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ABSTRACT
The recent addition of task parallelism to the OpenMP shared mem-
ory API allows programmers to express concurrency at a high level
of abstraction and places the burden of scheduling parallel execu-
tion on the OpenMP run time system. This is a welcome develop-
ment for scientific computing as supercomputer nodes grow "fatter"
with multicore and manycore processors. But efficient scheduling
of tasks on modern multi-socket multicore shared memory systems
requires careful consideration of an increasingly complex memory
hierarchy, including shared caches and NUMA characteristics. In
this paper, we propose a hierarchical scheduling strategy that lever-
ages different methods at different levels of the hierarchy. By allow-
ing one thread to steal work on behalf of all of the threads within
a single chip that share a cache, our scheduler limits the number of
costly remote steals. For cores on the same chip, a shared LIFO
queue allows exploitation of cache locality between sibling tasks
as well between a parent task and its newly created child tasks.
We extended the open-source Qthreads threading library to im-
plement our scheduler, accepting OpenMP programs through the
ROSE compiler.

We also present a comprehensive performance study of diverse
OpenMP task parallel benchmarks, comparing seven different task
parallel run time scheduler implementations on current generation
multi-socket multicore systems: our hierarchical work stealing sched-
uler, a fully-distributed work stealing scheduler, a centralized sched-
uler, and LIFO and FIFO versions of the original Qthreads fully-
distributed scheduler. In addition, we compare our results against
OpenMP implementations from Intel and GCC. Hierarchical schedul-
ing in Qthreads is competitive on all benchmarks. On several bench-
marks, hierarchical scheduling in Qthreads demonstrates speedup
and absolute performance superior to both the Intel and GCC OpenMP
run time systems.
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1. INTRODUCTION
Task parallel programming models offer a simple way for appli-

cation programmers to specify parallel tasks in a form that easily
scales with problem size, leaving the scheduling of these tasks onto
processors to be performed at run-time. Task parallelism is well
suited to the expression of nested parallelism in recursive divide-
and-conquer algorithms and of unstructured parallelism in irregular
computations.

Recent interest in task parallel languages can be traced to the
emergence of multicore processors and the realization that future
performance improvements will increasingly require the use of ad-
ditional cores rather than increasing performance of individual cores.
A problem-centric approach to the specification of parallelism is
attractive compared to a processor-centric SPMD specification of
parallelism because it simplifies programming, can reasonably ex-
press a larger class of problems, and may offer more transparent
scaling as the core count in a shared memory system increases.

An efficient task scheduler must meet challenging and some-
times conflicting goals: exploit cache and memory locality, main-
tain load balance, and minimize overhead costs. Load imbalance
arises when there is an inequitable distribution of work among pro-
cessors at a particular time. Without redistribution of work, idle-
ness results. Load balancing operations, when successful, redis-
tribute the work more equitably across processors. However, load
balancing operations contribute to overhead costs. Furthermore,
load balancing operations between sockets increase memory access
time due to more cold cache misses and more high-latency remote
memory accesses. This paper proposes an approach to mitigate
these issues and advances understanding of their impact through
the following contributions:

1. A hierarchical scheduling strategy targeting modern multi-
socket multicore shared memory systems whose NUMA



architecture is not well supported by flat schedulers. Our ap-
proach combines work stealing and shared queues for low
overhead load balancing and exploitation of shared caches.

2. A detailed performance study on a current generation
multi-socket multicore system comparing seven run time
implementations supporting task parallel OpenMP programs:
five implementing different schedulers in our extensions to
the open-source Qthreads library, GNU’s GCC OpenMP run
time, and the Intel OpenMP run time. In addition to speedup
results demonstrating superior performance by our run time
on many of the diverse benchmarks tested, we examine sev-
eral secondary metrics that illustrate the benefits of hierar-
chical scheduling over flat work stealing.

The remainder of the paper is organized as follows: Section 2
provides relevant background information, Section 3 describes ex-
isting task scheduler designs and our hierarchical approach, Sec-
tion 4 presents the results of our experimental evaluation, and Sec-
tion 5 discusses related work. We conclude in Section 6 with some
final observations and proposed future work.

