
CONNECTED COMPONENTS ALGORITHMS

FOR MESH-CONNECTED PARALLEL COMPUTERS

STEVE GODDARD, SUBODH KUMAR, AND JAN F. PRINS

Abstract. We present a new CREW PRAM algorithm for �nding connected

components. For a graphG with n vertices andm edges, algorithmA0 requires

at mostO(logn) parallel steps and performsO((n+m) logn) work in the worst

case. The advantage our algorithm has over others in the literature is that it

can be adapted to a 2-D mesh-connected communication model in which all

CREW operations are replaced byO(logn) parallel row and column operations

without increasing the time complexity.

We present the mapping of A0 to a mesh-connected computer and describe

two implementations, A1 and A2. Algorithm A1, which uses an adjacency

matrix to represent the graph, performs O(n2 logn) work. Hence, it only

achieveswork e�ciency on dense graphs. The second implementation,A2, uses

a sparse representation of the adjacency matrix and again performs O(logn)

row and column operations but reduces the work to O((m + n) logn) on all

graphs.

We report MasPar MP-1 performance �gures for implementations of the

algorithms described. The implementations are exercised on a variety of para-

metrically generated graphs, di�ering in structure and connectivity. These

graphs are generated externally and read in as input for the algorithms, per-

mitting comparison of di�erent implementations on identical graphs.

1. Introduction

The problem of rapidly �nding the connected components of an undirected graph

presents some substantial challenges for parallel computers.

First, parallel algorithms for this problem developed for the PRAM model make

extensive use of concurrent reads and writes (CRCW) to the shared memory, and

this abstraction is poorly supported by current parallel computers. Hence great

care has to be taken to minimize the impact of these operations.

Second, the standard sequential algorithm for this problem (based on depth-�rst

search) has optimal time complexity and small multiplicative constants, using only

a few operations per vertex and edge in the graph. Parallel algorithms for this prob-

lem rely on completely di�erent techniques, and in many cases do not have optimal

work complexity or else perform a much larger number of operations per vertex and

edge. Thus achieving high absolute performance from parallel implementations can

be di�cult.

In this paper we develop a new parallel algorithm for connected components that

is designed for the 2-D mesh communications model instead of the shared memory

Date: June 1996.

1991 Mathematics Subject Classi�cation. 68Q22; Secondary 68Q22,68R10 .
Key words and phrases. Connected Components Algorithms, Mesh-Connected Computers,

MasPar.

1

2 GODDARD, KUMAR, AND PRINS

CRCWmodel and has variants with reasonable work e�ciency for sparse and dense

graphs.

The initial presentation of the algorithm, A0, is for the CREW-PRAM model

of computation and is based on ideas found in the CRCW-PRAM algorithms for

sparse graphs developed by Shiloach et al. in [SV82, AS87]. For a graph G with

n vertices and m edges, A0 requires at most O(logn) parallel steps and performs

O((n+m) logn) work (hence, like [SV82, AS87], is not quite work e�cient).

A0 di�ers from [SV82, AS87] in that it can be adapted to a 2-D mesh-connected

communication model in which all CREW operations are replaced by parallel row

and column operations. In the case of the MasPar MP-1 and MP-2 machines that

are the implementation targets for this work, row and column operations can use

the high-bandwidth mesh network and o�er better performance than concurrent

read operations on global memory, which use the lower-bandwidth general-routing

network. Even in machines like the Intel Paragon and the Cray T3D/T3E, where

the general-routing network is based on the mesh connections, the regularity of the

communication pattern and the elimination of read contention can still favor the

use of row and column operations.

AlgorithmA1 is the adaptation of A0 to the mesh, and is based on an adjacency

matrix representation of G. This algorithm performs O(logn) parallel row and

column reduction and broadcast operations, but performs O(n2 logn) work, hence

achieves very poor work e�ciency on sparse graphs. Since sparse graphs are typical

in applications requiring high-speed determination of connected components (see

[Gre93]), this is unsatisfactory.

Algorithm A2 uses a sparse representation of the adjacency matrix and again

performs O(logn) row and column operations but reduces the work to O((m +

n) logn) on all graphs. A cyclic decomposition of the underlying adjacency matrix

over processors, tends to distribute the sparse edge set uniformly over processors

while insuring that the communication structure of the row and column operations

is preserved.

On a 4096 node graph, our implementation of A1 on an 8,192 processor Mas-

Par MP-1 (at approximately 0.2 Mops/sec per processor) achieves a performance

varying from 105 to 108 edges per second with increasing density of the graph. Our

implementation of A2 improves on A1 by about a factor of three for sparse graphs.

The rest of the paper is organized as follows. We introduce the basic PRAM

algorithm A0 in section 2. Section 3 describes the implementation of A1 and A2

under a mesh-connected communication model. Section 4 reports on the imple-

mentation of A1 and A2 on the MasPar MP-1 and gives performance statistics. We

discuss other connected components algorithms and compare their results with A2

in section 5. Section 6 shares our plans for further improvements to the algorithms.

Finally we present our conclusions and ideas for continuing research in section 7.

