
Reordering for Cache Conscious Photon Mapping

Joshua Steinhurst Greg Coombe Anselmo Lastra

Department of Computer Science
University of North Carolina at Chapel Hill
{jsteinhu, coombe, lastra}@cs.unc.edu

Abstract
Photon mapping is a global illumination algorithm for

generating and visualizing a sparse representation of the
incident radiance on surfaces. Photon mapping places an
enormous burden on the memory hierarchy. A 512×512
image using the standard kd-tree data structure requires
more than 196GB of raw bandwidth to access the photon
map. This bandwidth is a major obstacle to our long term
goal of designing hardware capable of real time photon
mapping.

This paper investigates two approaches for reducing
the required bandwidth: 1) reordering the kNN searches;
and 2) cache conscious data structures. Using a Hilbert
curve reordering, we demonstrate an approximate lower
bound of 15MB of bandwidth. This improvement of four
orders of magnitude requires a prohibitive amount of in-
termediate storage. We then demonstrate two more cost-
effective algorithms that reduce the bandwidth by one
order of magnitude to 24GB with 1MB of storage. We
explain why the choice of data structure can not, by it-
self, achieve this reduction. Irradiance caching, a popu-
lar technique that reduces the number of required kNN
searches, receives the same proportional benefit as the
higher quality photon gathers.

Key words: Global illumination, Graphics hardware

1 Introduction
Our long-term goal is to devise efficient hardware archi-
tectures for global illumination. The two major chal-
lenges of hardware design are the computation and the
memory-bandwidth requirements. Whereas the number
of transistors on a chip has increased dramatically, the
off-chip memory-bandwidth has not. We expect to de-
velop an architecture with many parallel processing ele-
ments sharing a standard memory interface. Therefore,
this paper investigates approaches to reduce the band-
width of photon mapping to levels that we believe can
be attained in 3-5 years on a single PC expansion card.
These approaches may also prove useful for software sys-
tems.

Photon mapping is a strong contender because it is a

Figure 1: The bandwidth required to compute this image,
which features indirect illumination and reflection, can
be reduced to 4GB using 16× 16 tiles and the Hilbert
curve kNN search reordering (10GB without irradiance
caching). Model by Marko Dabrovic, RNA Studios.

popular global illumination algorithm that can produce a
wide range of realistic visual effects including indirect il-
lumination, color bleeding, and caustics on complex dif-
fuse, glossy and specular surfaces represented using arbi-
trary geometric primitives [13]. After a view independent
preprocess, the cost of photon mapping is mostly due to
two core operations: ray casting (single intersection of a
ray with a scene) and k-Nearest-Neighbor (kNN) photon
searches. The computation and bandwidth requirements
of ray casting have received significant attention. Effi-
cient ray casting algorithms have been devised for gen-
eral purpose CPUs and custom hardware [25]. Pharr [19]
used a space-filling curve on the screen to generate the
eye rays in an order that increased the effectiveness of a
geometry cache. Several researchers [5, 21, 23, 25] have
described different ways of scheduling rays after they are
generated to maximize geometry cache use. In this paper,

we assume that a memory efficient algorithm is used for
ray casting, and focus on the second core operation, the
kNN photon searches.

Each kNN search estimates the incident radiance on
a non-specular surface by gathering the energy of the k
photons closest to a query point and dividing by their ap-
proximate surface area. A typical image can require at
least 100 kNN searches per pixel to obtain desired qual-
ity [13], which would consume approximately 196GB of
bandwidth per 512×512 frame with a cached memory.

This paper studies the cache behavior of photon map-
ping and explores techniques to improve performance
along two axes: 1) the order in which the kNN searches
are performed; and 2) the data structure used to store the
photon map.