2. BACKGROUND
Broadly supported by both commercial and open-source compil-

ers, OpenMP allows incremental parallelization of serial programs
for execution on shared memory parallel computers. Version 3.0
of the OpenMP specification for FORTRAN and C/C++ officially
adds explicit task parallelism to complement its existing data par-
allel constructs [22, 2]. The OpenMP task construct generates a
task from a statement or structured block. Task synchronization
is provided by the taskwait construct, and the semantics of the
OpenMP barrier construct have also been overloaded to require
completion of all outstanding tasks.

Execution of OpenMP programs combines the efforts of the com-
piler and an OpenMP run time library. Intel and GCC both have
integrated OpenMP compiler and run time implementations. Using
the ROSE compiler [21], we have created an equivalent method to
compile and run OpenMP programs with the Qthreads [26] library.
The ROSE compiler is a source-to-source translator that supports
OpenMP 3.0 with a simple compiler flag. In one compile step, it
produces an intermediate C++ file and compiles that file with addi-
tional libraries to produce an executable. ROSE performs syntactic
and semantic analysis on OpenMP directives, transforming them
into run time library calls in the intermediate program. A common
run time library (XOMP) serves as an intermediate representation
to support OpenMP functionality. We have slightly modified ROSE
(mostly bug fixes) to produce a file that is compiled by GCC and
uses the Qthreads library to produce an executable.

2.1 Qthreads
Qthreads [26] is a cross-platform general-purpose parallel run-

time designed to support lightweight threading and synchronization
in a flexible integrated locality framework. Qthreads directly sup-
ports programming with lightweight threads and a variety of syn-
chronization methods, including non-blocking atomic operations
and potentially blocking full/empty bit (FEB) operations. The Qthreads
lightweight threading concept is intended to match future hard-
ware threading environments more closely than existing concepts
in three crucial aspects: anonymity, introspectable limited resources,
and inherent localization. Unlike heavyweight threads, these threads
do not support expensive features like per-thread identifiers, per-
thread signal vectors, or preemptive multitasking.

The default scheduler in the Qthreads runtime uses a cooperative-
multitasking approach. When threads block, e.g., performing an

FEB operation, a context switch is triggered. Because this context
switch is done in user space via function calls and requires neither
signals nor saving a full set of registers, it is less expensive than an
operating system or interrupt-based context switch. This technique
allows threads to process uninterrupted until data is needed that is
not yet available, and allows the scheduler to attempt to hide com-
munication latency by switching tasks. Logically, this only hides
communication latencies that take longer than a context switch.

The Qthreads runtime uses a hierarchical threading architecture.
Lightweight threads are created in user-space with a small con-
text and small fixed-size stack and are then executed by worker
pthreads. Each worker pthread is mapped to a locality domain,
termed a shepherd, which is enforced with CPU pinning. Whereas
Qthreads previously allowed only one worker pthread per shepherd,
we added support for multiple worker pthreads per shepherd.

The Qthreads API includes several threaded loop interfaces, built
on top of the core threading components. The API provides three
basic parallel loop behaviors: one to create a separate thread for
each iteration, one that divides the iterations space evenly among
all shepherds, and one that uses a queue-like structure to distribute
sub-ranges of the iteration space to enable self-scheduled loops.

We added support for the ROSE produced XOMP calls to Qthreads
allowing Qthreads to be used as the run time for OpenMP pro-
grams. Although Qthreads XOMP/OpenMP support is incomplete,
it has accepted every OpenMP program accepted by ROSE. Note
that our version of ROSE/Qthreads differs from the OpenMP stan-
dard in two ways: Default loop scheduling is self-guided, rather
than static (though it can be explicitly requested), and one com-
mon OpenMP 3.0 idiom requires the addition of an extra taskwait
statement.

3. TASK SCHEDULER DESIGN
The stock Qthreads scheduler, called Q in Section 4, was en-

gineered for parallel loop computation: each processor executes
a set of loop iterations packaged as lightweight threads. Round
robin distribution of the iterations among the shepherds and self-
scheduling are used in combination to maintain load balance. A
simple lock-free per-shepherd FIFO queue stores iterations as they
wait to be executed.