2. Main Algorithm

Let G = (V;E) be an undirected graph, with vertices V = f1; : : : ; ng and

jEj = m. For u,v 2 V , there is a path between u and v, written as u! v, i� there

exists a sequence of vertices [w1 : : :wk] such that w1 = u;wk = v; and 8 i : 1 � i <

k :: (wi; wi+1) 2 E.

The connected component problem is to compute for each v 2 V a label P (v)

such that 8 u; v 2 V : u ! v i� P (u) = P (v). We require that any labeling

CONNECTED COMPONENTS FOR MESHES 3

function satisfy P : V ! V and 8 u; v 2 V : P (u) � u. Under these conditions P

is a parent function and induces a forest of rooted trees on V , with each tree rooted

by some vertex r for which r = P (r). A rooted star is a tree T of height one with

a root r such that P (v) = r for each vertex v 2 T . Our solution to the connected

components problem sets P (v) to be the smallest vertex reachable from v, which

de�nes a rooted star for each component.

Our PRAM algorithm,A0, starts with P (v) = min(v;minfu j (u; v) 2 Eg) for all
v 2 V (i.e. for each v, the smallest vertex within distance one of v), and iteratively

improves P until it converges on the solution. Note that the initial parent function

may contain a tree of height as much as n � 1. Each iteration of the algorithm

changes P as follows.

� opportunistic pointer jumping: De�ne the chain from a vertex u 2 V to

be the sequence of vertices from u to the root of the tree containing u.

The opportunistic pointer jumping step attempts to decrease the height of

chains through a pointer doubling operation for each vertex u of the form

P 0(u) := P (P (u)), shrinking the height h of the chain to dh
2
e. However, u

can perform pointer jumping either through its own chain or through that

of one of its neighbors in G. The neighbor v of u with the least value for

P (v) determines the chain into which u performs a pointer jumping step (see

Figure 1). Therefore a vertex may switch trees or leave one rooted star for

another as part of this step.

u

v

P(u)

w = P(v)

P(w)

Figure 1. Opportunistic Pointer Jumping: Vertex u �nds that of

all of its neighboring vertices, v has the smallest numbered parent.

Therefore, vertex u changes its parent to P(w) = P(P(v)) rather

than P(P(u)).

� tree hanging: If a vertex v with parent u = P (v) switches chains so that

P 0(v) ends up a smaller value than P 0(u), then P 0(u) is switched to P 0(v).

There may be multiple children of u that can improve P 0(u), in which case

P 0(u) is set to the minimum of the new parents of all its children (see Figure

2). Subsequently a single normal pointer jumping step is used to ensure

that rooted stars can be hung onto a tree without changing the tree's height.

This step is not necessary for correct execution of A0, but simpli�es the time

4 GODDARD, KUMAR, AND PRINS

u = P(v)

v

P'(u)

w = P'(v)

Figure 2. Tree Hanging: Vertex u �nds that its former child,

vertex v, has found a smaller numbered parent during the oppor-

tunistic pointer jumping step (i.e., w = P0(v) < P 0(u)). The tree

hanging step changes the parent of u from P0(u) to w = P0(v) if w

is the minimum of the new parents of the old children of u.

complexity proof. The tree hanging operation is critical for rapid convergence

and plays the same role as the grafting operation of [SV82].

The pseudo code of A0 follows.

FOREACH vertex u IN G

P (u) := minfu,minfv j vertex v is adjacent to u in Ggg
REPEAT

FOREACH vertex u IN G /* Opportunistic Pointer Jumping */

OldP (u) := P (u)

P 0(u) := P (minfP (u);minfP (v) j vertex v is adjacent to vertex u in Ggg)
FOREACH vertex u IN G /* Tree hanging */

P (u) := minfP 0(u);minfP 0(v) jP (v) = ugg
FOREACH vertex u IN G /* Normal Pointer Jumping */

P (u) := P (P (u))

UNTIL P = OldP

Algorithm A0 uses the combination of opportunistic pointer jumping and tree

hanging to pull stagnant stars into other trees that comprise the same connected

component. Since vertices are always trying to decrease their parent function,

eventually all trees of a connected component are combined and contracted to a

single rooted star. While the Shiloach-Vishkin algorithms of [SV82, AS87] must be

very particular about how trees are grafted, A0 hangs a tree on any lower numbered

vertex without concern for its height in the tree.

2.1. Correctness. AlgorithmA0 terminates when all vertices of a connected com-

ponent have the same parent.

Theorem 2.1. On termination of A0, 8u; v 2 V; P(u) = P(v) () u! v

Proof ()): 8u 2 V; u! P(u) is an invariant of the loop: each change to P(u)

preserves u! P(u). Hence if P(u) = P(v), then u! P(u) = P(v) ! v and

therefore u! v.

((): By contradiction. Assume A0 has terminated with P(u) 6= P(v) and u! v.

Then 9 (wi; wi+1) on u! v such that P(wi) 6= P(wi+1). This means that P(wi) <

CONNECTED COMPONENTS FOR MESHES 5

P(wi+1) or P(wi) > P(wi+1). In either case, the opportunistic pointer jumping

step would change P(wi) or P(wi+1) so that the termination condition (OldP = P)

could not hold. This contradicts the assumption that A0 has terminated.

