
Piecewise Execution of
Nested Data-Parallel Programs

Daniel W. Palmer, Jan F. Prins, Siddhartha Chatterjee, and Rickard E. Faith

Department of Computer Science
The University of North Carolina

Chapel Hill, NC 27599-3175
fpalmerd,prins,sc,faithg@cs.unc.edu

Abstract. The technique of flattening nested data parallelism combines all the in-
dependent operations in nested apply-to-all constructs and generates large amounts
of potential parallelism for both regular and irregular expressions. However, the
resulting data-parallel programs can have enormous memory requirements, limit-
ing their utility. In this paper, we present piecewise execution, an automatic method
of partially serializing data-parallel programs so that they achieve maximum par-
allelism within storage limitations. By computing large intermediate sequences
in pieces, our approach requires asymptotically less memory to perform the same
amount of work. By using characteristics of the underlying parallel architecture to
drive the computation size, we retain effective use of a parallel machine at each
step. This dramatically expands the class of nested data-parallel programs that
can be executed using the flattening technique. With the addition of piecewise I/O
operations, these techniques can be applied to generate out-of-core execution on
large datasets.

1 Introduction

1.1 Flattening nested data parallelism

Nested data parallelism is a powerful paradigm for expressing concurrent execution, es-
pecially irregular and dynamic computations. Unlike flat data-parallel languages such as
C� [11], High Performance Fortran [9], and APL [12], nested data-parallel languages
allow arbitrary functions to appear in apply-to-all constructs and provide nestable, non-
rectangular aggregates. The expressive benefits of nested data parallelism were long ago
recognized by high-level languages such as SETL [19], FP [2], and APL2, but prac-
tical parallel execution of such expressions was not achieved until Blelloch and Sabot
introduced the flattening technique [4]. Flattening combines all the independent opera-
tions in nested apply-to-all constructs into large data-parallel operations. Both NESL [5]
and Proteus [13] are high-level, nested data-parallel languages that use this technique
to provide architecture-independence by implementing the data-parallel operations with
portable vector operations [6].

1.2 Excessive memory requirements of flattened programs

The flattening technique fully parallelizes every apply-to-all construct, providing large
amounts of fine-grained potential parallelism, but introduces temporaries whose sizes

are proportional to the potential parallelism. The generality of the apply-to-all construct
can easily lead to programs that have enormous potential parallelism, and hence, exces-
sive memory requirements. Blelloch and Narlikar [3] encountered these large tempo-
raries while comparing two algorithms for n-body simulations. They resolved the prob-
lem by manually serializing portions of their NESL code reducing the program’s memory
requirements so it could execute.

The following example illustrates that flattening a nested data-parallel expression
can generate code with large temporary values. Consider a problem related to the n-
body computation: finding the largest force between any two particles in a sequence of
n particles. We express this computation in Proteus using a nesting of two data-parallel
iterators.

max./[i in [1..n]:

max./[j in [1..i-1]: force(S[i],S[j])]] (1)

Here force(p,q) yields the magnitude of the force between particles p and q. The
inner iterator specifies a sequence of independent applications of force and the outer
iterator specifies a sequence of independent reductions. The dependence of the inner iter-
ator variable,j, on the outer iterator variable, i, ensures that we only compute the force
between any two particles once. The dependency also generates an irregular collection
of arguments to force. Consequently, the computation requires an irregular data ag-
gregate which flat data-parallel languages do not linguistically support. Flattening (1)
combines the n separate inner invocations of max./ into a single, larger data-parallel
maximum reduction and also combines the n(n+1)

2 nested invocations of force into a
single invocation of the data-parallel version of the function. As a consequence, O(n2)
applications of force are evaluated simultaneously, requiring O(n2) storage. Clearly,
we could sequentially evaluate the expression using only O(n) space. Note that flatten-
ing can handle arbitrary, user-defined functions in place of force and max./. In this
paper, we show how to partially serialize flattened programs to reduce their memory re-
quirements while still retaining sufficient parallelism to fully utilize the resources of a
targeted architecture.