Task parallel programs generate a dynamically unfolding sequence
of interrelated tasks, often represented by a directed acyclic graph
(DAG). A task executing on the same thread as its parent or sibling
tasks may benefit from temporal locality if they operate on the same
data. In particular, such locality properties are a feature of divide-
and-conquer algorithms. To schedule tasks as lightweight threads
in the Qthreads, the run time must support more general dynamic
load balancing while exploiting available locality among tasks. We
implemented a modified Qthreads scheduler, L, to use LIFO rather
than FIFO queues at each shepherd to improve the use of locality.
However, the round robin distribution of tasks between shepherds
does not provide fully dynamic load balancing.

3.1 Work Stealing & Centralized Schedulers
To better meet the dual goals of locality and load balance, we

implemented work stealing. Blumofe et. al proved that work steal-
ing is optimal for multithreaded scheduling of DAGs with mini-
mal overhead costs [6], and they implemented it in their Cilk run
time scheduler [5]. Our initial implementation of work stealing in
Qthreads, WS, mimicks Cilk’s scheduling discipline: Each shep-
herd schedules tasks depth-first locally through LIFO queue oper-
ations. An idle shepherd obtains more work by stealing the oldest
tasks from the task queue of a busy shepherd. We implemented
two different probing schemes to find a victim shepherd, observ-



Qthreads Implementations, compiled Rose/GCC -O2 -g
Version Scheduler Number of Task Internal External
Name Implementation Shepherds Placement Queue Access Queue Access

Q Stock one per core round robin FIFO (non-blocking) none
L LIFO one per core round robin LIFO (blocking) none

CQ Centralized Queue one N/A LIFO (blocking) N/A
WS Work Stealing one per core local LIFO (blocking) FIFO stealing

MTS Multi-Threaded Shepherds one per chip local LIFO (blocking) FIFO stealing
ICC Intel 11.1 OpenMP, compiled -O2 -xHost -ipo -g
GCC GCC 4.4.4 OpenMP, compiled -O2 -g

Table 1: Scheduler implementations evaluated: five Qthreads implementations, ICC, and GCC.

ing equivalent performance: choosing randomly and commencing
search at the nearest shepherd ID to the thief. In the work stealing
scheduler, interruptions to busy shepherds are minimized because
the burden of load balancing is placed on the idle shepherds. Lo-
cality is preserved because newer tasks, whose data is still hot in
the processor’s cache, are the first to be scheduled locally and the
last in line to be stolen.

The cost of work stealing operations on multi-socket multicore
systems varies significantly based on the relative locations of the
thief and victim, e.g., whether they are running on cores on the
same chip or on different chips. Stealing between cores on different
chips reduces performance by incurring higher overhead costs, ad-
ditional cold cache misses, remote memory access costs, and coher-
ence misses due to false sharing. Another limitation of work steal-
ing is that it does not make the best possible use of caches shared
among cores. In contrast, Chen et. al. [10] showed that a depth-
first schedule close to serial order makes better use of a shared
cache than work stealing, assuming serial execution of an appli-
cation makes good use of the cache. Blelloch et al. had shown that
such a schedule can be acheived using a shared LIFO queue [4]. We
implemented a centralized shared LIFO queue, CQ, for Qthreads,
but it too is a poor match for multi-socket multicore systems since
not all cores, but only cores on the same chip, share the same cache.
Moreover, the centralized queue implementation is not scalable, as
contention drives up the overhead costs.

3.2 Hierarchical Scheduling
To overcome the limitations of both work stealing and shared

queues, we developed a hierarchical approach: multithreaded shep-
herds, MTS. We create one shepherd for all the cores on the same
chip. These cores share a cache and all are proximal to a local
memory attached to that socket. Within each shepherd, we map one
worker to each core. Among workers in each shepherd, a shared
LIFO queue provides depth-first scheduling close to serial order to
exploit the shared cache. Thus, load balancing happens naturally
among the workers on a chip and concurrent tasks have possible
overlapping localities that can be captured in the shared cache.

Between shepherds work stealing is used to maintain load bal-
ance. Each time the shepherd’s task queue becomes empty, only
the first worker to find the queue empty steals enough tasks (if
available) from another shepherd’s queue to supply all the work-
ers in its shepherd with work. The other workers in the shepherd
spin until the stolen work appears. Aggregate task queueing for
workers within each shepherd reduces the need for remote stealing.
While a shared queue can be a performance bottleneck, the number
of cores per chip is bounded, and intra-chip locking operations are
fast within a chip.