2.2. Complexity. Termination of A0 is guaranteed because each iteration of A0

satis�es 8u 2 V : P (u) � OldP (u), which can be established by observing that

(1) P (u) � u is an invariant of A0 and (2) each change to P (u) can only decrease

its value or leave it the same. Since P is strictly decreasing on each iteration on

which A0 does not terminate, and is bounded below by the connected components

labeling, A0 must terminate.

In practice, we have observed that the number of iterations of the outer loop

is very small, but the complexity is O(logn). To see this, observe that logn steps

will reduce any tree formed by P , that does not have another tree hook onto it, to

a rooted star. Any chain that did have trees hook onto it, may take another logn

steps to shrink to height one. Note that the number of trees never increases. In most

iterations both the number of trees and the height of each tree decreases. In the

worst case, if all trees shrink to rooted stars without forming complete components,

it takes one more step to get the �nal connected components of P and another logn

iterations to shorten these new chains to rooted stars.

3. Implementation on a mesh

The connected components algorithm of section 2 has the nice property that it

can be mapped to a mesh-connected computer without needing costly concurrent

read operations in a shared memory. The pseudo code presented below represents

the mapping to the mesh utilizing only the row and column communication prim-

itives shown below, which are quite e�cient on computers like the MasPar. The

graph edges are stored in the adjacency matrix A. Matrices Q and M are used to

store intermediate results. The functions P; P 0 and OldP from A0 are each repre-

sented as matrices in which the function values are replicated either on each row

(P and OldP) or each column (P 0).

During the opportunistic pointer jumping and tree hanging steps, the parent

values are stored in the columns of P 0, such that the parent of vertex j is stored

in column j. The normal pointer jumping step then returns the parent values to

the rows of P for the next iteration. All values needed at any step in the algorithm

are in the row or column of one of the matrices. Hence, only row or column

communications is required.

Functions:

MinCol(Mn�n) : Qn�n

MinRow(Mn�n) : Qn�n

MinNeighbor(An�n; u) : v

MinCol() �nds the minimumvalue in each column of the matrixM and copies these

values to every entry of the respective columns of the return matrix Q. MinRow()

performs the respective operations on the rows of the matrix. The third function,

MinNeighbor(), returns the minimum of u and the minimum vertex adjacent to

u in the adjacency matrix A (all necessary information for this function can be

found in column u). Note that all three of these functions can be implemented

quite e�ciently on most mesh computers.

6 GODDARD, KUMAR, AND PRINS

Variables:

An�n adjancency matrix representation of the graph

P 0; Pn�n values of parent function P ()

M;Qn�n storage matrices

Initializations:

A(i; j) :=

(
True if (i; j) 2 E or i = i

False otherwise

Pi;j :=MinNeighbor(A; i)

Pseudo-Code for Connected Components Algorithm on a Mesh:

REPEAT

OldP := P

/* begin opportunistic pointer jumping */

FORALL i; j IN [1::n]; [1::n]

M (i; j) :=

(
Pij if Aij

1 otherwise

Q :=MinCol(M)

FORALL i; j IN [1::n]; [1::n]

M (i; j) :=

(
Pij if Qij = i

1 otherwise

P 0 := MinCol(M)

/* begin tree hanging */

FORALL i; j IN [1::n]; [1::n]

M (i; j) :=

(
P 0

ij if Pij = j

1 otherwise

Q :=MinCol(M)

FORALL i; j IN [1::n]; [1::n]

P 0(i; j) := min(P 0

ij; Qij)

/* begin normal pointer jumping */

FORALL i; j IN [1::n]; [1::n]

M (i; j) :=

(
P 0

ij if i = j

1 otherwise

Q :=MinRow(M)

FORALL i; j IN [1::n]; [1::n]

M (i; j) :=

(
P 0

ij if Qij = j

1 otherwise

P :=MinRow(M)

UNTIL P = OldP

The opportunistic pointer jumping and tree hanging steps both serve to move

vertices closer to the correct root for the connected component to which they belong.

A vertex may switch from following one parent to another if it �nds that one of

its neighbors has found a smaller vertex (or root). These two steps serve to group

trees into connected components while reducing each connected component to a

rooted star. In contrast the normal pointer jumping step of the algorithm can only

shrink a tree to a rooted star, something the opportunistic pointer jumping step

also does. Hence, in practice we �nd that replacing the normal pointer jumping step

CONNECTED COMPONENTS FOR MESHES 7

with another opportunistic pointer jumping step improves the performance of the

algorithm. Since the next iteration will do another opportunistic pointer jumping

step, we can further simplify the implementation of the algorithm by dropping the

last pointer jumping step so the loop only consists of one opportunistic pointer

jumping step followed by tree hanging.

A graph can be represented as a matrix or an adjacency list. The variation

in representation gives rise to di�erent behavior. While the �rst representation is

well suited to dense graphs it is quite wasteful for sparse graphs. Algorithm A1,

described in section 3.1, stores the graph as an adjacency matrix. Algorithm A2,

described in section 3.2, stores the graph as an adjacency list. A1 is better suited

for dense graphs while A2 is better suited for sparse graphs as shown in section 4.