We conducted experiments with four reordering tech-
niques, presented in Section 3. Of these, the Hilbert
curve [6, 17] reduces off-chip bandwidth by up to four
orders of magnitude (to 15MB), but requires 1GB of in-
termediate storage. We present alternative techniques that
achieve one order of magnitude improvement using only
1MB of intermediate storage. Irradiance caching [28],
a popular technique that reduces the number of photon
gathers, is shown to receive the same proportional reduc-
tion in bandwidth. Since data structures also impact the
bandwidth, in Section 4 we analyze the performance of
three data structures, kd-tree [2], Block Hashing [15] and
kdB-tree [24].

2 Photon Mapping
Photon mapping is a two-step algorithm. The first step,
photon tracing, shoots photons outward from the light
sources into the environment. For a typical scene with
indirect illumination, this requires shooting hundreds of
thousands of photons [13]. These photons are probabilis-
tically reflected, refracted and finally absorbed at diffuse
or glossy surfaces. When a photon is absorbed, its loca-
tion, power, and incident direction are stored in a view-
independent photon map. For static scenes the photon
map can be generated as a preprocess and reused for mul-
tiple viewpoints.

The second step of the photon mapping algorithm uses
the photon map to estimate incident radiance on the sur-
faces. The viewpoint is fixed and an eye ray, ~ω, is cast
into the scene for each pixel (u, v) of the final image.
Multiple samples per pixel may be cast for antialiasing.
At the point x where the eye ray intersects the scene
geometry the direct illumination is computed and addi-
tional rays are cast to sample any specular reflection. The
indirect diffuse illumination is computed from the data in
the photon map.

Jensen describes two methods for visualizing the pho-

w

x

p

wp

Figure 2: In direct visualization of the photon map a
single photon gather is performed for each eye ray.

w

x

y

w
i

i

Figure 3: A higher quality estimate of incident radiance
is obtained by using Monte Carlo integration to perform
a final gather. A photon gather is performed at the end of
each secondary ray, ~ωi.

ton map: 1) direct visualization; and 2) final gather visu-
alization. For the direct visualization method, illustrated
in Figure 2, a k-Nearest-Neighbor (kNN) search is con-
ducted in a small neighborhood around the point x us-
ing the photon map. Reasonable values for k are 100 or
more [13]. Every photon in the photon map has a power
4Φp and direction ~ωp. If a photon p is selected by the
kNN search, these values are used with the surface re-
flectance properties (BRDF) fr to compute the contribu-
tion to the reflected radiance. This is referred to as a pho-
ton gather. Unfortunately, direct visualization exhibits
strong visual artifacts unless a very large number of pho-
tons are used [13].

The final gather visualization, shown in Figure 3, es-
timates the rendering equation using a Monte Carlo inte-
gration at point x. The hemisphere surrounding x is sam-
pled and N rays ~ωi are cast out into the scene. At each
intersection point yi a photon gather is performed. These
results are then weighted by the BRDF of the surface at x
and summed to get the indirect diffuse illumination. Our
work uses the higher-quality final-gather visualization.

2.1 Irradiance Caching
A common bandwidth reduction technique is Irradiance
Caching [28]. It avoids performing a final gather at each
point x by interpolating previously computed irradiance
estimates at nearby points. This works only when cer-
tain assumptions are met: 1) the surfaces must be purely
diffuse; 2) the surface geometry and normals must be
smooth. Even when these assumptions are valid, it can
still produce noticeable visual artifacts. We show in Sec-
tion 3 that Irradiance Caching reduces the bandwidth and
computation requirements of a relatively simple scene
dramatically. We also find that the bandwidth reduction
techniques we develop in this paper remain effective with
irradiance caching.

Christensen has described two alternative methodolo-
gies for irradiance caching. The first computes the ir-
radiance at a subset of the photons during a preprocess
and uses the photon map as the irradiance cache [3]. Re-
cently, he described a software system using a hierarchy
of irradiance voxels [4].