4. EVALUATION
To evaluate the performance of our hierarchical scheduler and

the other Qthreads schedulers, we present results from the Barcelona
OpenMP Tasks Suite (BOTS), version 1.1, available online [13].
The suite comprises a set of task parallel applications from vari-
ous domains with varying computational characteristics [14]. Our
experiments used the following benchmark components and inputs:

• Alignment: Aligns sequences of proteins using dynamic pro-
gramming (100 sequences)

• Fib: Computes the nth Fibonacci number using brute-force
recursion (n = 50)

• Health: Simulates a national health care system over a series
of timesteps (144 cities)

• NQueens: Finds solutions of the n-queens problem using
backtrack search (n = 14)

• Sort: Sorts a vector using parallel mergesort with sequential
quicksort and insertion sort (128M integers)

• SparseLU: Computes the LU factorization of a sparse matrix
(10000 × 10000 matrix, 100 × 100 submatrix blocks)

• Strassen: Computes a dense matrix multiply using Strassen’s
method (8192 x 8192 matrix)

For the Fib, Health, and NQueens benchmarks, the default man-
ual cut-off configurations provided in BOTS are enabled to prune
the generation of tasks below a prescribed point in the task hier-
archy. For Sort, cutoffs are set to transition at 32K integers from
parallel mergesort to sequential quicksort and from parallel merge
tasks to sequential merge calls. For Strassen, the cut-off giving the
best performance for each implementation is used. For both the
Alignment and SparseLU benchmarks, BOTS provides two differ-
ent source files: one in which computation starts with a single ini-
tial task and another in which tasks are generated in a loop.1 Other
BOTS benchmarks are not presented here: UTS and FFT use of
very fine-grained tasks without cutoffs, yielding poor performance
on all run times, and floorplan raises compilation issues in ROSE.

The test system for our experiments is a Dell PowerEdge M910
quad-socket blade with four Intel x7550 2.0GHz 8-core Nehalem-
EX processors installed for a total of 32 cores. Each processor
has an 18MB shared L3 cache and each core has a private 256KB
L2 cache as well as 32KB L1 data and instruction caches. The
blade has 64 dual-rank 2GB DDR3 memory sticks (16 per proces-
sor chip) for a total of 132GB. It runs CentOS Linux with a 2.6.35
1The single task versions of both required the addition of a
taskwait statement. The parallel loop versions required minor
hand-editing of the ROSE intermediate output because of a com-
piler bug that has since been fixed.



Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
ICC -O2 -xHost -ipo Serial 28.33 100.4 15.07 49.35 20.14 117.3 169.3

GCC -O2 Serial 28.06 83.46 15.31 45.24 19.83 119.7 162.7
ICC 32 threads 0.9110 4.036 1.670 1.793 1.230 7.901 10.13
GCC 32 threads 0.9973 5.283 7.460 1.766 1.204 4.517 10.13

Qthreads MTS 32 workers 1.024 3.189 1.122 1.591 1.080 4.530 10.72

Table 2: Sequential and parallel performance using ICC, GCC, and the Qthreads MTS scheduler (time in sec.). For Alignment and SparseLU,
the best time between the two parallel variations (single and for) is shown.
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Figure 1: Health
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Figure 2: Sort

kernel. Although the x7550 processor supports HyperThreading
(Intel’s simultaneous multithreading technology), we pinned only
one thread to each physical core for our experiments.

We ran the battery of tests on a variety of systems, including
five versions of Qthreads2 and the widely available implementa-
tions from Intel and the Free Software Foundation (GNU) [15], as
described in Table 1. The original version of Qthreads, Q defines
each core to be a separate locality domain or shepherd. It uses a
lock-free FIFO queue to schedule tasks within each shepherd (indi-
vidual core). Each shepherd only obtain tasks from its local queue,
although tasks are distributed across shepherd in a round robin ba-
sis when generated for load balance. Work stealing required using
a double ended queue, so the lock-free version was replaced with
a simple double ended locking LIFO queue for the other versions.
L incorporates this queue, replacing the original FIFO queue. CQ
uses a single centralized shared queue to distribute tasks among
2all compiled with GCC 4.4.4 -O2