3.1. Algorithm A1: Matrix Representation. Consider a mesh of p � p pro-

cessors (or PEs, for processing elements). In the following discussion we assume

that wrap-around connections exist on the mesh, though it is not essential to the

algorithm.

We combine matrices P and A by storing Pij in Aij if (i; j) 2 E and1 otherwise.

Call this matrix M . We then use the diagonals of M to store OldP(), P 0

ij. The

matrix M is distributed by mapping M (i; j) to PE(i mod p; j mod p). Combining

this mapping with our algorithm, PE(a; b) only accesses M (i; j) if either i mod p =

a or j mod p = b. In both cases the required data is found within the row or

column.

The work complexity of algorithmA1 is O(n
2 logn), each PE does O((n

p
)2) work

per iteration. The total number of iterations is O(logn) and the total number of

PEs is p2.

3.2. Algorithm A2: Adjacency List Representation. If most of the elements

in M are 1, we waste space and time performing operations on the adjacency

matrix. So instead of distributing the entire matrix we can distribute only the

non 1 entries in the matrix | just the edges. Our approach is to store a sparse

adjacency matrix. We use the cyclic decomposition from A1: an edge (u; v) is

stored at the processor PE(u mod p; v mod p), but we only store edges present in

the graph and elide the 1 values. Thus we have a list of (u; v) values at each

processor. We can implement the row and column minimumoperations by merging

lists between processors, retaining the minimum u value for elements with equal

v values or vice versa (for this to yield a constant cost per edge, we must keep

the lists in sorted order). This implementation doesn't spoil the communication

characteristics of the algorithm since the required information can still be found

in the row or the column, but we may end up with load balancing problems if the

edges are not uniformly distributed in the graph (see Section 6.1).

The adjacency list is constructed and pre-processed in parallel at each processor.

The list is sorted using min(u; v) as the key, and the RowMin and ColMin oper-

ations work locally on the list before communicating with other processors. The

list pre-processing and the higher operation count per row or column operation

increases the per edge cost compared to A1, but this is o�set by the reduced work

(relative to the n2 adjacency matrix when the graph is su�ciently sparse).

The work complexity of this implementation is O((n + m) logn), since we rep-

resent only the m edges and the n values for P , P 0, etc. The number of iterations

stays the same. In our current implementation of A2, each processor still does

8 GODDARD, KUMAR, AND PRINS

some work for vertices that do not have adjacent edges mapping onto that proces-

sor; eliminating this work will further improve the timings.

4. Performance Results

We tested the performance of algorithms A1 and A2 on star, chain, tertiary, 2D-

mesh, 3D-mesh and random shaped graphs. We found that star graphs provided

the best results while long chains yielded the worst. Since the star and chain graphs

were created to exploit strengths and weakness speci�c to our algorithm, we do not

present those timing results. We have chosen instead (for brevity) to report results

measured on the canonical graph benchmarks of random and tertiary graphs and

variations thereof.

Many algorithms are quite sensitive to the structure of the graph. For exam-

ple, a class of graphs that are recursively de�ned as graphs of vertices which are

themselves graphs (with di�erent density and structure) pose di�culties for some

connected component algorithms. Such graphs are sometimes called hard graphs.

Due to the dependence of our algorithm on a chain's length, and not the actual

structure of the graph, such graphs do not negatively impact the performance of

our algorithms. In some cases our algorithms execute faster on hard graphs than

the `simple' graphs reported in this paper because hard graphs have more dense

connections that shorten the chains in the graph.

Section 4.1 de�nes the graph terms we use to describe our suite of benchmark

graphs. Section 4.2 describes how we built our test graphs. Section 4.3 addresses

how graphs are read into the MasPar and distributed. Sections 4.4, 4.5, and 4.6

address the performance of algorithms A1 and A2 on random, tertiary, and grid

graphs respectively. The timing tests reported in this paper (except the sequential

algorithm) were performed on a 8192 processor MasPar MP-1.

4.1. De�nitions. A graph in which each pair of distinct vertices is joined by an

edge is called a complete graph. The number of edges in a graph as a percentage

of complete cover is called its density: e.g., a p% dense graph has p

100
� n(n�1)

2

edges, n being the number of vertices in the graph. The number of edges incident

on a vertex is called its vertex degree and the degree of the graph is its maximum

vertex degree. A 2D graph is a subset of a two-dimensional toroidal grid. The

neighbors of a vertex in a 2D graph form a subset of the four neighbors on such a

grid [Gre93]. Similarly, a 3D graph is a subset of a three-dimensional toroidal grid

[Gre93]. The vertices of a random graph are joined at random, and unless otherwise

noted, the number of components is not constrained; it is a function of the random

edge generation. Each vertex of a tertiary graph has degree 3. When no duplicate

edges are allowed, a tertiary graph has 1:5n edges.

4.2. Generating Benchmark Graphs. Initially, we created graphs `on the y' as

other research projects had done [KLCY94, HRD94]. However, we found that this

method presented two problems. First, duplicate edges were created which inated

the `actual' number of edges, resulting in better performance for our algorithms.

The second problem was that creating graphs on the y precluded the possibility of

accurately comparing algorithms implemented on di�erent machines (or by other

groups).