2.2 Bandwidth Requirements
If final gather visualization is used, it is common to
perform at least 100 gathers per eye ray [13]. If each
photon requires 20 bytes of storage [13], the minimum
raw bandwidth for k = 100 and a 512×512 image is
512×512×100×100×20B = 50GB. This figure is
obtainable only with an oracle search function that exam-
ines exactly the photons that are needed. In practice, a
kNN search in a kd-tree photon map data structure must
examine more photons then are needed. Using the simu-
lation framework described later in this section, we find
that 166GB of raw memory traffic is generated in the ab-
sence of a cache. We explore the impact of alternative
data structures in Section 4.

2.3 Block Memory Model
Like Ma and McCool [15], we assume that memory is rel-
atively slow, is off-chip, and is accessed in blocks. Stan-
dard DRAM designs achieve peak bandwidth when the
accesses are coherent, long, and aligned to page bound-
aries. This means that reading individual photons from
scattered locations in memory is highly inefficient. The
naive bandwidth estimates of 50GB and 166GB are gen-
erated with 20B reads of single photons scattered across
memory. Assuming 20 bytes per photon and standard 128
byte cache lines [11], this means that about six photons
fit in a cache line (with some extra room for data struc-
ture bookkeeping). Efficient algorithms should make use
of several, if not all, of the six photons stored in a cache
line. Several of the data structures that are discussed in
Section 4 are explicitly organized in blocks that are the
size of the cache lines in order to maximize the utility of

Figure 4: Our experiments use a variation of the Cornell
box scene (left). When the geometric complexity was in-
creased while maintaining the same illumination (right),
the required bandwidth did not change significantly.

each read.

2.4 Experimental Setup
We modified two software packages for our experiments,
an open source photon mapper [12] and pbrt [20]. We
added a software cache simulator that analyzes the stream
of memory references. The cache simulator models a
fully-associative cache with Least Recently Used (LRU)
eviction policy. Fully associative caches are costly to im-
plement in hardware, so they are usually implemented as
less optimal set-associative. However, it has been shown
that, in the absence of a highly regular access pattern, re-
ducing the associativity raises the number of block evic-
tions and fetches by a constant factor of approximately
39% for an 8-way set-associative cache [9].

Following Jensen [13], our experiments were con-
ducted using a variation of the Cornell box scene shown
on the left of Figure 4. The box has two colored walls, a
reflective sphere on the left, and a refractive sphere. Since
a large proportion of the kNN search locations will likely
be located on the flat walls, we performed additional ex-
periments using the fractal box scene shown on the right
side of Figure 4. The geometric complexity of the fractal
scene leads to a more complex distribution of search loca-
tions while retaining the same overall illumination. Our
experiments showed little difference in the bandwidth re-
quirements between the two scenes.

3 Query Reordering
Caches reduce memory traffic by exploiting locality in
the memory request stream. Using any reasonable data
structure, each kNN search examines only a small portion
of the photon map data structure. If a search is in the same
region of the photon map as the previous search then a
cache will be effective.

The key insight in this paper is that there exists a large
amount of coherence amongst all of the kNN searches
that is ignored by the standard final gather algorithm, re-

Generate
eye rays

Ray cast
Sample

hemisphere

kNN
searches

Shading

Ray cast

Tile
of

Eye
rays

Intersection
points

Secondary rays

kNN
searches

Illumination
samples

Generative:
tiling

Generative:
dirbin

Deferred
reordering

Figure 5: After the eye rays for each tile are gener-
ated, they are cast into the scene. At each intersection
point the hemisphere of directions is sampled, possibly
using generative reordering. The secondary rays are then
intersected with the scene, determining where the kNN
queries will take place. This list of queries may be re-
ordered again before processing. The final result for each
query is a contribution to an individual pixel. The results
are accumulated in the framebuffer after shading.

sulting in poor cache behavior. By reordering the kNN
searches, this coherence is exposed and memory band-
width is dramatically reduced without changing the final
image.

In this section we examine two different approaches
for changing the order in which we process the kNN
searches: 1) generative reordering, modifying the order
in which searches are generated; and 2) deferred reorder-
ing, generating a list of kNN searches, Y , and reordering
the list before performing the searches. These approaches
are illustrated in Figure 5.

