet connected workstations. These results are important not only in our
work implementing simulators, but to others as well, guiding them in the choices of their
parallel algorithms.

The amount that the values of a exceed 1 indicate parallel overhead and/or load imbal-
ance. Our conclusions about the excess are that it is caused primarily by load imbalance,
except in the non-spatial pairlist case, since it performs twice as much work. The reasons
are that the serial decomposition computation is relatively inexpensive and that the sizes of
the data and parallel computers generate very little redundant work, leaving load-imbalance
as the main reason a exceeds 1.

14 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

4. IMPLEMENTATION OF DYNAMIC LOAD BALANCING IN MOLECULAR DYNAMICS

As stated in the introduction, the overall goal of our work is to provide biochemists with
simulations that run at interactive speeds and produce large timescale results as quickly as
possible. The results of the previous section, while providing interesting modeling results,
are simply a stepping stone in pursuit of our overall goal. In this section, we describe the
parallelization (using spatial decomposition for shared-memory computers) of a long-lived
MD simulator, Sigma (known as Cedar in earlier versions). The performance results in
this section show that the modeling provides a good starting point, but without dynamic
load-balancing, there will be a loss of performance. The parallel implementations were
performed during roughly the same time period as the modeling, thus not all the model-
ing results were available to guide the implementation. Further, there are optimizations in
the MD simulator whose effects are difficult to model, leading to more interesting decom-
position strategies in the actual simulator.

4.1. Parallelization History of Sigma. The Sigma MD simulator has been parallelized
several times to achieve high performance on available hardware. Many of the early efforts
rely on compiler facilities for parallelizing or vectorizing Fortran loops for machines such
as the Cray Vector Processors (X-MP, Y-MP, C-90 and T-90). The Fortran versions of the
non-bonded force calculations are highly optimized to mesh well with particular Fortran
compilers. Fortran and C versions of several key functions are still maintained, to ensure
the use of the best (or only) compiler available. These versions have no concern for locality.

A pairlist domain decomposition was developed for the MasPar MP-1, a SIMD archi-
tecture where we had access to 8192 processors. The decomposition strictly decomposed
the pairlist into P equal parts (�1). Once the forces were calculated for each entry in the
pairlist, a machine-wide segmented summation took place to compute the forces on indi-
vidual atoms. The parallelization of non-bondedforces had very high performance, exceed-
ing that of the Cray Y-MP, but the parallelization of the remaining parts required substan-
tial communication and had reduced parallelism, thus the overall performance was not that
high.

With the availability of the KSR-1 shared-memory computer (where communications
use a ring-of-rings), we quickly ported the pairlist decomposition code, and ran with mod-
erate success as long as only a single ring was used (32 processors or fewer). Any attempts
to use additional processors yielded very little performance improvement, due to the high
communication overhead when multiple rings were used.

It was with the KSR where we first explored spatial domain decompositions, developing
a version that used a uniform geometric decomposition. This decomposition works partic-
ularly well with 8 processors on most molecular systems, since most datasets usually have
a protein molecule centered in a solvent bath, and the decomposition divides space in half
along each dimension (2�2�2). The protein and solvent atoms are evenly divided among
processors, yielding a well balanced simulation. However, any attempt to use additional
processors resulted in surprisingly poor scaling.

It was hypothesized that this was due, in part, to the optimizations that had been devel-
oped for treating water molecules specially, instead of as 3 independent atoms. Water is
a well-understood molecule, and there are several models recognized for modeling water
without modeling each of its atoms individually (e.g. TIP3P). Thus, for any decomposition
with more than 2 partitions in a single dimension, the partitions on the edge had mostly
water, while the center-most partitions were predominantly full of protein atoms. We had
developed an Orthogonal Recursive Bisection decomposition algorithm for Sigma (using
atom count as the partitioning metric), which yielded a moderate improvement, especially

ACHIEVING SCALABLE PARALLEL MD 15

when P > 8. Still lacking what we felt was high performance, we modified this version
to take measurements, and determined that the work associated with one protein atom was
about twice that of each atom in water. We used this metric to define a new ORB spatial
decomposition based on estimated work, and had still more improvement over the previous
decomposition.