all of the cores. For large tasks this should produce very balanced
load, but as the task size shrinks the contention for the queue lim-
its scalability. Each core is provided its own queue in WS, and idle
shepherds steal tasks from the shepherds running on the other cores.
Initial task placement is not round robin between queues, but onto
the local queue of the shepherd where it is generated, exploiting
locality among related tasks. MTS assigns one shepherd to every
processor memory locality (shared L3 cache on chip and attached
DIMMs). Each core on a chip hosts a worker thread that shares
its shepherd’s queue. Only one core is allowed to actively steal
tasks on behalf of the queue at a time and tasks are stolen in chunks
big enough (tunable) to keep all of the cores busy. All executables
using the Qthreads and GCC run times were compiled with GCC
4.4.4 and -O2 -g, for consistency. Executables using the Intel run
time were compiled with ICC 11.1 and -O2 -xHost -ipo. Reported
results are from the best of ten runs.

4.1 Overall Performance
Overall the GCC compiler and ICC compiler produce excuta-

bles with similar serial performance, as shown in Table 2. These
serial execution times provide a basis for us to compare the rela-
tive speedup of the various benchmarks. Note that if the -ipo and
-xHost flags are not used with ICC on SparseLU, the GCC serial
executable runs 3x faster than ICC executable compiled with -O2
alone. Several other benchmarks also run slower with those ICC
flags omitted, though not by such a large margin.

Qthreads MTS 32 core performance is faster or comparable to
the performance of ICC and GCC. In absolute execution time, MTS
runs faster than ICC for 5 of the 7 benchmarks by up to 74.4%. It
is over 6.6x faster for one benchmark than GCC and up to 65.6%
faster on 4 of the 6 others. On two benchmarks MTS runs slower:
for Alignment, it is 12.4% slower than ICC and 2.7% slower than
GCC and for Strassen it is 5.8% slower than both (although WS
equalled GCC’s performance [see discussion on Strassen in sec. 4.2]).
Even as a research prototype, ROSE/Qthreads provides a competi-
tive OpenMP task parallelism execution platform.

4.2 Individual Performance
Individual benchmark performance on multiple implementations

of the OpenMP run time demonstrates features of particular appli-
cations where Qthreads generates better scheduling and where it
needs further development. Examining where the run times differ
in performance and speedup on up to 32 cores reveals the strengths
and weaknesses of each scheduling approach.

The Health benchmark, Figure 1, shows significant diversity in
performance and speedup. GNU performance is slightly superlin-
ear for 4 cores (4.5x), but peaks with only 8 cores active (6.3x)
and by 32 cores the speedup is only 2x. Intel also has scaling is-
sues and performance flattens to 9x at 16 cores. Stock Qthreads Q
scales slightly better (9.4x), but just switching to the LIFO queue
L to improve locality between tasks allows speedup on 32 cores to
reach 11.5x. Since the individual tasks are relatively small, CQ ex-
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Figure 3: NQueens

periences contention on its task queue that limits speedup to 7.7x
on 16 cores, with performance degrading to 6.1x at 32 cores. When
work stealing, WS, is added to Qthreads the performance improves
slightly and speedup reaches 11.6x. MTS further improves locality
and load balance on each processor by sharing a queue across the
cores on each chip, and speedup increases to 13.6x on 32 cores.
This additional scalability allows Qthread MTS a 17.3% faster exe-
cution time on 32 cores than any other implementation, much faster
than ICC (48.7%) and GCC(116.1%). Health provides an excellent
example of how both work stealing and queue sharing within a sys-
tem can independently and together improve performance.

The benefits of hierarchical scheduling can also be seen in Fig-
ure 2. Sort, for which we used a manual cutoff of 32K integers
to switch between parallel and serial sorts, achieved speed up of
about 16x for 32 cores on ICC and GCC, but just 11.4x for the base
version of Qthreads, Q. The switch to a LIFO queue, L, improved
speedup to 13.6x by facilitating data sharing between a parent and
child. Independent changes to add work stealing, WS, and improve
load balance, CQ, both improved speedup to 16x. By combining
the best features of both work stealing and multiple threads sharing
a queue, MTS increased speedup to 18.4x and achieved an 13.8%
and 11.4% reduction in overall execution time compared to ICC
and GCC OpenMP versions.

