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Abstract. Modern dialects of Fortran enjoy wide use and good support on high-
performance computers as performance-oriented programming languages. By pro-
viding the ability to express nested data parallelism in Fortran, we enable irregular
computations to be incorporated into existing applications with minimal rewriting
and without sacrificing performance within the regular portions of the applica-
tion. Since performance of nested data-parallel computation is unpredictable and
often poor using current compilers, we investigate source-to-source transforma-
tion techniques that yield Fortran 90 programs with improved performance and
performance stability.

1 Introduction

Modern science and engineering disciplines make extensive use of computer simula-
tions. As these simulations increase in size and detail, the computational costs of naive
algorithms can overwhelm even the largest parallel computers available today. Fortu-
nately, computational costs can be reduced using sophisticated modeling methods that
vary model resolution as needed, coupled with sparse and adaptive solution techniques
that vary computational effort in time and space as needed. Such techniques have been
developed and are routinely employed in sequential computation, for example, in cos-
mological simulations (using adaptive n-body methods) and computational fluid dy-
namics (using adaptive meshing and sparse linear system solvers).

However, these so-called irregular or unstructured computations are problematic for
parallel computation, where high performance requires equal distribution of work over
processors and locality of reference within each processor. For many irregular com-
putations, the distribution of work and data cannot be characterizeda priori, as these
quantities are input-dependent and/or evolve with the computation itself. Further, irreg-
ular computations are difficult to express using performance-oriented languages such
as Fortran, because there is an apparent mismatch between data types such as trees,
graphs, and nested sequences characteristic of irregular computations and the statically
analyzable rectangular multi-dimensional arrays that are the core data types in modern
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Fortran dialects such as Fortran 90/95 [19], and High Performance Fortran (HPF) [16].
Irregular data types can be introduced using the data abstraction facilities, with a repre-
sentation exploiting pointers. Optimization of operations on such an abstract data type
is currently beyond compile-time analysis, and compilers have difficulty generating
high-performance parallel code for such programs. This paper primarily addresses the
expression of irregular computations in Fortran 95, but does so with a particular view
of the compilation and high performance execution of such computations on parallel
processors.

The modern Fortran dialects enjoy increasing use and good support as mainstream
performance-oriented programming languages. By providing the ability to express ir-
regular computations as Fortran modules, and by preprocessing these modules into
a form that current Fortran compilers can successfully optimize, we enable irregular
computations to be incorporated into existing applications with minimal rewriting and
without sacrificing performance within the regular portions of the application.

For example, consider the NAS CG (Conjugate Gradient) benchmark, which solves
an unstructured sparse linear system using the method of conjugate gradients [2]. Within
the distributed sample sequential Fortran solution, 79% of the lines of code are standard
Fortran 77 concerned with problem construction and performance reporting. The next
16% consist of scalar and regular vector computations of the BLAS 2 variety [17], while
the final 5% of the code is the irregular computation of the sparse matrix-vector product.
Clearly we want to rewrite only this 5% of the code (which performs 97% of the work
in the class B computation), while the remainder should be left intact for the Fortran
compiler. This is not just for convenience. It is also critical for performance reasons;
following Amdahl’s Law, as the performance of the irregular computation improves, the
performance of the regular component becomes increasingly critical for sustained high
performance overall. Fortran compilers provide good compiler/annotation techniques
to achieve high performance for the regular computations in the problem, and can thus
provide an efficient and seamless interface between the regular and irregular portions
of the computation.

We manually applied the implementation techniques described in Sect.4 to the ir-
regular computation in the NAS CG problem. The resultant Fortran program achieved
a performance on the class B NAS CG 1.0 benchmark of 13.5 GFLOPS using a 32 pro-
cessor NEC SX-4 [25]. We believe this to be the highest performance achieved for this
benchmark to date. It exceeds, by a factor of 2.6, the highest performance reported in the
last NPB 1.0 report [27], and is slightly faster than the 12.9 GFLOPS recently achieved
using a 1024 processor Cray T3E-900 [18]. These encouraging initial results support
the thesis that high-level expression and high-performance for irregular computations
can be supported simultaneously in a production Fortran programming environment.