For the purpose of comparing the reordering algo-
rithms, we fix the cache to be 128KB in size with 128B
cache lines, use the kd-tree data structure and generate a
512×512 image of the Cornell box scene. The results
of the following techniques can be compared in Figure 6
while Figure 7 formed the basis for our choice of cache
size.

3.1 Generative reordering
The first set of techniques for improving the locality of
kNN searches consists of generating the search locations
in a coherent order.

Naive ordering. In the naive algorithm each pixel
in the image is processed in scanline order. Each kNN
search is processed as soon as it is generated and the re-
sult is stored directly at the destination pixel.

This algorithm requires 196GB of traffic from the

cache to main memory. Each 128B cache line holds ap-
proximately six photons from the kd-tree; however, only
one is usually accessed. Algorithms that do not account
for the block nature of memory are inefficient because
they cannot exploit spatial coherence.

Tiled reordering. In most scenes the eye rays from
neighboring pixels will intersect the scene at points x
in close proximity to each other [27]. There will there-
fore be a high degree of coherence among the origins of
the rays cast during the Monte Carlo integration. This
coherence can be exploited by breaking the screen into
tiles and creating a list of associated query sites, Y <a,b>.
Each individual tile is processed in scanline order. A sim-
ilar technique is commonly used in graphics rasterization
hardware to improve texture memory locality [16]. The
drawback to the tiled approach is that while the origins
x of the rays used by the Monte Carlo integration are
similar, the directions ~ωi remain spread across the hemi-
sphere, as shown in Figure 3. In our experiments, which
consisted of a relatively open room, the resulting search
locations yi remain too scattered throughout the scene to
improve cache efficiency.

On highly specular surfaces the photon mapping algo-
rithm spawns both reflective and transmissive rays. If a
tiled reordering is used to reduce bandwidth, care must
be taken to avoid polluting the cache. For each tile we
generate a list of specular rays and process them after the
kNN gathers for all the eye rays of this tile.

Tiled direction-binning reordering. The tiled algo-
rithm can be improved by explicitly grouping the sec-
ondary rays by direction, ~ωi, in addition to the implicit
grouping by origin, x. The resulting groups of rays
will be coherent and intersect the scene near to each
other [27]. This generative ordering is implemented by
performing multiple passes over the tile. Each pass only
generates those rays, ~ωi, that fall within a specified por-
tion of the hemisphere.

The tiled direction-binned reordering algorithm re-
quires less than a third of the naive algorithm’s bandwidth
for all tile sizes larger than 4×4. In our experiments this
algorithm requires only 24GB of bandwidth with a tile
size of 16×16. Larger tiles tend to cover multiple sur-
faces, reducing the coherence of the secondary rays.

We hypothesize that tiled direction-binning will work
even better when importance sampling is used in the
Monte Carlo integration. This is because the search lo-
cations yi will be clustered in smaller areas of the hemi-
sphere corresponding to the directions of strongest inci-
dent radiance.

3.2 Deferred reordering
The second set of techniques for improving the locality of
the photon gathers consists of generating a list Y of the

1 2 4 8 16 32 64 128
0

20

40

60

80

100

120

140

160

180

200

Tile Size

B
an

dw
id

th
 (

G
B

)

Tiled
Tiled DirBin
Tiled DirBin Hash
Tiled Hilbert

(a) Without Irradiance Caching

1 2 4 8 16 32 64 128
0

2

4

6

8

10

12

Tile Size

B
an

dw
id

th
 (

G
B

)

Tiled
Tiled DirBin
Tiled DirBin Hash
Tiled Hilbert

(b) With Irradiance Caching

Figure 6: The tiled Hilbert curve reordering results in the lowest bandwidth for each tile size. Only tiles of moderate
size are practical due to internal storage constraints. 16×16 and 32×32 are both feasible and perform well for the
cost effective reorderings of tiled direction binned, both with and without hash reordering. When irradiance caching
is used, (b), kNN search reordering retains the same proportional benefit.

search locations with one of the generative techniques.
The elements yi ∈ Y are then reordered to form Y ′ be-
fore processing. Some techniques require the full list Y
to be built before reordering, while others operate in a
streaming fashion.