Locality effects allow NQueens to achieve slightly super-linear
speedup for 4 and 8 cores using Qthreads. As seen in Figure 3,
speedup is near-linear for 16 threads and only somewhat sub-linear
for 32 threads on all OpenMP implementations. By adding load
balancing mechanisms to Qthreads, its speedup improved signifi-
cantly (24.3x to 28.4x). CQ and WS both improved load balance
beyond what the LIFO queue (L) provides and little is gained by
combining them together in MTS. The additional scaling of these
three versions results in a execution time 12.6% faster than ICC and
10.9% faster than GCC.

Fib, Figure 4, uses a cut-off to stop the creation of very small
tasks, and thus has enough work in each task to amortize the costs
of queue access. CQ yields performance 2-3% faster than MTS
and the other versions of Qthreads, since load balance is good and
no time is spent looking for work. The load balancing versions of
Qthreads (26.1x - 26.7x) scale better than Intel 24.9x. Both sys-
tems beat GCC substantially at only 15.8x. Overall, the scheduling
improvements resulted in MTS running 26.5% faster than ICC and
28.8% faster than GCC but 2.0% slower than CQ.

The next two applications Alignment and SparseLU, each have
two versions. For Alignment, Figures 5 and 6, speedup was near-
linear for all versions and execution times between GCC and Qthreads
were close (GCC+2.7% single initial task version; Qthreads+0.5%
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Figure 4: Fib
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Figure 5: Alignment-single
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Figure 6: Alignment-for

parallel loop version). ICC scales better than GCC or Qthreads
MTS, WS, CQ, with 12.4% lower execution time. Since Alignment
has no taskwait synchronizations, we speculate that ICC scales
better on this benchmark because it maintains fewer bookkeeping
data structures in the absence of synchronization.

On both SparseLU versions, ICC serial performance improved
nearly 3x using the -ipo and -xHost flags rather than using -O2
alone. The flags also improved parallel performance, but by only
60%, so the improvement does not scale linearly. On SparseLU-
single, Figure 7, the performance of GCC and the various Qthreads
versions is effectively equivalent, with speedup reaching 26.2x. Due
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Figure 7: SparseLU-single
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Figure 8: SparseLU-for

to the aforementioned scaling issues, ICC speedup reaches only
14.8x. The execution times differ by 0.3% between GCC and MTS
with both about 74.4% faster than ICC. On SparseLU-for, Fig-
ure 8, the GCC OpenMP runs were stopped after 30 minutes; thus
data is not reported. ICC again scales poorly (14.8x), and Qthreads
speedup improves due to the LIFO work queue and work stealing,
reaching 22.2x. MTS execution time is 46.3% faster than ICC.

Strassen, Figure 9, performs recursive matrix multiplication us-
ing Strassen’s method and is challenging for implementations with
multiple workers accessing a queue. We used the cutoff setting that
gave the best performance for each implementation: coarser (128)
for CQ and MTS and the default setting (64) for the others. The
execution times of GCC, and WS are within 1% of each other on
32 cores, and Intel scales slightly better (16.7x vs 16.1x). For MTS,
in which only 8 threads share a queue (rather than 32 as in CQ)
the speedup reaches 15.2x. For CQ, however, the performance hit
due to queue contention is substantial, as speedup peaks at 9.7x. Q
performance suffers from the FIFO ordering: not enough parallel
work is expressed at any one time, and speedup never exceeds 4x.

4.3 Variability
One interesting feature of a work stealing run time is an idle

thread’s ability to search for work and the effect this has on perfor-
mance in regions of limited parallelism or load imbalance. Table 3
gives the standard deviation of 10 runs as a percent of the fastest
time for each configuration tested with 32 threads. Both Qthreads
implementations with work stealing (WS and MTS) have very small
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Figure 9: Strassen

deviations for 3 of the 9 programs. For 8 of the 9 benchmarks, both
WS and MTS show less deviation than ICC.

In three cases (Alignment-single, Health, SparseLU-single),
Qthreads WS deviation was much lower than MTS. Since MTS en-
ables only one worker thread per shepherd at a time to steal a chunk
of tasks, it is reasonable to expect this granularity to be reflected
in execution time variations. Overall, we see less variation with
WS than MTS in 6 of the 9 benchmarks. We speculate that nor-
mally having all the threads looking for work leads to finding the
last work quickest and therefore less variation in total execution
time. However, for some programs (Alignment-for, SparseLU-
for, Strassen), stealing multiple tasks and moving them to an idle
shepherd results in faster execution during periods of limited par-
allelism. WS also shows less deviation than GCC in 6 of the 8 pro-
grams for which we have data. There is no data for SparseLU-for
on GCC, as explained in the previous section.