1.3 Organization of paper

The remainder of this paper is organized as follows. In Section 2, we examine two ap-
proaches to partially serializing data-parallel operations: outer iterator serialization and
piecewise execution. We further explore piecewise execution in Section 3 and present
an implementation of interpreted piecewise execution. In Section 4, we identify some
key issues in compiling piecewise execution programs. We present some preliminary
performance results of piecewise execution in Section 5. Then, in Section 6, we iden-
tify some limitations of piecewise execution and finally, in Section 7, we discuss related
work, report the status of our current system, an present our conclusions.

2 Fixed Memory Execution of Flattened Programs

2.1 Partially serialized parallelism

By combining all the operations in nested iterators, flattening exposes all the available
parallelism and generates a data-parallel program that operates on sequences, potentially
very large ones. A hypothetical parallel machine with an arbitrary number of processors
could take advantage of all this parallelism by executing data-parallel operations in a
single step (see Fig. 1a). Existing, fixed-processor parallel machines could attempt to
execute the data-parallel operations with virtual processors. This approach works well
for the large class of flattened programs whose memory requirements do not exceed the
resources of a targeted machine. However, in general, simulating n virtual processors
requires O(n) memory. To realistically execute a flattened program on existing parallel
machines, we must partially serialize the program to reduce its memory requirements.

b.) Serialize outer iterator c.) Piecewise execution

a.) "Ideal" Execution on an Unlimited Processor Parallel Machine
d1 d2 d3 d4 d5

d1 d1
d2

d2
d2 d3

d3 d4
d4

d4
d5

d5

d3
d3

A
A
A
AA AA

AA
A
A
AA

A
AAAAAA

Fig. 1. Approaches to Executing Potential Parallelism

Instead of generating monolithic data-parallel operations from nested iterator ex-
pressions, we could transform outer iterators into loop structures and inner iterators into
smaller data-parallel operations. This approach serializes regular parallelism well, be-
cause each loop iteration will execute the same amount of work, yielding good load bal-
ancing. However, for irregular parallel expressions, like the n-body force computation,
serializing the outer iterations yields large variations in work and wastes computational
resources on undersized sequences (see Fig. 1b).

pa
ra

lle
lis

m

execution time

flattened nested
data parallelism

piecewise execution

serialized outer loop

sequential

exceeds
memory

Fig. 2. Comparison of Execution Methods

To achieve load-balanced execution, we must always serialize a computation into
equal sized pieces. To execute on many different platforms, we must select the size of
these pieces based on the characteristics of the target architecture, not simply on the char-
acteristics of the computation. Since it is much easier to serialize portions of exposed
parallelism than it is to extract a specified amount of parallelism from nested iterators,
we will not alter the the flattening technique. Instead, we introduce a new technique that
partitions large data-parallel operations into uniformly-sized pieces (see Fig. 1c). This
piecewise execution allows a program to retain sufficient parallelism for good perfor-
mance and satisfies the memory resource restrictions shown in Fig. 2.

2.2 Piecewise execution of flattened data-parallel programs

Fig. 3 illustrates an overview of our implementation of flattening and transformation of
high-level nested data-parallel programs into executable vector operations.

Proteus Program
w/ nested iterators

Data-Parallel AST
w/ data-parallel ops

iterator removal
and flattening

Executable Vector Code

Piecewise Execution

compilation and library
implementation

partial serialization

Fig. 3. Generating Executable Code from Nested Data-Parallel Programs

To present a concrete example of this process and to illustrate piecewise execution,
we consider computing n! using multiplication reduction on the sequence [1,: : :,n]. We
can write this in Proteus as*./[i in [1..n]:i]. We then successively apply iterator-
removing transformation rules [18] [15], yielding equivalent data-parallel operations.

*./[i in [1..n]:i]
= mult_reduce([i in [1..n]:i])
= mult_reduce([1..n])
= mult_reduce(range1(n))

These operations are part of the Data-Parallel Library (DPL) [14], a collection of rou-
tines that supports nested sequences as primitive objects and provides data-parallel ex-
ecution of nested sequence operations. We then compile the functional expression into
an imperative, single-assignment form with explicit temporary variables.

T = range1(n);
r = mult_reduce(T);

The function range1(n) generates an enumerated sequence of integers from 1 to
n and mult reduce(T) computes the product of the values in T . To compute sev-
eral factorials simultaneously, we put the values in a sequence D = [d1,: : :,dn], and use

[i in D: */.[j in [1..i]:j]] to yield [d1!,: : :,dn!]. Although this algorithm is
not work efficient, it provides a useful example for illustrating piecewise execution. Eval-
uated in this manner the Proteus code specifies a data-dependent, irregular parallel op-
eration. Flattening yields the following data-parallel operations.