The performance was still less than desired, especially when P > 32. It was appar-
ent from timing diagrams that the load balance was far from ideal, as individual processors
were idle as much as 30% of each simulation step. This could be seen by the repetitive idle
gaps in each step of the simulation on a time history of each processor that showed when
they were busy or idle. It was also clear from the same plots that the amount of time spent
in the overhead of computing the decomposition was small, but still noticeable. We sought
a strategy that was quick to compute and more evenly balanced, yielding high parallel effi-
ciency.

4.2. The Effect of Optimizations. Optimizations in sequential programs often hamper
parallelization, as they usually reduce work in a non-uniform manner. If the non-uniformity
is not taken into consideration, the decomposed work will be unbalanced and parallelization
will be less than expected.

There are (at least) two optimizations that hamper the success of an ORB decomposition
in Sigma. The first is the special treatment of water, as mentioned above. Any decomposi-
tion based on atom count will have less work assigned when the percentage of atoms from
water molecules is higher.

The second is the creation of atom groups, where between 1 and 4 related atoms are
treated as a group for certain calculations. An excellent example is in the creation and stor-
age of the pairlist, where atom groups are used (positioned at their center of mass) instead
of individual atoms. This reduces the number of distance comparisons and the number of
entries in the pairlist by a factor of about 9.

These optimizations and others reduce work in a non-uniform manner, which is not ad-
equately modeled in section 3. As with any parallel algorithm, it is desirable to perform
no more total work than an optimized sequential version, so a parallelism strategy must be
implemented that considers the optimizations used in our simulator. We describe such an
effort in the next section.

4.3. A Dynamic Domain Decomposition Strategy. One interesting result from our ex-
perience with the KSR was the consistency of the imbalance in the load over a long pe-
riod. Typically, one processor had a heavier load than the others, and it was this processor’s
arrival at the synchronization point that determined the overall parallel performance. The
state-vs.-time charts of execution on the KSR-1 convinced us that an adaptive decomposi-
tion was necessary, and that performance improvements could be made if the computational
loads among the processors were more balanced.

Fortunately, high-performance computers often have built-in support to give detailed
performance quantities about a program. For instance, the Cray Vector Processors yield
an exact count of how many instructions (floating-point, integer, and misc) were executed
on behalf of a program. The KSR-1 had a set of built-in registers that indicated not only
clock cycle counts, but memory operations as well (cache hits, local memory hits, and cy-
cle stalls waiting for remote shared-memory access). The data in these registers provide a
cost-free measure of the work performed by a program on a processor-by-processor basis,
and as such, are useful in determining an equitable load balance.

To obtain an evenly balanced decomposition in our MD simulations, we use past per-
formance as a prediction of future work requirements. One reason this is viable is that the

16 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

system of molecules, while undergoingsome motion, is not moving all that much. The com-
bination of this aspect of MD with the accurate performance information available leads to
dynamic spatial decompositions that provide improved performance and are quick to com-
pute.

The following definitions are needed to describe our work-based decomposition strategy.

� The dynamics work, wi, performed by each processor since the last load-balancing
operation (does not include instructions used for communication and synchroniza-
tion)

� The total work, W =
P

P

i=1
wi, performed by all processors since the last load-

balancing operation
� The ideal (average) work, w = W=P , to be performed by each processor for future

steps
� The average amount of work, ai = wi=ni, performed on behalf of each atom group

on processor i (with ni atom groups on processor i)
� The number of decompositions, dx; dy; dz, in the x; y and z dimensions

4.4. Spatial Adaptation. The initial intuition for adjusting the spatial decomposition is to
somehow change the shape of each processor’s sub-domain to achieve w work on every
processor. This is a difficult problem to solve considering the three-dimensional nature of
the simulation space.

average
work
per
atom

Atom boundaries

Previous

Future

 bo

 bo

 b1

 b1

 b2

 b2

 b3

 b3

 b4

 b4

FIGURE 8. Unbalanced work loads on a set of processors. If the bound-
aries are moved as shown, then the work will be more in balance.