Decoupling the search location generation from the
processing introduces computation and storage overhead.
For each photon gather the following must be stored: the
search location, the direction from which this point is
viewed, a pointer to the local material properties, the des-
tination pixel, and an RGB pixel contribution weight. Our
system used 44 bytes for each deferred search. If 16×16
tiles are used with 100 gathers per pixel, then 1MB of
intermediate storage is required. If all the searches for a
512×512 image are deferred then 1GB is required.

Hashed reordering. Several authors [10, 7] have ex-
plored hashing algorithms for kNN searches. We imple-
mented a hashed reordering algorithm that has low com-
putation costs and manageable memory use. This al-
gorithm is similar to the ray-queue hashing of the GI-
Cube [5]. This algorithm reorders a stream of kNN
searches within a fixed-size window by hashing them into
a set of buckets based on their 3D position. The expecta-
tion is that search locations that hash to the same bucket
will be coherent.

The searches are removed sequentially from a single
queue and passed to the kNN search processor. When that
bucket is emptied the next largest bucket is processed un-
til it is emptied. We have found that a very large number

of queues is required to get even a modest reduction in
bandwidth.

Tiled direction-binning Hashed reordering. The
more coherent the initial list of search locations, the
better the hash reordering will perform. A de-
ferred reordering step can easily be performed on
the result of a generative ordering. By combin-
ing tiled direction-binning with hashed reordering,
Y ′ = Hash(< Y <1,1> · · ·Y <M,N> >), we are able to
reduce the bandwidth requirement to 24GB for a prac-
tical tile size of 16×16.

There are two parameters that we had to adjust, the
number of hash buckets and the size of these buckets. We
generally use 37 hash buckets of 128 elements, although
we have experimented with up to 109 buckets with more
elements. Increasing the number of buckets or the size of
the buckets reduces the number of collisions marginally.

Hilbert curve reordering. The Hilbert space-filling
curve can be used to produce a linear mapping of a mul-
tidimensional space [6]. A desirable property of Hilbert
curves is that the locality between objects in the multidi-
mensional space is preserved in the linear ordering [17].
We sort the entire set of kNN searches along a three-
dimensional Hilbert curve, Y ′ = Hilbert(Y) using an
efficient algorithm [14].

The Hilbert reordering algorithm, applied over all of
the searches in Y , reduces the bandwidth from 196GB to
15MB, an improvement of four orders of magnitude. This
is nearly optimal result, the average photon is transferred

32 64 128 256 512
0

50

100

150

200

250

Cache Size (KB)

B
an

dw
id

th
 (

G
B

)
Tiled
Tiled DirBin
Tiled DirBin Hash
Tiled Hilbert

Figure 7: The practical reordering algorithms experi-
ence diminishing returns on caches larger than 128KB.
The simple tiled algorithm will continue to benefit as the
cache size is increased. There is little difference for the
tiled Hilbert algorithm, as its working set is less then
32KB. (kd-tree, 128B cache lines and 16×16 pixel tiles.)

from memory less then twice, shows that reordering has
the potential to dramatically reduce the cost of photon
mapping. However, this does requires that we store the
entire list Y before it is sorted which is not feasible be-
cause it would require 1GB of storage.

Tiled Hilbert reordering. Generating the Hilbert
curve ordering requires a significant amount of process-
ing and storage. To reduce this overhead, the reorder-
ing can be done on individual screen tiles generated by
the screen tiled algorithm, Y ′<a,b> = Hilbert(Y <a,b>).
This reduces the computational and storage overhead,
but also reduces the effectiveness of the reordering. The
bandwidth increases as the number of pixels in the tile
decreases, as shown by the bottom curve in Figure 6a. As
the tile size increases, the Hilbert reordering can exploit
more coherence in the search locations. For reasonable
tile sizes of 8×8 to 32×32, the bandwidth ranges from
3GB to 33GB.