4.4 Performance Benefits of MTS
Limiting the number of inter-chip load balancing operations is

central to the design of our hierarchical scheduler (MTS). Consider
the number of remote (off-chip) steal operations performed by MTS
and by the flat work stealing scheduler WS, shown in Table 4. These
counts exclude the number of on-chip steals performed by WS, and
recall that MTS uses work stealing only between chips. We observe
that WS steals more than MTS in almost all cases, and some cases
by an order of magnitude. Health and Sort are two benchmarks
where MTS wins clearly in terms of speedup. WS steals remotely
over twice as many times as MTS on Sort and nearly twice as many
times as MTS on Health. The number of failed steals is also signif-
icantly higher with WS than with MTS. A failed steal occurs when
a thief’s lock-free probe of a victim indicates that work is available
but upon acquisition of the lock to the victim’s queue the thief finds
no work to steal because another thread has stolen it or the victim
has executed the tasks itself. Thus, both failed and completed steals
contribute to overhead costs.

The MTS scheduler aggregates inter-chip load balancing by per-
mitting only one worker at a time to initiate bulk stealing from re-
mote shepherds. Figure 10 shows how this improves performance
on Health, one of the benchmarks sensitive to load balancing gran-
ularity. If only one task is stolen at time, subsequent steals are
needed to provide all workers with tasks, adding to overhead costs.
There are eight cores per socket on our test machine, thus eight
workers per shepherd. This coincides with the peak performance:
When the number of tasks stolen corresponds to the number of
workers in the shepherd, all workers in the shepherd are able to
draw work from the queue as a result of the steal.



Configuration Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

ICC 32 threads 4.4 2.0 3.7 2.0 3.2 4.0 1.1 3.9 1.8
GCC 32 threads 0.11 0.34 2.8 0.35 0.77 1.8 0.49 N/A 1.4

Qthreads MTS 32 workers 0.28 1.5 3.3 1.3 0.78 1.9 0.15 0.16 1.9
Qthreads WS 32 shepherds 0.035 1.8 2.0 0.29 0.60 0.90 0.060 0.24 3.0

Table 3: Variability in performance using ICC, GCC, MTS, and WS schedulers (standard deviation as a percent of the fastest time).

Benchmark MTS WS
Steals Failed Steals Failed

Alignment (single) 1016 88 3695 255
Alignment (for) 109 122 1431 286

Fib 633 331 467 984
Health 28948 10323 295637 47538

NQueens 102 141 1428 389
Sort 1134 404 19330 3283

SparseLU (single) 18045 8133 68927 24506
SparseLU (for) 13486 11889 68099 32205

Strassen 227 157 14042 823

Table 4: Number of remote steal operations during execution of
Health and Sort by Qthreads MTS & WS schedulers. In a failed
steal, the thief acquires the lock on the victim’s queue after a posi-
tive probe for work but ultimately finds no work available for steal-
ing. On-chip steals performed by the WS scheduler are excluded.
Average of ten runs.

Metric MTS WS %Diff
L3 Misses 1.16e+06 2.58e+06 38

Bytes from Memory 8.23e+09 9.21e+09 5.6
Bytes on QPI 2.63e+10 2.98e+10 6.2

Table 5: Memory performance data for Health using MTS and WS.
Average of ten runs.

Another benefit of the MTS scheduler is better L3 cache perfor-
mance, since all workers in a shepherd share the on-chip L3 cache.
The WS scheduler exhibits poorer cache performance, and subse-
quently, more reads to main memory. Tables 5 and 6 show the rel-
evant metrics for Health and Sort as measured using hardware per-
formance counters, averaged over ten runs. They also show more
traffic on the Quick Path Interconnect (QPI) between chips for WS
than for MTS. The increased QPI traffic reflects more remote steals
using WS and more snoop probes for data in remote L3 caches.