[i in D: mult reduce([j in [1..i]:j])]
= mult reduce1([i in D:[j in [1..i]:j]])
= mult reduce1([i in D:[1..i]])
= mult reduce1([i in D:range1(i)])
= mult reduce1(range11(D))

For any function f , we use f 1 to designate a data-parallel function that applies f to
all elements of a sequence in parallel. In this example, range1 computes multiple enu-
merations in parallel and mult reduce1 computes many sequence products simulta-
neously. As before, we rewrite the functional expression in a single-assignment form
with explicit temporary values.

T = range11(D);
R = mult reduce1(T);

The data-parallel version of range1 generates results whose storage can greatly
exceed that of the inputs. Conversely, mult reduce1 produces results whose storage
requirements can be far less than that of its inputs. Fig. 4 shows the data-flow graph for
the data-parallel factorial program using these operations. The trapezoid-shaped nodes
indicate the relative size relation between the inputs and outputs of an operation.

mult_reduce1

range11

D

T

R

Fig. 4. Simple Data-Flow Graph

As illustrated in the maximum force example, the large temporary, T , can exhaust
memory. This is of particular concern for two reasons. First, the large memory require-
ments are not inherent in the original program, but are introduced by the flattening pro-
cess. Second, whether a program will exceed memory or not depends on the particular
target architecture and on the particular problem size, both of which are determined at
runtime. To resolve these problems, we must generate partially serialized code from the
data-parallel abstract syntax tree. We can express the functionality of a piecewise exe-
cution program as a loop.

range11 consumes D
repeat

range11 generates a piece of T
mult reduce1 consumes the piece of T producing some of R

untilD is finished

This approach avoids excessive memory use by never generating T in its entirety.
For comparison, we also express this computation with a serialized outer iterator.

for (i=1;i<=#D;i++){
T = range1(D[i]);
R[i] = mult_reduce(T); }

In Table 1, we compare the execution of these two versions. In this example we have
four processors and have set D = [5; 2; 7; 3]. For the serialized outer iterator code, if
the size of T exceeds the number of processors, we must use multiple steps to complete
the computation using virtual processors (see Fig. 1b).

Serialized Outer Iterator
Step Space T R

2 5 [1,2,3,4,5] [120,]
1 2 [1,2] [120,2,]
2 7 [1,2,3,4,5,6,7] [120,2,5040,]
1 3 [1,2,3] [120,2,5040,6]

Sum:6 Max:7

Piecewise Execution
Step Space T R

1 4 [1,2,3,4 []
1 4 5],[1,2],[1 [120,2,]
1 4 2,3,4,5 [120,2,]
1 4 6,7],[1,2 [120,2,5040,]
1 4 3] [120,2,5040,6]

Sum:5 Max:4

Table 1. Comparison of Approaches to Partial Serialization of Factorial Program

For comparison, executing the flattened program without any serialization on the
four processor machine takes five steps (using virtual processors) and requires 17 mem-
ory locations. The serialized outer iterator approach does reduce the memory usage, but
actually increases the number of steps due to undersized vectors. The piecewise execu-
tion maintains the minimal number of steps, and also significantly reduces the required

memory. As the number of processors and the problem size increase, the cost of the un-
dersized vectors increases and negates any gains made by serializing the outer iterators,
while piecewise execution maintains effective memory use.

2.3 Requirements of piecewise execution

One of the key characteristics of the flattening technique is that it preserves the asymp-
totic work complexity of a computation, even for irregular, nested iterators. Therefore
we require that piecewise execution also be work-efficient. We attempt to select a size
for pieces that will keep the underlying parallel machine fully utilized. Oversized pieces
exhaust memory resources, and undersized pieces fail to amortize the overhead of par-
allel execution or achieve a significant percentage of a parallel machine’s peak perfor-
mance. The proper piece size lies somewhere between n1=2, which provides half the
performance of the machine and nexceeds memory which cannot execute because of in-
sufficient storage (See Fig. 5). Sethi [20] showed that determining whether a program
can successfully execute without external memory using only k registers requires ex-
ponential time. Selecting an acceptable piece size is equivalently complex. The number
of pieces, n and the piece size, p are inversely related by n � p = M . Since M , the
total available memory for a parallel machine is fixed, selecting p determines n. Since
we must select piece sizes with incomplete information, we require that the amount of
serialization of piecewise execution be adjustable at runtime to support experimentation.