4 Data Structures
It is clear that the data structure storing the photon map
has a direct impact on cache efficiency [4, 13, 15, 26].
The strong potential spatial locality will favor data struc-
tures that store nearby photons close to each other. We
investigated four data structures: uniform grid, kd-tree,
kdB-tree, and Block Hashing.

Contrary to our expectations, the choice of data struc-
tures did not have as significant an effect on bandwidth
as reordering did. Figure 8a shows the bandwidth re-

quirements for the naive ordering as the cache line size
increases. The differences between the data structures
shrink as more locality is exposed by the reordering. This
is shown in Figure 8b for the Hilbert reordering. Ta-
ble 1 shows the interaction between data structures and
reordering algorithms for one cache configuration.

Uniform grid. A simple data structure that has been
used effectively in hardware is the uniform grid [22]. The
scene is subdivided into grid cells and the photons are
distributed into cells. We investigated both fixed-sized
cells, which allow for direct addressing, and indirectly-
addressed variable-sized cells. Since the photons are lo-
cated on surfaces, the grid cells that intersect the surfaces
contain a large number of photons while the remaining
grid cells are empty. Fixed-sized cells are inefficient as all
of the cells must have enough storage to prevent photons
from being discarded. While the overhead of the indirect
method is higher, it can handle the highly variable density
slightly better. Overall, however, we have found that this
data structure is a poor choice for reducing bandwidth,
and we do not report any further results.

kd-tree. Jensen selected the balanced kd-tree [2] for
his implementation because it enables kNN searches at a
cost of O(k + lnN). This analysis relies on the assump-
tion of a constant memory access time, which is not valid
in hierarchical memory systems. A memory request that
can not be satisfied by the cache will require a memory
fetch. This not only incurs a long latency but will also
increase the total bandwidth to main memory. This data
structure performs well compared to the other data struc-
tures at small cache lines, but as cache lines get larger the
number of discarded photons increases.

Contemporaneously with our research, Wald analyzed
the performance of the kd-tree and demonstrated an al-
ternative to balancing that achieves a speedup of 1.2 to
3.4 for kNN queries [26]. This improvement is similar
in magnitude to what we achieve with the kdB-tree de-

kd-tree kdB-tree BH
Naive 23,045 11,755 73,523
Tiled Dir-Binned 3,927 4,397 20,316
Tiled Dir-Binned Hash 2,590 2,870 9,912
Tiled Hilbert 1,215 1,134 2,350
Hilbert 1.6 1.8 3.1

Table 1: The average number of memory block fetches
for different combinations of data structures and reorder-
ings. This number is directly related to bandwidth by the
size of the cache line. Regardless of the data structure,
memory efficiency is improved by choosing a better re-
ordering. (128KB cache with 128B cache lines.)

64 128 256 512 1024
0

100

200

300

400

500

600

700

Cache Line Size (B)

B
an

dw
id

th
 (

G
B

)

kdb−tree
Block Hashing
kd−tree

(a)

64 128 256 512 1024
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cache Line Size (B)

B
an

dw
id

th
 (

G
B

)

kdb−tree
Block Hashing
kd−tree

(b)

Figure 8: The difference between the data structures is significant for the naive order, (a), but not for the Hilbert
reordering, (b). When an effective reordering algorithm is used, the data structure choice has little impact on band-
width. Large cache lines increase the required bandwidth because unnecessary photons are brought in to the cache.
Small cache line sizes penalize block oriented data structures that require the storage of some overhead for each block.
(128KB cache with 16×16 tiles)

scribed next.
kdB-tree. The kdB-tree [24] blends the advantages of

the kd-tree with the classical B-tree [1] by explicitly orga-
nizing the photons into cache-sized blocks. The bound-
ing volume of the photon map is recursively divided into
mutually exclusive rectangular regions. Each region con-
tains a list of pointers to either another region or to a leaf
node. The leaf blocks contain a list of photons that are
contained within a bounding volume. The kdB-tree was
developed in the database community, which has exten-
sively studied the problem of kNN searches [8, 10]. How-
ever, as noted by Ma and McCool [15], many of these
searches are designed for high-dimensional data.