2 Expressing irregular computations using nested data parallelism

We adopt the data-parallel programming model of Fortran as our starting point. The
data-parallel programming model has proven to be popular because of its power and
simplicity. Data-parallel languages are founded on the concept of collections (such as
arrays) and a means to allow programmers to express parallelism through the applica-



tion of an operation independently to all elements of a collection (e.g., the elementwise
addition of two arrays). Most of the common data-parallel languages, such as the array-
based parallelism of Fortran 90, offer restricted data-parallel capabilities: they limit
collections to multidimensional rectangular arrays, limit the type of the elements of a
collection to scalar and record types, and limit the operations that can be applied in par-
allel to the elements of a collection to certain predefined operations rather than arbitrary
user-defined functions. These limitations are aimed at enabling compile-time analysis
and optimization of the work and communication for parallel execution, but make it
difficult to express irregular computations in this model.

If the elements of a collection are themselves permitted to have arbitrary type, then
arbitrary functions can be applied in parallel over collections. In particular, by operat-
ing on a collection of collections, it is possible to specify a parallel computation, each
simultaneous operation of which in turn involves (a potentially different-sized) parallel
subcomputation. This programming model, callednested data parallelism, combines
aspects of both data parallelism and control parallelism. It retains the simple program-
ming model and portability of the data-parallel model while being better suited for de-
scribing algorithms on irregular data structures. The utility of nested data parallelism as
an expressive mechanism has been understood for a long time in the LISP, SETL [29],
and APL communities, although always with a sequential execution semantics and im-
plementation.

Nested data parallelism occurs naturally in the succinct expression of many irregular
scientific problems. Consider the sparse matrix-vector product at the heart of the NAS
CG benchmark. In the popular compressed sparse row (CSR) format of representing
sparse matrices, the nonzero elements of anm � n sparse matrixA are represented
as a sequence ofm rows[R1; : : : ; Rm], where theith row is, in turn, represented by a
(possibly empty) sequence of(v; c) pairs wherev is the nonzero value and1 � c � n is
the column in which it occurs:Ri = [(vi1; c

i
1); : : : ; (v

i

ki
; ci
ki
)]. With a densen-vectorx

represented as a simple sequence ofn values, the sparse matrix-vector producty = Ax
may now be written as shown using the NESL notation [4]:

y = {sparse_dot_product(R,x) : R in A}:

This expression specifies the application ofsparse_dot_product, in parallel, to each
row of A to yield them element result sequencey. The sequence constructor{ : : :}
serves a dual role: it specifies parallelism (for eachR in A), and it establishes the
order in which the result elements are assembled into the result sequence, i.e.,yi =
sparse_dot_product(Ri; x). We obtain nested data parallelism if the body expres-
sion sparse_dot_product(R; x) itself specifies the parallel computation of the dot
product of rowR with x as the sum-reduction of a sequence of nonzero products:

function sparse_dot_product(R,x)= sum({v*x[c]: (v,c) in R})

More concisely, the complete expression could also written as follows:

y = {sum({v*x[c]: (v,c) in R}): R in A}

where the nested parallelism is visible as nested sequence constructors in the source
text.



MODULE Sparse_matrices

IMPLICIT none

TYPE Sparse_element

REAL :: val

INTEGER :: col

END TYPE Sparse_element

TYPE Sparse_row_p

TYPE (Sparse_element), DIMENSION (:), POINTER :: elts

END TYPE Sparse_row_p

TYPE Sparse_matrix

INTEGER :: nrow, ncol

TYPE (Sparse_row_p), DIMENSION (:), POINTER :: rows

END TYPE Sparse_matrix

END MODULE Sparse_matrices

Fig. 1 Fortran 90 definition of a nested sequence type for sparse matrices

Nested data parallelism provides a succinct and powerful notation for specifying paral-
lel computation, including irregular parallel computations. Many more examples of ef-
ficient parallel algorithms expressed using nested data parallelism have been described
in [4].

3 Nested data parallelism in Fortran

If we consider expressing nested data parallelism in standard imperative programming
languages, we find that they either lack a data-parallel control construct (C, C++) or
else lack a nested collection data type (Fortran). A data-parallel control construct can
be added to C [11] or C++ [30], but the pervasive pointer semantics of these languages
complicate its meaning. There is also incomplete agreement about the form of paral-
lelism should take in these languages.