pe
rf

or
m

an
ce

0

1/2

1

piece size
n1/2 nexceeds memoryAAA

AAA
AAA

npiece size

Fig. 5. Acceptable Values for the Size of Pieces

Also to maintain work efficiency, we avoid recomputing sequence values to facili-
tate piecewise execution. We do not require, but strive for efficient execution and mini-
mal buffering of piecewise execution programs. In practice, there are several instances
in which we cannot reach these goals. In Section 6, we examine two program config-
urations that may cause piecewise execution to fail. We also strive for an approach to
piecewise execution that fosters chaining on a vector machine.

3 Interpreted piecewise execution

3.1 Piecewise primitive operations

Piecewise versions of the data-parallel primitive operations consume sequence inputs
and generate sequence outputs in a succession of equal-sized pieces. To support fixed-
memory execution of flattened programs, we must provide a piecewise version of ev-
ery DPL operation. DPL consists of two types of operations: basic operations, includ-
ing range1 and mult reduce, and data-parallel extensions of the basic operations,
including range11 and mult reduce1.

To implement piecewise versions of the basic operations, we straightforwardly con-
sume pieces of input or generate pieces of output by initiating a series of calls to non-
piecewise functions. For example, piecewise range(n,m,p) enumerates of inte-
gers betweenn andm in pieces of size p by callingrange, with the succession of values
(n; n+ p� 1); (n+ p; n+ 2p� 1); : : : ; (n+ kp;m). Each consecutive invocation of
piecewise range generates the next consecutive piece of the overall sequence re-
sult.

[[a1, a2, a3, a4, a5], [b1, b2], [c1, c2, c3, c4, c5, c6, c7]]

Grouping with piece size of 3

Grouping with piece size of 4

Fig. 6. Representative Groupings of Subsequences Across Pieces

Generating the piecewise versions of data-parallel operations requires a more so-
phisticated approach. There is, in general, no relationship between the piece size and
the hierarchical boundaries of nested sequences (see Fig. 6). Piecewise versions of the
data-parallel primitives must therefore maintain subsequence integrity across an arbi-
trary number of pieces. Consider the piecewise version of range1(U,V) which gen-
erates, in pieces, the depth two sequence [[U1; : : : ; V1]; : : : ; [Un; : : : ; Vn]]. We imple-
ment the function piecewise range1(U, V , p) by making a series of calls to
range1, but we must carefully supply the proper input sequences.

We define rk as the amount of space remaining within a piece after k subsequences
have been generated. Whenever Vk � Uk + 1 > rk�1, generating the kth subsequence
will require multiple iterations and computation of multiple starting and ending values
of pieces within the subsequence. Conversely, whenever Vk �Uk +1 < rk�1 multiple
subsequences will fit into a single piece, requiring a sequence of starting and ending val-
ues to generate enough of the result to fill that piece. Table 1 illustrates these conditions.

Bothrange andrange1 are generators because they can produce multiple output
pieces from a single set of inputs. Additionally, their results are nested one level deeper
than their inputs. Other operations, such as mult reduce are accumulators because
they may consume multiple input pieces before producing an output. Results of accu-
mulators are one level shallower than their inputs. Because of this structural correlation,

generators that produce pieces for accumulators operate in step with each other. A third
class of operations which have a one-to-one correspondence between consumption of
input pieces and generation of output pieces, such as elementwise operations, are called
participants. Table 2 provides a list and categorization of several representative data-
parallel primitive operations.