Instead, if we change the focus to the boundaries instead of the volumes, and place the
boundaries one dimension at a time (as is done in the ORB decomposition), then a straight-
forward O(P) implementation can be developed. Figure 8 shows a single dimension split
into n subdivisions, with n+1 boundaries, of which only n�1 are movable (b0 and bn are
naturally at the beginning and end of the space being divided). In Sigma, we first divide the
space along the x-dimension into dx balanced parts, then each of those into dy parts, and
finally, each of the “shafts” into dz parts, using the following description.

Consider the repartitioning in a single dimension as shown in figure 8. Along the x-
axis, the region boundaries separate atoms based on their position (atoms are sorted by x-
position). The height of a partition represents the average work per atom in a partition,
which as stated earlier, is not constant due to density changes in the data and optimizations

FIGURE 9. This graph shows two views of the adaptive decomposition
working over time using 8 processors. The upper traces show the num-
ber of T4-Lysozyme atom groups assigned to each processor. The lower
traces show the percentage of time spent waiting in barriers by each pro-
cess since the previous rebalancing step. At step 0, an equal number of
atom groups is assigned to each processor, since nothing is known about
the computational costs. Subsequently, the decomposition is adjusted
based on the work performed (alternatively, the percent of time spent wait-
ing). If a processor has a high waiting time at step k, then it should receive
a larger number of atom groups than it had at step k � 1. The graph also
shows the performance of our adaptive method over an ORB method us-
ing atom count as a weight (the decomposition used for the first step). Our
adaptive decomposition reduces the waiting time of all processors to less
than 5%, vs. the 20% waiting time of the ORB decomposition.

that have been introduced. Thus, the area of the box for each partition is w i, and the sum of
the areas isW . The goal is to place bi far enough from bi�1 such that the work (represented
by area) is as close to w as possible. This placement of the boundaries can be computed in
O(n) time for n boundaries. While this does not lead to an exact solution, a few iterations
of work followed by balancing yield very good solutions where the boundaries settle down.

Figure 9 shows how the boundary motion in Sigma settles down as the simulation pro-
gresses. Initially, space is decomposed as if each atom group causes the same amount of
work. This decomposes space using ORB such that all processors have the same number
of atom groups. As the simulation progresses, boundaries are moved to equalize the load
based on historical work information. This makes the more heavily loaded spaces smaller,
adding more volume (and therefore atoms) to the lightly loaded spaces. As the simula-
tion progresses, the number of atom groups shifted to/from a processor is reduced, but still
changing due to the dynamic nature of the simulation and inexact balance.

FIGURE 10. Parallel Performance of Sigma. This graph shows the
number of simulations steps per second achieved with several molecu-
lar systems, T4-Lysozyme (13642 atoms), SS-Corin (3948 atoms), and
brH (3964 atoms). The data plotted represent the performance of the last
200fs of a 600fs simulation, which allowed the dynamic decomposition to
stabilize prior to measurement. A typical simulation would carry on from
this point, running for a total of 106fs (500,000 simulation steps) in simu-
lated time, at roughly these performance levels.

Figure 10 shows the performance of several different molecular systems being simu-
lated on varying numbers of processors on both the Power Challenge and the Origin2000
(at NCSA). The y-axis shows the number of simulation steps executed per second, which
is indeed the metric of most concern to the scientists using the simulator. We ran tests using
decompositions where we set P = (dx �dy �dz) to 1 = (1 �1 �1), 2 = (2 �1 �1), 4 = (2 �2 �1),
6 = (3 � 2 � 1), 8 = (2 � 2 � 2), 9 = (3 � 3 � 1), 12 = (3 � 2 � 2) and 16 = (4 � 2 � 2).