TheFORALL construct, originated in HPF [16] and later added into Fortran 95, spec-
ifies data-parallel evaluation of expressions and array assignments. To ensure that there
are no side effects between these parallel evaluations, functions that occur in the expres-
sions must have thePURE attribute. Fortran 90 lacks a construct that specifies parallel
evaluations. However, many compilers infer such an evaluation if specified using a con-
ventionalDO loop, possibly with an attached directive asserting the independence of
iterations.FORALL constructs (or Fortran 90 loops) may be nested. To specify nested
data-parallel computations with these constructs, it suffices to introduce nested aggre-
gates, which we can do via the data abstraction mechanism of Fortran 90.

As a consequence of these language features, it is entirely possible to express nested
data-parallel computations in modern Fortran dialects. For example, we might introduce



SUBROUTINE smvp(a, x, y)

USE Sparse_matrices, ONLY : Sparse_matrix

IMPLICIT none

TYPE (Sparse_matrix), INTENT(IN) :: a

REAL, DIMENSION(:), INTENT(IN) :: x

REAL, DIMENSION(:), INTENT(OUT) :: y

FORALL (i = 1:a%nrow)

y(i) = SUM(a%rows(i)%elts%val * x(a%rows(i)%elts%col))

END FORALL

END SUBROUTINE smvp

Fig. 2 Use of the derived typeSparse_matrix in sparse matrix-vector product.

the types shown in Fig.1 to represent a sparse matrix.Sparse_element is the type of
a sparse matrix element, i.e., the(v; c) pair of the NESL example.Sparse_row_p is
the type of vectors (1-D arrays) of sparse matrix elements, i.e., a row of the matrix. A
sparse matrix is characterized by the number of rows and columns, and by the nested
sequence of sparse matrix elements.

Using these definitions, the sparse matrix-vector product can be succinctly written
as shown in Fig.2. TheDO loop specifies parallel evaluation of the inner products for
all rows. Nested parallelism is a consequence of the use of parallel operations such as
sum and elementwise multiplication, projection, and indexing.

Discussion

Earlier experiments with nested data parallelism in imperative languages include V [11],
Amelia [30], and F90V [1]. For the first two of these languages the issues of side-effects
in the underlying notation (C++ and C, respectively) were problematic in the potential
introduction of interference between parallel iterations, and the efforts were abandoned.
Fortran finesses this problem by requiring procedures used within aFORALL construct
to bePURE, an attribute that can be verified statically. This renders invalid those con-
structions in which side effects (other than the nondeterministic orders of stores) can be
observed, although such a syntactic constraint is not enforced in Fortran 90.

The specification of nested data parallelism in Fortran and NESL differ in impor-
tant ways, many of them reflecting differences between the imperative and functional
programming paradigms.

First, a sequence is formally a function from an index set to a value set. The NESL

sequence constructor specifies parallelism over the value set of a sequence while the
FortranFORALL statement specifies parallelism over the index set of a sequence. This



allows a more concise syntax and also makes explicit the shape of the common index
domain shared by several collections participating in aFORALL construct.

Second, the NESL sequence constructor implicitly specifies the ordering of result
elements, while this ordering is explicit in theFORALL statement. One consequence is
that the restriction clause has different semantics. For instance, the NESL expression

v = {i: i in [1:n] | oddp(i) }

yields a result sequencev of lengthbn=2c of odd values while the Fortran statement

FORALL (i = 1:n, odd(i)) v(i) = i

replaces the elements in the odd-numbered positions ofv.
Third, the FortranFORALL construct provides explicit control over memory. Explicit

control over memory can be quite important for performance. For example, if we were
to repeatedly multiply the same sparse matrix repeatedly by different right hand sides
(which is in fact exactly what happens in the CG benchmark), we could reuse a single
temporary instead of freeing and allocating each time. Explicit control over memory
also gives us a better interface to the regular portions of the computation.

Finally, the base types of a nested aggregate in Fortran are drawn from the Fortran
data types and include multidimensional arrays and pointers. In NESL, we are restricted
to simple scalar values and record types. Thus, expressing a sparse matrix as a collec-
tion of supernodes would be cumbersome in NESL. Another important difference is that
we may construct nested aggregates of heterogeneous depth with Fortran, which is im-
portant, for example, in the representation of adaptive oct-tree spatial decompositions.