Name Action Piecewise Behavior

arith-ops basic arithmetic and logical operations participant
substitute replaces every sequence element with a supplied value participant
distribute replicate values to form a sequence generator
range1 enumerate integers between 1 and a supplied value generator
length the number of elements in a sequence accumulator
x reduce family of reduction operations (+, �, and, or, max, min) accumulator
index extract an element from a sequence other
restrict pack a sequence according to a mask other

Table 2. Selected Nested Sequence Operations in Data Parallel Library

The operations restrict and index do not conform to any of the defined cate-
gories, so we describe their distinctive piecewise behavior individually. Therestrict
operation returns elements of an input sequence packed according to a boolean mask:

restrict([T,T,F,T,F],[1,2,3,4,5]) = [1,2,4]

Because the size of the result is determined by the value, and not the structure of the
input (as with reduction),restrictmay consume an arbitrary number of input pieces
before generating a piece of result. This requires runtime size tests and eliminates the
structure-based, lock-step execution of the factorial example.

Indexing operations also require special handling, because, unlike all other DPL op-
erations,index consumes its input in a data-dependent order. Piecewise execution only
works for operations that expect their inputs and generate their outputs in linear order.
To satisfy arbitrary accesses, the entire source sequence must be available before index-
ing begins. As a result, index operations with piecewise-generated source sequences
become synchronization points. All piecewise execution initiated prior to a synchroniza-
tion point must complete before the index operation can begin. When its source se-
quence does not exceed the piece size, index does not require synchronization and can
itself operate in a piecewise manner with respect to its indices.

Although this approach counteracts the effects of piecewise execution, Palmer, Prins
and Westfold have developed another technique, work-efficient indexing [15], that pre-
vents increasing the size of many source sequences during the flattening process. We
expect that this will reduce the impact of index as a synchronization point on piecewise
execution.

We implement piecewise versions of all primitive operations in C with explicit calls
to DPL operations. These piecewise primitives comprise the Piecewise Data-Parallel Li-
brary (PDPL) which directly supports fixed-memory execution of flattened Proteus pro-
grams.

3.2 Retaining state between invocations of piecewise operations

Piecewise primitive operations behave like co-routines: many can be invoked simulta-
neously; only one executes at a time; they can suspend and resume execution; and they
relinquish control to others after making some computational progress. To support this
behavior, we introduce a new type to the Piecewise Data Parallel Library called an en-
gine. Engines retain pertinent state information for piecewise operations so the opera-
tions can restart at the exact point where they previously suspended. Once restarted, the
operation generates or consumes the next piece, updates the engine’s state information
to reflect the latest progress, and suspends (see Fig. 7).

Piecewise
Execution
Operation

Inputs Outputs

Updated
Engine

Previous
State
Engine

Fig. 7. Conceptual Model of an Engine

Each engine is associated with a single piecewise operation, and stores information
specific to restarting that operation. Engines for generators retain the remaining portion
of the operation’s current piece of input which implicitly specifies the next output piece.
Engines for accumulators retain the partially generated output piece and information on
how to integrate the next input into the growing result. Participants directly produce an
output piece from an input piece requiring no information from previous invocations and
thus do not require engines.

Since engines contain all the inter-invocation information for piecewise operations,
we allocate them in the heap. This allows us to achieve co-routine behavior without per-
sistent activation records or altering the management of the stack.

3.3 Demand-driven piecewise interpretation

Pingali and Arvind [16, 17] use demand-driven interpretation to evaluate their stream-
based language with infinite data structures. Unlike data-driven interpretation, this ap-
proach prevents non-termination and unbounded amounts of useless work. Although
these issues do not impact Proteus, we use a modified form of demand-driven interpre-
tation to support piecewise execution.

Ordinary demand-driven evaluation operates by demanding the output of the final
node in the data-flow graph. Unable to comply without input, the final node propagates

the demand to its parent nodes. Propagation continues in this manner until the demands
reach to the top of the graph and can be satisfied by the inputs to the program, thus start-
ing a cascade of node execution and generated data propagation.

Our approach differs from theirs in three significant ways. First, our data-flow graphs
represent data-parallel programs, so aggregate values flow along the edges, not streams
of scalar values. For efficient execution, our edges must always propagate piece-sized
sequences so they can achieve a significant portion of a parallel machine’s peak perfor-
mance. Second, our data-flow graph contains generator nodes that can produce results
without consuming any input, and it also contains accumulator nodes that can consume
inputs without generating any output. To support this unusual behavior, we must handle
demand propagation differently. Third, we localize the buffering of pending values to
eliminate the need for unbounded storage along every edge.