5. RELATED WORK
Many theoretical and practical issues of task parallel languages

and their run time implementations were explored during the de-
velopment of earlier task parallel programming models, both hard-
ware supported, e.g., Tera MTA [1], and software supported, e.g.,
Cilk [5, 16]. Much of our practical reasoning was influenced by ex-
perience with the Tera MTA run time, designed for massive multi-
threading and low-overhead thread synchronization. Cilk schedul-
ing uses a work-first scheduling strategy coupled with a randomized
work stealing load balancing strategy shown to be optimal [6]. Our
use of shared queues is inspired by Parallel Depth-First Schedul-
ing (PDFS) [4], which attempts to maintain a schedule close serial
execution order, and its constructive cache sharing benefits [10].
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Figure 10: Performance on Health using MTS based on choice of
the chunk size for stealing. Average of ten runs.

Metric MTS WS %Diff
L3 Misses 1.03e+7 3.42e+07 54

Bytes from Memory 2.27e+10 2.53e+10 5.5
Bytes on QPI 4.35e+10 4.87e+10 5.6

Table 6: Memory performance data for Sort using MTS and WS.
Average of ten runs.

The first prototype compiler and run time for OpenMP 3.0 tasks
was an extension of Nanos Mercurium [24]. An evaluation of
scheduling strategies for tasks using Nanos compared centralized
breadth-first and fully-distributed depth-first work stealing sched-
ulers [12]. Later extensions to Nanos included internal dynamic
cut-off methods to limit overhead costs by inlining tasks [11].

In addition to OpenMP 3.0, there are currently several other
task parallel languages and libraries available to developers: Mi-
crosoft Task Parallel Library [20] for Windows, Intel Thread Buld-
ing Blocks (TBB) [19], and Intel Cilk Plus [18] (formerly Cilk++).
The task parallel model and its run time support are also key com-
ponents of the X10 [9] and Chapel [8] languages.

Hierarchical work stealing, i.e., stealing at all levels of a hier-
archical scheduler, has been implemented for clusters and grids in
Satin [25], ATLAS [3], and more recently in Kaapi [23, 17]. Those
libraries are not optimized for shared caches in multi-core, which
is the basis for the shared LIFO queue at the lower level of our hi-
erarchical scheduler. The ForestGOMP run time system [7] also
uses work stealing at both levels of its hierarchical scheduler, but
like our system targets NUMA shared memory systems. It sched-
ules OpenMP nested data parallelism by clustering related threads
(not tasks) into “bubbles,” scheduling them by work stealing among
cores on the same chip, and selecting for work stealing between
chips those threads with the lowest amount of associated memory.
Data is migrated between sockets along with the stolen threads.

6. FUTURE WORK AND CONCLUSIONS
Our work on scheduling in Qthreads is ongoing. Inside the run

time implementation, our goal is to decrease the minimum effec-
tive task size. The queue should be re-implemented, or perhaps re-



placed with a lock-free queue or a partially ordered heap, to reduce
contention and further improve performance on programs with fine-
grained tasks. We are also investigating ways to reduce the number
of failed steals through refinements to the stealing protocol.

As multicore systems proliferate, the future of software devel-
opment for supercomputing relies increasingly on high level pro-
gramming models such as OpenMP for on-node parallelism. The
recently added OpenMP constructs for task parallelism raise the
level of abstraction to improve programmer productivity. However,
if the run time can not execute applications efficiently on the avail-
able multicore systems, the benefits will be lost.

The complexity of multicore architectures grows with each hard-
ware generation. Today, even off-the-shelf server chips have 6-12
cores and a chip-wide shared cache. Tomorrow may bring 30+
cores and multiple caches that service subsets of cores. Exist-
ing scheduling approaches were developed based on a flat system
model. Our performance study revealed their strengths and limi-
tations on a current generation multi-socket multicore architecture
and demonstrated that mirroring the hierarchical nature of the hard-
ware in the run time scheduler can indeed improve performance.
Qthreads (by way of ROSE) accepts a large number of OpenMP
3.0 programs, and, using our MTS scheduler, has performance as
high or higher than the commonly available OpenMP 3.0 imple-
mentations. Its combination of shared LIFO queues and work steal-
ing maintains good load balance while supporting effective cache
performance and limiting overhead costs. On the other hand, pure
work stealing has been shown to provide the least variability in per-
formance, an important consideration for distributed applications
in which barriers cause the application to run at the speed of the
slowest worker, e.g., in a Bulk Synchronous Processing (BSP) ap-
plication with task parallelism used in the computation phase.
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