We have created a tool,mkgraph, that was used to generate a suite of benchmark

graphs for �nding connected components. This program creates a binary graph �le

CONNECTED COMPONENTS FOR MESHES 9

consisting of a list of unique, undirected edges that conform to the options provided

on the command line.

The program can create graphs with a speci�c number of components that con-

form to one of four component structures: star, chain, mesh or random. The

structure de�nes the minimal connections between the nodes when forming the

component. After the initial component is created, the rest of the edges for that

component are added at random.

The total number of edges in an n node graph is de�ned by the vertex degree

or graph density. If a vertex degree is speci�ed, all vertices of the resulting graph

have the requested degree. Otherwise, the density parameter is used to de�ne the

total number of edges in the graph.

4.3. Reading and Distributing Graphs. All of our performance results were

measured with graphs created by the mkgraph tool. The graphs were read into the

MasPar and then distributed to the proper PEs in parallel. Although we measured

the time taken to read and distribute the graphs, this time is not included in

our performance results. Only the actual time to �nd the connected component is

presented in this paper. It is interesting to note that the time to read and distribute

the graphs ranged from 200 milliseconds to 2 seconds depending on the number

of edges. While reading the �le in parallel rather than sequentially signi�cantly

reduced the time it took to load the graph (by a few orders of magnitude), it still

dominated the time it took to actually �nd the components for most graphs. We

have determined that the limiting factor in loading the graph is the disk network

itself and not the use of the router, which indicates that using the MasPar to �nd

connected components must be part of a larger problem as opposed to a stand-alone

program.

Each PE reads m
p
edges from the �le where we have m edges and p processors.

The edges are then distributed to the proper PE via parallel sends using the router.

We studied several di�erent decompositions and found a cyclic decomposition based

on the vertex values provides the best performance on average.

Nodes, Edges A1 A2 Comments

time (ms) time (ms)

1000,9990 43.7 22.6 2% complete

2000,39980 125.4 47.2 2% complete

3000,89970 237.8 71.6 2% complete

4000,159960 387.7 103.8 2% complete

5000,249950 571.4 133.1 2% complete

6000,359940 766.1 164.1 2% complete

7000,489930 1014.2 197.6 2% complete

8000,639920 1294.4 335.1 2% complete

Table 1. Random Graphs: Other than density no other prop-

erty is prescribed for this experiment. The times increase linearly

with the size of the graph.

4.4. Random Graphs. Algorithms A1 and A2 perform well on random graphs,

which are more dense than tertiary or grid graphs. We tested a variety of random

10 GODDARD, KUMAR, AND PRINS

graphs and compare results from both algorithms. Algorithm A1 has clear perfor-

mance advantages in dense graphs, but when the density is under 20% A2 is the

faster.

Table 1 shows our results when we varied the number of nodes from 1000 to

8000 while maintaining a constant density of 2%. The times for both algorithms

increase almost linearly as the number of nodes is increased.

Our next suite of graphs all have 4096 nodes, but their density varies from 1% to

10%. Table 2 shows the timing results for both A1 and A2 in �nding the connected

components of these graphs.

Nodes, Edges A1 A2 Density

time (ms) time (ms)

4096,83865 407.2 133.3 1% complete

4096,167731 408.1 145.7 2% complete

4096,251596 408.9 158.5 3% complete

4096,335462 407.7 173.1 4% complete

4096,419328 300.2 136.4 5% complete

4096,503193 299.4 145.2 6% complete

4096,587059 298.7 154.9 7% complete

4096,670924 298.1 165.9 8% complete

4096,754790 297.3 176.1 9% complete

4096,838656 296.4 186.7 10% complete

Table 2. Varying Density of 4096 Node Random Graphs:

On sparse graphs, A2 always outperforms A1. The times increase

nearly linearly with the density of the graph.

Table 3 ampli�es the e�ciency of A1 for very dense graphs. When the number

of nodes is held constant, as in Table 2, and the density approaches 100%, A1 gets

faster. The inverse is true for A2 whose time to �nd the connected components

increases almost linearly with the increased number of edges. Table 3 also shows

what happens when the density is kept constant at 50%, but the number of nodes

is increased (as in Table 1 with 2% dense graphs).

Increasing Density Increasing size,50% dense

Nodes, Edges Density A1 A2 Nodes, Edges A1 A2

ms ms ms ms

4096,4193280 50% 268.4 547.8 1024,261888 35.5 55.7

4096,5031936 60% 264.6 631.7 2048,1048064 92.4 169.7

4096,5870592 70% 261.8 720.4 4096,4193280 268.4 547.8

4096,6709248 80% 260.2 799.7 8192,16775168 432.7 799.7

Table 3. Dense Graphs: The time for A1 goes down as we start

approaching the completeness of the graph since the distance of any

vertex to the lowest numbered vertex in its component decreases,

which is what drives the complexity of algorithm A1.

CONNECTED COMPONENTS FOR MESHES 11

4.5. Tertiary Graphs. Regular tertiary graphs are included in our benchmark

suite of sparse graphs. Tertiary graphs satisfy the property that each vertex has

exactly three neighbors. The neighbors are picked at random by the mkgraph

program such that all vertices have degree 3. Thus, each tertiary graph has 1.5n

edges. As with all graphs generated by mkgraph, no self-loops or duplicate edges

are allowed.