The requirement to reduce memory usage of flattened nested data-parallel programs
makes demand-driveninterpretation attractive for piecewise execution. A generator can-
not execute effectively in a data-driven style. An attempt to do so will either produce
all its output pieces at once, possibly exceeding memory resources, or produce a single
piece of output and relinquish control without a mechanism of regaining it. Demand-
driven execution allows generators to produce single pieces in response to demands for
single pieces, neither exceeding memory or abandoning results.

Our data-flow graphs have four basic types of nodes: generators, accumulators, par-
ticipants and copy nodes. Copy nodes replicate values when a path in the dataflow graph
splits. They are analogous to Pingali and Arvind’s fork construct.

Node Type Demand Action Data Action

Generator If possible, produce data Execute, and produce data
else propagate demand upwards

Accumulator Propagate demand upwards Execute, if possible produce data
else propagate demand upwards

Participant Propagate demand upwards Execute and produce data
Copy If data buffered for source Send data to all pending nodes,

of demand, send data, else buffer data for all other child
mark source node as pending. nodes
If copy node is not waiting
for a demand to be satisfied
then propagate demand upwards

Table 3. Demand Driven Actions for Piecewise Interpretation Nodes

Our demand-driven interpreter propagates data and demands according to the rules
in Table 3. Each data produced and demand propagated is placed on an event queue. The
event at the head is removed and executed, adding more events to the queue, when the
queue is empty, the program is complete.

We generate a piecewise version of flattened programs from an abstract syntax tree
representation of data-parallel operations. The structure of the piecewise program con-
sists of three parts: a copy of the demand-driven interpreter, code to generate to the data-
flow graph of the original program and modularized functions that encapsulate the op-
erations of each node. This structure is analogous to the that of a table-driven parser,
consisting of a general interpreter, a representation of the grammar, and action routines.

4 Piecewise Execution Loops

Interpreted piecewise execution successfully executes parallel programs in fixed mem-
ory. However, the generality of the approach incurs the overhead costs associated with
interpretation. Additionally, the interpreted approach interferes with chaining sequence
operations. One partial solution merges data-flow graph nodes that always execute con-
secutively, such as groups of participants. This provides some potential chaining of vec-
tor operations.

A more general solution compiles the data-flow graphs into piecewise execution loops.
These loops extend between matching pairs of generators and accumulators as in Fig. 4.
When generator/accumulator pairs are nested, the corresponding piecewise execution
loops are also nested. An outer loop is necessary to restart the inner loop after it gener-
ates a single output piece.

repeat
range11 consumes a piece of D
repeat

range11 generates a piece of T
mult reduce1 consumes the piece of T producing some of R

until a full piece of R has been produced or the piece of D is finished
until all of D has been consumed

In our early investigation into compiling piecewise execution loops, we identified
several complex issues in statically producing code that emulates the behavior of de-
mand driven execution. Identifying the generator/accumulator pairs that specify loop
bounds is complicated by the possibility that multiple generators can match with a sin-
gle accumulator and vice versa. Furthermore, pairs of generators/accumulators that ex-
hibit the same piecewise structural behavior are conformable and should be placed in the
same piecewise execution loop for best performance. Chatterjee’s size inference [8] can
be used to identify conforming operations. Restrict operations require the introduction
of additional loops to provide the data-dependent number of input pieces necessary for
restrict to generate an output piece. Finally, piecewise execution loops require a com-
plex control-flow mechanisms to maintain small amounts of buffering, and perform the
piecewise operations in the correct order. If we determine from our performance exper-
iments that the overhead of interpreting piecewise execution programs is too costly, we
will further investigate these compilation issues.

5 Experimental Results

The performance results shown in Fig. 8 illustrate piecewise execution’s effective use of
memory. The measured program computes multiple summations in parallel and requires
10 vectors of the maximum size to perform the computation. We impose a memory re-
striction of 1 Mword to highlight the differences between the direct and piecewise ap-
proaches. As a result, the direct calculation can only handle vector sizes up to 100,000
elements. For those vectors, the direct computation, as expected, yields better perfor-
mance than piecewise execution. However, our results show that piecewise execution
can perform the computation for dramatically larger problem sizes in the same amount
of memory.