There are several conclusions to be drawn from the performance graph, the most impor-
tant of which is the steady linear improvement in performance with increasing processors.
The similar slopes of the performance trajectories for the different datasets shows that the
performance scales similarly for each dataset. The average speedup on 8 processors for the
data shown is 7.59.

ACHIEVING SCALABLE PARALLEL MD 19

The second point is the “hiccup” on the Origin2000 when we increased the number of
processors from 8 to 9. Our conjecture is that it is not change in the balance of decomposi-
tion by dimension, but the inability to measure performance adequately to include remote
memory reference costs on the Origin 2000, since the slowdown occurs in all molecular
systems only when run on the Origin 2000. The memory system of the Power Challenge is
a shared-bus, thus in going from 8 to 9 processors, the only impact on performance is that
9 processors are sharing the same bus instead of 8. On the Origin 2000, memory is tree-
based, so an additional ninth processor’s remote-memory accesses will all be much further
than the initial 8 processor’s (assuming they are on a local tree). While this conjecture has
not been proved, it is our best guess at this time.

The third point is that the performance difference between the two architectures is gener-
ally very small, despite the improved memory bandwidth of the Origin 2000 over the Power
Challenge. Our conjecture to explain this, based on this experiment and the BSP modeling
in the previous section, is that the calculation of non-bonded interactions involves a small
enough dataset such that most, if not all, atom data can remain in cache once it has been
fetched.

5. CONCLUSIONS

We are excited to achieve performance that enables interactive molecular dynamics on
systems of molecules relevant to biochemists. Our performance results also enable rapid
execution of large timescale simulations, allowing many experiments to be run in a timely
manner. The methodology described shows the use of high-level modeling to understand
what the critical impediments to high-performance are, followed by detailed implementa-
tions where optimizations (including model violations) can take place to achieve even better
performance.

Prior to our BSP modeling study, we could only conjecture that load-balancing was the
most important aspect of parallelism to explore for high performance parallel MD using
a spatial decomposition. The BSP model developed supports this claim, and also leads
us to the conclusion that the use of 2 or 4 workstations using Ethernet communications
should provide good performance improvements, despite the relatively slow communica-
tions medium. Unfortunately, we have not yet demonstrated this, as our implementation
is based upon a shared-memory model, and will require further effort to accommodate this
model. From the BSP study, we are considering using the BSP library from BSP-Worldwide
[6], as a basis for a distributed memory implementation, due to its simplicity, portability,
predictability, and our familiarity with the model. Of course, with the growing market of
multiprocessor desktop workstations, the need for a message-passing implementation is di-
minishing.

Our BSP study of MD also shows that processor speed is far more important than com-
munication speed, so that paying for a high-speed communications system is not necessary
for high performance MD simulations. This provides economic information for the acqui-
sition of parallel hardware, since systems with faster communication usually cost substan-
tially more.

And finally, we’ve shown that good parallelization strategies that rely on information
from the underlying hardware or operating system can be economically obtained and effec-
tively used to create scalable parallel performance. Much to our disappointment, we have
not been able to test our method on machines with large numbers of processors, as the trend
with shared-memory parallel computers is to use small numbers of very fast processors.

20 NYLAND, PRINS, YUN, HERMANS, KUM, AND WANG

The results presented here represent a circular feedback mechanism, where the difficul-
ties parallelizing an existing MD simulator laid the foundation for a useful modeling study.
The model eliminates details and helps expose impediments, allowing solutions to be de-
veloped and studied. But the model could not have been successfully developed without
the earlier implementation experiences. The demand for even higher performance (which
cannot be met with hardware) will again force us to explore models, where we can quantify
the benefits of algorithmic modifications such as multi-frequency recalculation of forces, a
problem that would be too difficult to explore in a detailed implementation model.