In practice, the kdB-tree data structure can reduce
bandwidth below that of the kd-tree only when the cache
lines are large. Since each block of data imposes some
overhead, as the block size shrinks the overhead begins
to dominate. In our experiments with the naive ordering,
Figure 8a, the crossover point was at 256B cache lines,
with the kd-tree being a better choice for smaller cache.
Although larger cache lines favor the kdB-tree, the ab-
solute bandwidth is greater than with small cache lines
because of unnecessary photons being read.

Block Hashing. Introduced by Ma and McCool [15],
Block Hashing is an approximate-kNN data structure
that stores spatially coherent photons in cache-line sized
blocks. The goal is to reduce memory latency by mini-
mizing the number of dependent memory requests com-

pared to a hierarchical tree traversal. Photons are hashed
into blocks based on a Locality-Sensitive Hash, and the
blocks are designed to fit within a cache line for fast
memory access. There are several parameters that must
be adjusted for optimum performance, including hash-
bucket size and the number of hash tables. We use the
heuristics outlined in the paper to select the parameters.

Block Hashing was designed to reduce the effects of
memory latency, not memory bandwidth. We found that
it was competitive in terms of bandwidth with the other
data structures. Block Hashing was designed with a 256B
cache line, so in our cache line experiments we tried to set
the accuracy parameter in the same spirit as Ma and Mc-
Cool [15]. Since Block Hashing is an approximate kNN
search, we set the accuracy A = 20 to better compare
with the exact kNN searches. As this parameter controls
the number of blocks that are examined for each search
query, it directly impacts bandwidth. Ma and McCool
suggest using A = 10 to A = 16, but these lower val-
ues caused a number of photon blocks to be orphaned at
small cache line sizes.

5 Conclusions

We have shown that memory bandwidth can be reduced
from 196GB to 15MB in our test scene, an improve-
ment of four orders of magnitude, by reordering the kNN
searches. This is close to the lower bound, as each block
of memory that is touched is brought in less than twice.

It is however impractical as it requires 1GB of storage to
enumerate all of the search locations.

We developed and tested techniques that are more
amenable to hardware implementation and capture a large
portion of the possible gains. These methods give the
same proportional benefit whether irradiance caching is
used or not. The 16×16 tiled direction-binning hashed
reordering algorithm reduces the required bandwidth to
4GB (24GB without irradiance caching). This is an or-
der of magnitude improvement and only twice the band-
width required by the tiled Hilbert reordering. With cur-
rent GPU memory bandwidth rates at 35GB/s [18], we
believe that kNN search reordering will enable the de-
velopment of interactive photon mapping hardware. The
technique may also prove valuable to software systems.

Acknowledgements
Partial support provided by the National Science Foun-
dation Graduate Research Fellowship Program, grants
0306478 and 0205425 and the NVIDIA Fellowship Pro-
gram. We would also like to thank Yuanxin Liu and Jack
Snoeyink for the Hilbert curve reordering code.

References
[1] R. Bayer and E. McCreight. Organization and main-

tenance of large ordered indexes. Acta Informatica,
1(3):173–189, 1972.

[2] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[3] Per H. Christensen. Faster photon map global illumina-
tion. J. Graph. Tools, 4(3):1–10, 1999.

[4] Per H. Christensen and Dana Batali. An irradiance atlas
for global illumination in complex production scenes. In
Proc. Eurographics Symposium on Rendering, pages 133–
141, 2004.

[5] Frank Dachille, IX and Arie Kaufman. GI-Cube: an archi-
tecture for volumetric global illumination and rendering.
In Proc. Graphics Hardware, pages 119–128, 2000.

[6] C. Faloutsos and S. Roseman. Fractals for secondary
key retrieval. In Proc. Eighth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of database systems,
pages 247–252, 1989.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search
in high dimensions via hashing. Proc. VLDB, pages 518–
529, 1999.