4 Implementation issues

Expression of nested data-parallelism in Fortran is of limited interest and of no utility
if such computations can not achieve high performance. Parallel execution and tuning
for the memory hierarchy are the two basic requirements for high performance. Since
the locus of activity and amount of work in a nested data-parallel computation can not
be statically predicted, run-time techniques are generally required.

4.1 Implementation strategies

There are two general strategies for the parallel execution of nested data parallelism,
both consisting of a compile-time and a run-time component.

The thread-based approach.This technique conceptually spawns a different thread of
computation for every parallel evaluation within aFORALL construct. The compile-time
component constructs the threads from the nested loops. A run-time component dynam-
ically schedules these threads across processors. Recent work has resulted in run-time
scheduling techniques that minimize completion time and memory use of the gener-
ated threads [9,6, 20]. Scheduling very fine-grained threads (e.g., a single multiplica-
tion in the sparse matrix-vector product example) is impractical, hence compile-time
techniques are required to increase thread granularity, although this may result in lost
parallelism and increased load imbalance.



FORALL (i = 1:4)

WHERE C(i) DO

FORALL (j = 1:i) DO

G(i,j)

END FORALL

ELSEWHERE

H(i)

END WHERE

END FORALL

C C C C

H H
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Fig. 3 (a) Nested data-parallel program. (b) The associated dependence graph.
(c) Thread decomposition of the graph. (d) Data-parallel decomposition of the graph.

The flattening approach.This technique replaces nested loops by a sequence of steps,
each of which is a simple data-parallel operation. The compile-time component of
this approach is a program transformation that replacesFORALL constructs with “data-
parallel extensions” of their bodies and restructures the representation of nested aggre-
gate values into a form suitable for the efficient implementation of the data-parallel op-
erations [8,26]. The run-time component is a library of data-parallel operations closely
resembling HPFLIB, the standard library that accompanies HPF. A nested data-parallel
loop that has been flattened may perform a small multiplicative factor of additional
work compared with a sequential implementation. However, full parallelism and opti-
mal load balance are easily achieved in this approach. Compile-time techniques to fuse
data-parallel operations can reduce the number of barrier synchronizations, decrease
space requirements, and improve reuse [12,24].

The two approaches are illustrated for a nested data-parallel computation and its
associated dependence graph1 in Fig. 3. HereG andH denote assignment statements
that can not introduce additional dependences, since there can be no data dependences
between iterations ofFORALL loops.

In Fig. 3(c) we show a decomposition of the work into parallel threadsT1; : : : ; T4.
In this decomposition the body of the outerFORALL loop has been serialized to increase
the grain size of each thread. As a result the amount of work in each thread is quite

1 We are using HPFINDEPENDENT semantics for the control dependences of aFORALL loop.



different. On the other hand, since each thread executes a larger portion of the sequential
implementation, it can exhibit good locality of reference.

In Fig. 3(d) we show a decomposition of the work into sequential stepsS1; : : : ; S3,
each of which is a simple data-parallel operation. The advantage of this approach is that
we may partition the parallelism in each operation to suit the resources. For example,
we can create parallel slack at each processor to hide network or memory latencies. In
this example, the dependence structure permits the parallel execution of stepsS1 and
S2, although this increases the complexity of the run time scheduler.

4.2 Nested parallelism using current Fortran compilers

What happens when we compile the Fortran 90 sparse matrix-vector productsmvp

shown in Fig.2 for parallel execution using current Fortran compilers?
For shared-memory multiprocessors we examined two auto-parallelizing Fortran

90 compilers: the SGI F90 V7.2.1 compiler (beta release, March 1998) for SGI Origin
class machines and the NEC FORTRAN90/SX R7.2 compiler (release 140, February
1998) for the NEC SX-4. We replacedFORALL construct in Fig.2 with an equivalent
DO loop to obtain a Fortran 90 program. Since the nested parallel loops insmvp do not
define a polyhedral iteration space, many classical techniques for parallelization do not
apply. However, both compilers recognize that iterations of the outer loop (over rows)
are independent and, in both cases, these iterations are distributed over processors. The
dot-product inner loop is compiled for serial execution or vectorized. This strategy is
not always optimal, since the distribution of work over outermost iterations may be
uneven or there may be insufficient parallelism in the outer iterations.