We employed a number of other de�nitions for tertiary graphs, but the perfor-

mance of our algorithms was not signi�cantly a�ected. In particular, we created

AD3 [KLCY94] graphs. Each vertex in an AD3 graph selects between 0 and 3

neighbors so that one vertex may end up being directly connected to many dif-

ferent nodes. Such graphs tend to have more components [KLCY94]. We also

generated graphs in which the degree of each vertex lies between 0 and 6 (uni-

formly distributed). The performance of A1 and A2 on these graphs mirrored the

results shown for tertiary graphs.

Nodes A2 Comments

time (ms)

50,000 2,095.6 75,000 Edges

100,000 4,160.0 150,000 Edges

150,000 6,208.6 225,000 Edges

200000 8,246.1 300,000 Edges

250000 10,288.8 375,000 Edges

Table 4. Tertiary Graphs: These are highly sparse graphs. The

degree of a node is �xed to 3, but the neighbors are selected ran-

domly. If we let the degree vary from 0 to 6, the performance of

the algorithms does not change noticeably.

We only present performance results from A2 on sparse graphs. There are two

reasons for this. First, the data structures required by A1 become too large to �t

in memory when the number of vertices gets beyond 9,000. Second, A1 is designed

for dense graphs and doesn't perform well on these sparse graphs.

The times shown in Table 4 are considerably higher than those in the previous

tables. The time taken by A2 to �nd the connected components of the tertiary

graphs ranges from approximately 2.01 seconds to 10.29 seconds when the number

of nodes varies from 50,000 to 250,000.

4.6. Grid Graphs. The other class of sparse graphs in our suite are the grids. We

generated two dimensional (2D) and three dimensional (3D) grid graphs. For each

possible edge of the grid, the probability that it exists in the graph was varied. The

probabilities were 0.4, 0.6, 0.2, and 0.4 for graphs of classes 2D40, 2D60, 3D20 and

3D40 respectively.

Grids are highly sparse graphs. As Tables 5 and 6 indicate, A2 is not a�ected by

the structure of these graphs as much as it is by their density. Most of these graphs

have long chains in comparison with random or tertiary graphs. As the density

of the graph increases, the average number of components and average length of a

chain decreases. The impact of the longer chains is clearly reected in the longer

execution times of A2 in Tables 5 and 6.

12 GODDARD, KUMAR, AND PRINS

A2 A2

Nodes 2D40 Edges 2D60 Edges

time(ms) time(ms)

65536 4,218.6 52496 4,426.1 78517

262144 14,460.2 208893 17,557.2 313593

300000 17,916.7 239239 16,018.3 359047

400000 25,325.1 319397 27,274.1 479365

Table 5. 2D Grids: Highly sparse two dimensional grids. The

2D40 and 2D60 graphs were constructed such that the probability

of a grid edge's existence in the graph is 40% and 60% respectively.

A2 A2

3D40 3D60

65536 2,507.8 39174 2,807.2 78403

262144 12,110.6 156825 11,080.5 313934

300000 15,547.3 179656 14,865.2 359321

400000 20,432.3 239755 25,290.9 479458

Table 6. 3D Grids: 3D20 and 3D40 are highly sparse three

dimensional grids. The corresponding probability of the existence

of a grid edge in the graph is 20% and 40% respectively.

5. Slower Algorithms

While working with early versions of A1 and A2 we evaluated the possibility

of performance gains using random mating techniques from the RM algorithm

of [Ble90], a variation of which was presented as cc RM2() in [Gre93]. Table 7

shows timing results of the NESL program cc RM2() compared with the MPL

implementations1 of Algorithm 5.2 of [J�92] and algorithm A2. We acknowledge

that the comparison is not entirely fair since MPL programs are in general faster

than NESL versions.

Greiner claims the RM algorithm has O(logn) time complexity and O(m logn)

work complexity in the worst case. However, the RM algorithm relies on CRCW

capabilities, and the MasPar doesn't provide such support in hardware. CRCW

can be simulated using library routines as was done in [HRD92], but then the

constant communication costs assumed in the PRAM analysis isn't constant in the

implementation. Moreover, the NESL implementation of the RM algorithm uses

calls to the router for the mating, which can take up to 100 times longer than a

mesh oriented communication mechanism. Our attempts to remove calls to the

router led to algorithms similar to A2, but less e�cient. Next we attempted to

use random mating techniques at selected points in the algorithm. However, the

performance cost of simulating the CRCW requirements of RM outweighed the

potential bene�ts. We have concluded that random mating will not improve the

performance of A1 or A2. Algorithms A1 and A2 perform well on the MasPar

1All algorithms, except the NESL cc RM2() program, were implemented using the language

MPL.

CONNECTED COMPONENTS FOR MESHES 13

because great care has been taken to eliminate calls to the router and they don't

require CRCW capabilities.