0

10

20

30

40

50

60

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Vector Size in # of Elements

All computations performed
in 1 Mword of memory

’direct’
’piecesize100’
’piecesize200’
’piecesize500’

’piecesize1000’

Fig. 8. Sequential Performance of Piecewise Execution

We also observe that the execution cost per element of the maximal vector size gen-
erally remains the same across the wide range of vector sizes. For small piece sizes the
overhead associated with creating and maintaining an engine dominates the execution
time. As the piece size increases, the effect of that cost diminishes and we start to see
performance closer to that of the direct computation. We also ran this computation on
the MasPar MP-1 and observed similar behavior, but the performance only got within a
factor of 2 of the direct approach for piece sizes of 512K elements and larger.

6 Limitations of Piecewise Execution

Certain program configurations inherently preclude execution in a piecewise manner.
Consider a program in which two generators consume the same piecewise generated in-
put, but a data dependence between them prevents one from executing until the other

completes. Because, in general, we cannot store the entire sequence, we must relax the
execution constraints and allow the sequence to be recomputed. This increases the work,
but allows the program to execute.

gen1

gen2 gen3

acc

restr1

part

gen1

restr2

Fig. 9. Pathological Program Configurations

Another inherently difficult program configuration consists of multiple paths through
the data-flow graph that contain restrict operations. The rate at which restrict
consumes input and produces output is data-dependent. Therefore two restrict op-
erations may consume the same input sequence at widely different rates. The slower of
the rate-divergent siblings requires input buffering that can exhaust memory. We exe-
cute this configuration with normal piecewise execution, hoping the rates will be close
enough to avoid memory problems. If they do exhaust memory, our only recourse is to
again relax the “no recomputation” constraint, and execute the paths independently.

7 Discussion

7.1 Related work

Our key contribution in this paper is eliminating oversized temporaries from nested data-
parallel programs, much previous work has been done applying this technique in other
contexts. Reducing the memory requirements of a program by eliminating storage of
temporary aggregate values is not a recent idea. In 1970, Abrams developed an inter-
preter system that partially compiled and sequentially executed APL programs [1]. The
system postponed execution of certain operations until they could be optimized based on
contextual information gathered during the postponement. These optimizations elimi-
nated storing temporary aggregates, even those resulting from size increasing operations
such as distributions and enumerations. Abrams accomplished this by processing a sin-
gle element of the aggregate through an entire computation and yielding an element of
the result before moving on to the next element. With this approach, he could evaluate
expressions composed from a restricted set of APL operations using fixed storage equal
to the larger of the expressions inputs and outputs.

In 1978, Guibas and Wyatt formalized and extended Abrams’ ideas to build a system
that fully compiled APL programs [10]. Using data-flow analysis techniques, they gen-
erated code that statically did the equivalent of Abrams contextual postponement. The
compiled code evaluated APL’s aggregate operations using fixed storage by streaming
single elements of a flat aggregate through a complete computation.

Budd explored extending these ideas to the vector domain. Instead of single elements
at a time, he proposed to stream a vector’s worth of elements through a computation [7].
This approach not only evaluated APL expressions in space equal to the larger of the
inputs and outputs, but could also make effective use of vector hardware.

Waters, generalizing the APL-based work to applicative series expressions for Com-
mon Lisp and Pascal, used data-flow analysis and program transformations to generate
semantically equivalent imperative loop structures [21]. The transformations eliminated
temporaries from series expressions and provided efficient single processor execution of
functional programs using streaming. Although Waters speculated on extending his pro-
gram transformations to handle nested series expressions, he did not implement it.

In 1993, Chatterjee compiled nested data-parallel programs to increase code granu-
larity and relax lock-step synchrony so the programs could effectively execute on MIMD
machines [8]. Although his compiler did not implement the fixed memory evaluation of
Abrams, he was the first to apply temporary elimination in the context of nested data-
parallel programs. His system used loop fusion to eliminate intermediate temporary stor-
age from transformed NESL programs.

7.2 System status

We are currently building the piecewise execution system for Proteus on top of our exist-
ing execution system. We have implemented portions of PDPL and are currently work-
ing on implementing the rest. We have written the demand-driven piecewise interpreter
with the modified demand driven execution and run it on small programs with large
datasets. We have not yet automated the generation of piecewise programs or the com-
pilation of piecewise execution loops. Our current research focuses on piecewise execu-
tion of user-defined functions, and our current implementation effort is aimed at reducing
the memory management costs associated with creating and using engines.