For distributed memory multiprocessors we examined one HPF compiler. This com-
piler failed to compilesmvp because it had no support for pointers in Fortran 90 derived
types. Our impression is that this situation is representative of HPF compilers in general,
since the focus has been on the parallel execution of programs operating on rectangular
arrays. The data distribution issues for the more complex derived types with pointers
are unclear. Instead, HPF 2.0 supports the non-uniform distribution of arrays over pro-
cessors. This requires the programmer to embed irregular data structures in an array and
determine the appropriate mapping for the distribution.

We conclude that current Fortran compilers do not sufficiently address the prob-
lems of irregular nested data parallelism. The challenge for irregular computations is to
achieve uniformly high and predictable performance in the face of dynamically varying
distribution of work. We are investigating the combined use of threading and flattening
techniques for this problem.

Our approach is to transform nested data parallel constructs into simple Fortran 90,
providing simple integration with regular computations, and leveraging the capabili-
ties of current Fortran compilers. This source-to-source translation restricts our options
somewhat for the thread scheduling strategy. Since threads are not part of Fortran 90,
the only mechanism for their (implicit) creation are loops, and the scheduling strategies
we can choose from are limited by those offered by the compiler/run-time system. In
this regard, standardized loop scheduling directives like the OpenMP directives [23]
can improve portability.



A nested data parallel computation should be transformed into a (possibly nested) iter-
ation space that is partitioned over threads. Dynamic scheduling can be used to tolerate
variations in progress among threads. Flattening of the loop body can be used to ensure
that the amount of work per thread is relatively uniform.

4.3 Example

Consider a sparsem � n matrixA with a total ofr nonzeros. Implementation of the
simple nested data parallelism in the proceduresmvp of Fig. 2 must address many of
the problems that may arise in irregular computations:

– Uneven units of work:A may contain both dense and sparse rows.
– Small units of work:A may contain rows with very few nonzeros.
– Insufficient units of work: ifn is less than the number of processors andr is suf-

ficiently large, then parallelism should be exploited within the dot products rather
than between the dot products.

We constructed two implementations ofsmvp. Thepointer-basedimplementation
is obtained by direct compilation of the program in Fig.2 using auto-parallelization.
As mentioned, this results in a parallelized outer loop, in which the dot products for
different rows are statically or dynamically scheduled across processors.

Theflat implementation is obtained by flatteningsmvp. To flattensmvp we replace
the nested sequence representation ofA with a linearized representation(A0; s). Here
A0 is an array ofr pairs, indexed byval andcol, partitioned into rows ofA by s.
Application of the flattening tranformations to the loop in Fig.2 yields

y = segmented_sum(A0%val * x(A0%col),s);

wheresegmented_sum is a data-parallel operation with efficient parallel implementa-
tions [3]. By substitutingA0%val * x(A0%col) for the first argument in the body of
segmented_sum, the sum and product may be fused into asegmented dot-product. The
resulting algorithm was implemented in Fortran 90 for our two target architectures.

For the SGI Origin 200,A0 is divided intop� sections of lengthr=(p�) wherep
is the number of processors and� � 1 is a factor to improve the load balance in the
presence of multiprogramming and operating system overhead on the processors. Sec-
tions are processed independently and dot products are computed sequentially within
each section. Sums for segments spanning sections are adjusted after all sections are
summed.

For the NEC SX-4,A0 is divided intopq sections whereq is the vector length re-
quired by the vector units [5]. Sectioni, 0 � i < pq, occupies elementi mod q in a
lengthq vector of threadbi=pc. Prefix dot-products are computed independently for all
sections using a sequence ofr=(pq) vector additions on each processor. Segment dot-
products are computed from the prefix dot-products and sums for segments spanning
sections are adjusted after all sections are summed [25]. On the SX-4,� is typically not
needed since the operating system performs gang-scheduling and the threads experience
very similar progress rates.
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Fig. 4 Performance measurements for the pointer-based and the flattened implementa-
tions ofsmvp on the SGI Origin 200.

4.4 Results

The SGI Origin 200 used is a 4 processor cache-based shared memory multiprocessor.
The processors are 180MHz R10000 with 1MB L2 cache per processor. The NEC SX-4
used is a 16 processor shared-memory parallel vector processor with vector length 256.
Each processor has a vector unit that can perform 8 or 16 memory reads or writes per
cycle. The clock rate is 125 MHz. The memory subsystem provides sufficient sustained
bandwidth to simultaneously service independent references from all vector units at the
maximum rate.