We gratefully acknowledge the support of NCSA and their “friendly user account” pro-
gram in support of this work.

REFERENCES

[1] R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchronous parallel architectures. Technical
report, Department of Mathematics, Utrecht University, April 27 1994.

[2] John A. Board, Jr., Ziyad S. Hakura, William D. Elliott, and William T. Rankin. Scalable variants of
multipole-accelerated algorithms for molecular dynamics applications. Technical Report TR94-006, Elec-
trical Engineering, Duke University, 1994.

[3] David A. Case, Jerry P. Greenberg, Wayne Pfeiffer, and Jack Rogers. AMBER – molecular dynamics. Tech-
nical report, Scripps Research Institute, see [11] for additional information, 1995.

[4] Terry W. Clark, Reinhard v. Hanxleden, J. Andrew McCammon, and L. Ridgway Scott. Parallelizing molec-
ular dynamics using spatial decomposition. In Proceedings of the Scalable High Performance Computing
Conference, Knoxville, TN, May 1994. ftp://softlib.rice.edu/pub/CRPC-TRs/reports/CRPC-TR93356-S.

[5] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An n log(n) method for ewald sums in
large systems. J. Chem. Phys., 98(12):10089–10092, June 1993.

[6] Jonathan Hill and Bill McColl. An Initial Proposal for the BSP Worldwide Standard Library. Oxford Uni-
versity. http://www.bsp-worldwide.org/standard/stand1.htm.

[7] Yuan-Shin Hwang, Raja Das, Joel H. Saltz, Milan Hodošček, and Bernard Brooks. Parallelizing molecular
dynamics programs for distributed memory machines: An application of the chaos runtime support library.
In Proceedings of the Meeting of the American Chemical Society, August 21–22 1994.

[8] Monica Kum and Lei Wang. Analysis of MD simulations using bulk synchronous parallel architectures. In-
dependent study report, UNC Computer Science, 1996.

[9] Jonathan Leech, Jan F. Prins, and Jan Hermans. SMD: Visual steering of molecular dynamics for protein
design. IEEE Compuational Science & Engineering, 3(4):38–45, Winter 1996.

[10] Mark Nelson, William Humphrey, Attila Gursoy, Andrew Dalke, Laxmikant Kale, Robert D. Skeel, and
Klaus Schulten. NAMD - a parallel, object-oriented molecular dynamics program. Journal of Supercom-
puting Applications and High Performance Computing, In press.

[11] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel,
and P. Kollman. AMBER, a computer program for applying molecular mechanics, normal mode analysis,
molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Com-
puter Physics Communications, 91:1–41, 1995.

[12] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the cartesian equations of motion
of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys., 23:327–341, 1977.

[13] T. Schlick, E. Barth, and M. Mandziuk. Biomolecular dynamics at long timesteps: Bridging the time scale
gap between simulation and experimentation. Annu. Rev. Biophys. Biomol. Struct., 26:179–220, 1997.

[14] L. F. Valiant. A bridging model for parallel computation. CACM, 33:103–111, 1990.
[15] Michael S. Warren and John K. Salmon. A parallel hashed oct-tree N-body algorithm. In Supercomputing

’93, pages 12–21, Los Alamitos, 1993. IEEE Comp. Soc.

LARS S. NYLAND (NYLAND@CS.UNC.EDU), JAN F. PRINS (PRINS@CS.UNC.EDU), HYE-CHUNG “MON-
ICA” KUM (KUM@CS.UNC.EDU), LEI WANG (WANGLE@CS.UNC.EDU): DEPARTMENT OF COMPUTER SCI-
ENCE, CB #3175, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NC 27599-3175

ACHIEVING SCALABLE PARALLEL MD 21

JAN HERMANS (HERMANS@MED.UNC.EDU), RU HUAI YUN (HUAI@FEMTO.MED.UNC.EDU), DEPART-
MENT OF BIOCHEMISTRY AND BIOPHYSICS, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NC 27599