Nodes, Edges NESL RM J�aj�a's 5:2 A2 Density

seconds seconds seconds

4096,419328 229.380 13.72 0.1364 5% complete

4096,167731 52.650 14.23 0.1457 2% complete

4096,4096 3.73 4.1 0.12 0:05% complete

8192,81920 15.46 4.7 0.54 0:24% complete

16384,163840 32.34 68.0 16.97 0:12% complete

409600,409600 40.95 273.77 42.37 0:00005% complete

Table 7. Random Graphs: Comparisons of a NESL implemen-

tation of RandomMating to MPL implementations of sparse graph

connected component algorithms.

We also implemented a simple sequential algorithm based on depth �rst search of

the graph. This was implemented on an HP 9000-712/80, an 80MIPS machine. We

found that for small2 2% random graphs the sequential implementation beat our

MasPar algorithms. As the graph grows beyond 4K nodes, the sequential imple-

mentation starts getting slower. We observed that the sequential implementation

exhibited about 2-7 times improvement in performance for sparse random graphs

of up to 8K nodes over the MasPar routines. However, the sequential machine did

not have su�cient memory to store larger graphs. Therefore, performance dropped

considerably when the graphs were paged in and out of memory. The performance

of the sequential machine was limited by memory even though it had a signi�cantly

faster processor than the type of processors used in the MasPar.

6. Faster Algorithms

The success of a parallel algorithm lies in how well it keeps the processors busy

and how well the communication pattern can be mapped onto the structure of the

machine. We used fast communication mechanisms, but load balancing remains an

issue.

We found that cyclic (cut-and-stack) decomposition provides better all around

performance than hierarchical (block) decomposition for the sparse graphs handled

by A2, but both of these simple virtualization techniques can result in load imbal-

ances among the processors. While �rst developing our graph creation tool (see

Section 4.2) to build the benchmark graphs, we employed a bad random number

generator and our random graphs were not very random. The resulting graphs pro-

duced a load imbalance that was worse than 50:1 (and we may �nd such graphs

in practice). This type of load imbalance creates more work than our O(m logn)

goal, but the overall execution times were still not far from the numbers reported

in this paper | they were about 10{20% slower. With a more uniform random

number generator in place, we see processor load is balanced quite well with a load

imbalance on the order of 1:3:1 for 2% complete 8,000 node graphs. However, we

have seen an imbalance as high as 5:4:1 for some graphs.

2 4000 vertices

14 GODDARD, KUMAR, AND PRINS

We have identi�ed three distinct methods of improving the performance of our

connected components algorithms. The next three sections outline these ideas.

6.1. Load Balancing. Virtualizations based on random sampling may improve

the load balance between processors when an imbalance exists. To come close to

the best known PRAM complexity of O(m logn), we need to get the work dis-

tributed evenly. One way to achieve this goal would be to execute a fast graph

pre-conditioner that determines load balance and sparsity of the graph before it is

distributed. Our plan is to have each PE randomly select edges from the block it

reads and execute the pre-conditioner. This sampling is sorted and then segmented

scans count the degree of each node to determine the connectivity.

Load balancing can also be performed by creating new edges in under-loaded

PEs and then mapping some of the edges from the overloaded PEs to these new

edges. One can think of it as splitting graph G that contains a node u into two

graphs G1 and G2 that contain nodes u1 and u2 respectively. For each edge (u; v)

2 G there exists either (u1; v) 2 G1 or (u2; v) 2 G2. In addition, the edge (u1; u2)

is created. The resulting graph G0 = G1[G2 has the same connected components

as G.

6.2. Graph Contraction. Graph contraction, which substitutes a smaller, sim-

pler graph problem for the original graph, is another promisingmethod for reducing

the work complexity of our algorithm. In practice, after a couple of iterations, we

get several trees that form rooted stars. Some of these rooted stars are actually

stagnant trees while others are connected components that have already collapsed

to a star. Building a new graph with single nodes representing the rooted stars and

keeping only the vertices and edges necessary to continue the algorithm has the

potential to greatly reduce the work complexity. However, graph contraction intro-

duces its own set of problems. It can cause load imbalance, especially with vertices

that have dense connections in the new graph. Another problem in implementing

graph contraction is recognizing the duplicate edges that are no longer needed in

the smaller graph. Duplicate edges arise when one node in the contracted graph

represents a stagnant rooted star that has edges connecting multiple leaf vertices

to a node in a chain of another tree. While both of these problems have been

solved before, the solution employed must use only row or column communication

primitives if we are to reduce the execution time of the algorithm as well as its work

complexity.

6.3. Type of Graph. There exist a variety of algorithms that perform di�erently

on di�erent classes of graphs. If we could identify the best possible algorithm for

a given class of graphs and given a graph, identify its class e�ciently, we may be

able to �nd components of any given graph e�ciently.

In this enhancement, we choose one of the connected components algorithms

based on the graph density in the sampled data. The hard part is �nding the

correct density thresholds for the sampled data. We hope to spend a small amount

of time up front to select the proper algorithm and to create a balanced work load.

For a large class of graphs, this overhead will be more than o�set by the e�ciency

gained by selecting the correct algorithm and having the work evenly distributed.

We feel that this type of sophisticated virtualization is the key to �nding con-

nected components quickly. It provides the opportunity to select the best algorithm

for the graph density and to distribute the work evenly.