The performance on square sparse matrices of both implementations is shown for
1, 2, and 4 processors for the Origin 200 in Fig.4 and for the SX-4 in Fig.5. The top
graph of each figure shows the performance as a function of problem size in megaflops
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Fig. 5 Performance measurements for the pointer-based and the flattened implementa-
tions ofsmvp on the NEC SX-4. (Note the logarithmic scale of the y-axis.)

per second, where the number of floating point operations for the problem is2r. Each
row contains an average of 20 nonzeros and the number of rows is varied between 1000
and 175000. The bottom graph shows the influence of the average number of nonzeros
per row (r=n) on the performance of the code. To measure this, we chose a fixed matrix
size (n = 20000) and varied the average number of nonzeros on each row between 5
and 175. In each case, the performance reported is averaged over 50 different matrices.

On the Origin 200 the flattened implementation performed at least as well as the
pointer-based version over most inputs. The absolute performance of neither imple-
mentation is particularly impressive. The sparse matrix-vector problem is particularly
tough for processors with limited memory bandwidth since there is no temporal locality
in the use ofA (within a single matrix-vector product), and the locality in reference to
x diminishes with increasingn. While reordering may mitigate these effects in some
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Fig. 6 Performance in Mflops/s using four processors on two different problems.

applications, it has little effect for the random matrices used here. The Origin 200 imple-
mentations also do not exhibit good parallel scaling. This is likely a function of limited
memory bandwidth that must be shared among the processors. Higher performance can
be obtained with further tuning. For example, the current compiler does not perform
optimizations to map theval andcol components ofA into separate arrays. When
applied manually, this optimization increases performance by 25% or more.

On the SX-4 the flattened implementation performs significantly better than the
pointer implementation over all inputs. This is because the flattened implementation
always operates on full-sized vectors (providedr � pq), while the pointer-based im-
plementation performs vector operations whose length is determined by the number of
nonzeros in a row. Hence the pointer-based implementation is insensitive to problem
size but improves with average row length. For the flattened implemementation, abso-
lute performance and parallel scaling are good primarily because the memory system
has sufficient bandwidth and the full-sized vector operations fully amortize the memory
access latencies.

Next, we examined the performance on two different inputs. Theregular input is a
square sparse matrix withn = 25000 rows. Each row has an average of 36 randomly
placed nonzeros for a total ofr = 900000 nonzeros. Theirregular input is a square
sparse matrix withn = 25000 rows. Each row has 20 randomly placed nonzeros, but
now 20 consecutive rows near the top ofA contain 20000 nonzeros each. Thus the total
number of nonzeros is again 900000, but in this case nearly half of the work lies in less
than 0.1% of the dot products.

The performance of the two implementations is shown in Fig.6. The pointer-based
implementation for the Origin 200 is significantly slower for the irregular problem,
regardless of the thread scheduling technique used (dynamic or static). The problem is
that a small “bite” of the iteration space may contain a large amount of work, leading to
a load imbalance that may not be correctable using a dynamic scheduling technique. In
the case of the SX-4 pointer-based implementation this effect is not as noticeable, since
the dot product of a dense row operates nearly two orders of magnitude faster than the
dot product of a row with few nonzeros.

The flattened implementation delivers essentially the same performance for both
problems on the Origin 200. The SX-4 performance in the irregular case is reduced



because dense rows span many successive sections, and incur anO(pq) cost in the final
sum adjustment phase that is not present for shorter rows. However, this cost is unrelated
to problem size, so the disparity between the performance in the two problems vanishes
with increasing problem size.

4.5 Discussion

This example provides some evidence that the flattening technique can be used in an im-
plementation to improve the performance stability over irregular problems while main-
taining or improving on the performance of the simple thread-based implementation.
The flattening techniques may be particularly helpful in supporting the instruction-level
and memory-level parallelism required for high performance in modern processors. The
example also illustrates that dynamic thread scheduling techniques, in the simple form
generated by Fortran compilers, may not be sufficient to solve load imbalance problems
that may arise in irregular nested data-parallel computations.

While these irregular matrices may not be representative of typical problems, the
basic characteristic of large amounts of work in small portions of the iteration space
is not unusual. For example, it can arise with data structures for the adaptive spatial
decomposition of a highly clustered n-body problem, or with divide-and-conquer algo-
rithms like quicksort or quickhull [4].