[8] V. Havran. Analysis of cache sensitive representations for
binary space partitioning trees. Informatica, 23(3):203–
210, May 2000.

[9] Mark D. Hill and Alan J. Smith. Evaluating associativ-
ity in CPU caches. IEEE Transactions on Computers, C-
38(12):1612–1630, 1989.

[10] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala.
Locality-preserving hashing in multidimensional spaces.
In Proc. of ACM STOC, pages 618–625, 1997.

[11] Intel. Microburst Architecture. IA-32 Intel Architecture
Software Developers Manual, 1:37–40, 2003.

[12] Wojciech Jarosz, April 2004. http://
renderedrealities.net/.

[13] Henrik Wann Jensen. Realistic Image Synthesis Using
Photon Mapping. AK Peters, 2001.

[14] Yuanxin Liu and Jack Snoeyink. A notation for hilbert
curves to support multidimensional spatial indexing. In
preparation.

[15] Vincent C. H. Ma and Michael D. McCool. Low latency
photon mapping using block hashing. In Proc. Graphics
Hardware, pages 89–99, 2002.

[16] Joel McCormack, Robert McNamara, Christopher Gi-
anos, Larry Seiler, Norman P. Jouppi, and Ken Correll.
Neon: a single-chip 3d workstation graphics accelerator.
In Proc. Graphics Hardware, pages 123–132, 1998.

[17] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and
Joel H. Saltz. Analysis of the clustering properties of
the hilbert space-filling curve. Knowledge and Data En-
gineering, 13(1):124–141, 1996.

[18] NVIDIA. Ultra-high-end products, October 2004. http:
//nvidia.com/page/qfx uhe.html.

[19] Matt Pharr and Pat Hanrahan. Geometry caching for ray-
tracing displacement maps. In Proc. Eurographics Work-
shop on Rendering Techniques, pages 31–ff., 1996.

[20] Matt Pharr and Greg Humphreys. Physically Based Ren-
dering from Theory to Implementation. Morgan Kauf-
mann, 2004.

[21] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanra-
han. Rendering complex scenes with memory-coherent
ray tracing. In Proc. SIGGRAPH, pages 101–108, 1997.

[22] Timothy J. Purcell, Craig Donner, Mike Cammarano,
Henrik Wann Jensen, and Pat Hanrahan. Photon mapping
on programmable graphics hardware. In Proc. Graphics
Hardware, pages 41–50, July 2003.

[23] E Reinhard and E W. Jansen. Rendering large scenes using
parallel ray tracing. In First Eurographics Workshop on
Parallel Graphics and Visualization, pages 67–80, 1996.

[24] John T. Robinson. The k-d-b-tree: a search structure
for large multidimensional dynamic indexes. In Proc.
ACM SIGMOD international conference on Management
of data, pages 10–18, 1981.

[25] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saar-
cor: a hardware architecture for ray tracing. In Proc.
Graphics Hardware, pages 27–36, 2002.

[26] Ingo Wald, Johannes Guenther, and Philipp Slusallek.
Balancing considered harmful – faster photon mapping
using the voxel volume heuristic. In Proc. Eurographics,
2004.

[27] Ingo Wald, Philipp Slusallek, Carsten Benthin, and
Markus Wagner. Interactive rendering with coherent ray
tracing. Computer Graphics Forum, 20(3):153–164, 2001.

[28] Gregory Ward, Francis Rubinstein, and Robert Clear. A
ray tracing solution for diffuse interreflection. In Proc.
SIGGRAPH, pages 86–92, 1988.

http://renderedrealities.net/
http://renderedrealities.net/
http://nvidia.com/page/qfx_uhe.html
http://nvidia.com/page/qfx_uhe.html

	Introduction
	Photon Mapping
	Irradiance Caching
	Bandwidth Requirements
	Block Memory Model
	Experimental Setup

	Query Reordering
	Generative reordering
	Deferred reordering

	Data Structures
	Conclusions