CONNECTED COMPONENTS FOR MESHES 15

7. Conclusion

We have shown how to implement pointer jumping and related CRCW PRAM

operations using simple row and column operations to minimize communication

time and thus speed up the total execution. We have encouraging performance

results, and have shown the feasibility of e�cient implementations on modest sized

machines.

10

100

1000

1000 104 105 106 107

Sequential (HP 712/80)
A1 on 8K MasPar MP-1
A2 on 8K MasPar MP-1

T
im

e
in

 m
ill

is
ec

on
ds

 (m
s)

Number of edges
Figure 3. Performance Analysis: This graph plots the perfor-

mance of algorithms A1 and A2 against a depth-�rst sequential

algorithm for a 4096 vertex graph as we increase the graph density

(i.e. the number of edges). Algorithms A1 and A2 were executed

on a 8196 processor MasPar MP-1. The sequential algorithm was

executed on a HP 712/80 workstation.

The graph in Figure 3 shows the e�ectiveness of our algorithms. The number

of edges were varied while keeping the number of nodes constant at 4096. The

performance of algorithms A1 and A2 have been compared with a sequential imple-

mentation on an HP 712/80 workstation. The size was kept small to accommodate

the sequential implementation, but the general characteristics of A1 and A2 is re-

ected in this graph. (For larger graphs, the sequential implementation becomes

less competitive at lower densities.) The time of A1, which uses the adjacency

matrix explicitly, remains relatively constant, while the time of A2 increases with

the number of edges. The shape of the graph for A2 tracks the sequential imple-

mentation much more closely since it uses an adjacency list like representation.

Not surprisingly, the key to getting good execution times for sparse graphs is the

careful implementation of the row and column operations on the sparse adjacency

matrix. We believe we can get results on highly sparse graphs that rival our random

graph times by additional e�orts in this area. With more data structure changes,

we think we can increase the size of the graphs that we will be able to process and

reduce the total time. We also believe that such changes will make it possible to do

work at each step strictly proportional to the largest number of edges present on

16 GODDARD, KUMAR, AND PRINS

any processor. To this end, we believe there is a potential bene�t in using sampling

techniques to reduce the work balance problem to a manageable task.

Further work in this area includes the analysis and implementation of the row

and column operations on other parallel machines to examine their performance

relative to CRCW operations. If the results of that e�ort look promising, there

are many other CREW and CRCW PRAM graph algorithms that employ pointer

jumping and similar operations that could be implemented using the techniques we

have described to make them more practical on current parallel machines.

References

[AS87] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracom-

puter and PRAM. IEEE Transactions on Computers, 36(10):1258{1263, 1987.

[Ble90] G. Blelloch. Unpublished CVL Code, 1990.

[CLC82] F. Chin, J. Lam, and I. Chen. E�cient parallel algorithms for some graph problems.

Communications of the ACM, 25(9):659{665, 1982.

[CV91] R. Cole and U. Vishkin. Approximate parallel scheduling. Part II: Application to op-

timal parallel graph algorithms in logarithmic time. Information and Computation,

92(1):1{47, 1991.

[Gre93] J. Greiner. A comparison of data-parallel algorithms for connected components. Tech-

nical Report CMU-CS-93-191, CMU, 1993.

[HCS79] D. Hirschberg, A. Chandra, and D. Saraswate. Computing connected components on

parallel computers. Communications of the ACM, 22(8):461{464, 1979.

[Hir76] D. Hirschberg. Parallel algorithms for the transitive closure and the connected com-

ponent problems. In Eighth Annual ACM Symposium on theory of Computing, pages

55{57, Hershey, Pennsylvania, 1976.

[HRD92] T. Hsu, V. Ramachandran, and N. Dean. Implementation of parallel graph algorithms

on the MasPar. Technical Report TR-92-38, University of Texas at Austin, 1992.

[HRD94] T. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for

�nding connected components. In DIMACS implementation challenge, 1994.

[HW90] Y. Han and A. Wagner. An e�cient and fast parallel-connected component algorithm.

JACM, 37(3):626{642, 1990.

[J�92] J. J�aj�a. An Introduction to Parallel Algorithms. Addison Wesley, NewYork, 1992.

[KLCY94] A. Krishnamurthy, S. Lumetta, D. Culler, and K. Yelick. Connected components on

distributed memory machines. In DIMACS implementation challenge, 1994.

[KRS86] C. Kruskal, L. Rudolph, and M. Snir. E�cient parallel algoritms for graph problems.

In 1986 International Conference on Parallel Processing, pages 278{284, St. Charles,

Illinois, 1986.

[SV82] Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm. Journal of

Algorithms, 3(1):57{67, 1982.

[Vis84] U. Vishkin. An optimal parallel connectivity algorithm.Discrete Applied Mathematics,

9(2):197{207, 1984.

[Wyl79] J. Wyllie. The Complexity of Parallel Computation. PhD thesis, Cornell University,

Department of Computer Science, Ithaca, NewYork, 1979.

Department of Computer Science, University of North Carolina, Chapel Hill NC

27599-3175, USA,

E-mail address : goddard@cs.unc.edu