5 Related work

The facilities for data abstraction and dynamic aggregates are new in Fortran 90. Previ-
ously, Norton et al. [21], Deczyk et al. [14], and Nyland et al. [22] have experimented
with these advanced features of Fortran 90 to analyze their impact on performance.

HPF 2.0 provides aMAPPED irregular distribution to support irregular computations.
This is a mechanism, and makes the user responsible for developing a coherent pol-
icy for its use. Further, the ramifications of this distribution on compilation are not yet
fully resolved. Our approach is fundamentally different in attempting to support well a
smaller class of computations with an identifiable policy (nested data parallelism) and
by preprocessing the irregular computation to avoid reliance on untested strategies in
the HPF compiler. While HPF focuses on the irregular distribution of regular data struc-
tures, our approach is based on the (regular) distribution of irregular data structures.

Split-C [13] also provides a number of low-level mechanisms for expressing irreg-
ular computations. We are attempting to provide a higher level of abstraction while
providing the same level of execution efficiency of low-level models.

The Chaos library [28] is a runtime library based on the inspector/executor model
of executing parallel loops involving irregular array references. It is a suitable back end
for the features supporting irregular parallelism in HPF 2.0. The library does not pro-
vide obvious load balancing policies, particularly for irregularly nested parallel loops.
Recent work on Chaos is looking at compilation aspects of irregular parallelism.

Flattening transformations have been implemented for the languages NESL [7], Pro-
teus [26], Amelia [30], and V [11], differing considerably in their completeness and in



the associated constant factors. There has been little work on the transformation of im-
perative constructs such as sequential loops within aFORALL, although there do not
appear to be any immediate problems. The flattening techniques are responsible for
several hidden successes. Various high performance implementations are really hand-
flattened nested data-parallel programs: FMA [15], radix sort [32], as well as the NAS
CG implementation described in the introduction. Furthermore, the set of primitives in
HPFLIB itself reflects a growing awareness and acceptance of the utility of the flatten-
ing techniques.

The mainstream performance programming languages Fortran and SISAL [10,31]
can express nested data parallelism, but currently do not address its efficient execution
in a systematic way. Languages that do address this implementation currently have var-
ious disadvantages: they are not mainstream languages (NESL, Proteus); they subset or
extend existing languages (Amelia, V, F90V); they do not interface well with regular
computations (NESL, Proteus); they are not imperative, hence provide no control over
memory (NESL, Proteus); and they are not tuned for performance at the level of Fortran
(all).

6 Conclusions

Nested data parallelism in Fortran is attractive because Fortran is an established and im-
portant language for high-performance parallel scientific computation and has an active
community of users. Many of these users, who are now facing the problem of imple-
menting irregular computations on parallel computers, find that threading and flattening
techniques may be quite effective and are tediously performing them manually in their
codes [22,15]. At the same time, they have substantial investments in existing code and
depend on Fortran or HPF to achieve high performance on the regular portions of their
computations. For them it is highly desirable to stay within the Fortran framework.

The advanced features of modern Fortran dialects, such as derived data types, mod-
ules, pointers, and theFORALL construct, together constitute a sufficient mechanism to
express complex irregular computations. This makes it possible to express both irregular
and regular computations within a common framework and in a familiar programming
style.

How to achieve high performance from such high-level specifications is a more diffi-
cult question. The flattening technique can be effective for machines with very high and
uniform shared-memory bandwidth, as that found in current parallel vector processors
from NEC and SGI/Cray or the parallel multithreaded Tera machine. For cache-based
shared-memory processors, the improved locality of the threading approach is a bet-
ter match. The flattening techniques may help to extract threads from a nested parallel
computation that, on the one hand, are sufficiently coarse grain to obtain good locality
of reference and amortize scheduling overhead, and, on the other hand, are sufficiently
numerous and regular in size to admit good load balance with run-time scheduling.

Thus we believe that irregular computations can be expressed in modern Fortran
dialects and efficiently executed through a combination of source-to-source preprocess-
ing, leveraging of the Fortran compilers, and runtime support. Looking ahead, we are



planning to examine more complex irregular algorithms such as supernodal Cholesky
factorization, and adaptive fast n-body methods.
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