7.3 Conclusions

The major drawback to the technique of flattening nested data parallelism is that it ex-
tracts so much parallelism that it often generates programs that cannot execute within
the memory limitations of parallel machines. In this paper we presented piecewise exe-
cution, an approach which provides parametric runtime serialization of flattened paral-
lel programs to overcome this obstacle. Our preliminary results confirm that piecewise
execution can significantly reduce the memory requirements of a flattened, nested data-
parallel program. Future results will reveal whether interpreted piecewise execution will
provide sufficient performance or if we must further develop compilation techniques and
generate piecewise execution loops. Regardless of our ultimate approach to implement-
ing piecewise execution, we have demonstrated its applicability and usefulness.

References

1. P. Abrams. An APL Machine. PhD thesis, Stanford University, 1970.
2. J. Backus. Can programming be liberated from the von Neumann style? A functional style

and its algebra of programs. Commun. ACM, 21(8):613–41, Aug. 1978.
3. G. Blelloch and G. Narlikar. A comparison of two n-body algorithms. In Proceedings of

DIMACS Parallel Implementation Challenge Workshop III, Oct. 1994.
4. G. Blelloch and G. Sabot. Compiling collection-oriented languages onto massively parallel

computers. Journal of Parallel and Distributed Computing, 8(2), Feb. 1990.
5. G. E. Blelloch. Nesl: A nested data-parallel language. Technical Report CMU-CS-92-129,

Carnegie Mellon University, 1992.
6. G. E. Blelloch, S. Chatterjee, J. Hardwick, M. Reid-Miller, J. Sipelstein, and M. Zagha.

Cvl: a c vector library manual, version 2. Technical Report CMU-CS-93-114, Carnegie Mel-
lon University, 1993.

7. T. Budd. An APL Compiler. Springer-Verlag, 1988.
8. S. Chatterjee. Compiling nested data-parallel programs for shared-memory multiprocessors.

ACM Trans. Prog. Lang. Syst., 15(3):400–462, July 1993.
9. H. P. F. Forum. High Performance Fortran language specification. Scientific Programming,

2(1–2):1–170, 1993.
10. L. J. Guibas and D. K. Wyatt. Compilation and delayed evaluation in APL. In Conf. Record

of the Fifth Annual ACM Symp. on Princ. of Prog. Lang. (Tucson, Arizona), pages 1–8. ACM,
Jan. 1978.

11. P. Hatcher and M. Quinn. Data-Parallel Programming on MIMD Computers. MIT Press,
1991.

12. K. Iverson. A Programming Language. Wiley, 1962.
13. G. Levin and L. Nyland. An introduction to Proteus, version 0.9. Technical report, Univer-

sity of North Carolina at Chapel Hill, Aug. 1993.
14. D. W. Palmer. Dpl: Data-parallel library manual. Technical Report UNC-CS-93-064, Uni-

versity of North Carolina at Chapel Hill, Nov. 1993.
15. D. W. Palmer, J. F. Prins, and S. Westfold. Work-efficient nested data-parallelism. In Proc.

Fifth Symp. on the Frontiers of Massively Parallel Processing (Frontiers 95). IEEE., 1995.
16. K. Pingali and Arvind. Efficient demand-driven evaluation. Part 1. ACM Trans. Prog. Lang.

Syst., 7(2):311–33, Apr. 1985.
17. K. Pingali and Arvind. Efficient demand-driven evaluation. Part 2. ACM Trans. Prog. Lang.

Syst., 8(1):109–39, Jan. 1986.
18. J. F. Prins and D. W. Palmer. Transforming high-level data-parallel programs into vector op-

erations. In Proc. 4th PPOPP. (San Diego, CA, 19–22 May 1993). ACM., 1993. Published
in SIGPLAN Notices, 28(7):119–28.

19. J. Schwartz. Set theory as a language for program specification and programming. Techni-
cal report, Computer Science Department, Courant Institute of Mathematical Sciences, New
York University, 1970.

20. R. Sethi. Complete register allocation problems. SIAM Journal of Computing, 4(3), 1975.
21. R. C. Waters. Automatic transformation of series expressions into loops. ACM Trans. Prog.

Lang. Syst., 13(1):52–98, Jan. 1991.

This article was processed using the LATEX macro package with LLNCS style

