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I INTRODUCTION

PixelFlow™ is a special-purpose computer architecture designed for high-speed, high-
quality  image generation.  The central part of each PixelFlow circuit board is the
Rasterizer.  It consists of an two Image Generation Controller chips (IGCs), an array of 32
Enhanced Memory Chips (EMCs), an array of 8 Texture ASICs (TASICs), and 32
synchronous DRAM (SDRAM) memories, as shown in Figure 1.
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Figure 1:  Block diagram of the PixelFlow rasterizer.

The EMCs contain an array of 8K (8192) processing elements (PEs).  Each PE consists of
a byte-wide ALU and 384 bytes of memory, operating at 100 MHz.  The PEs operate in
Single-Instruction/Multiple Data (SIMD) fashion.  Each PE has an x,y address and is
connected to a distributed Linear Expression Evaluator (LEE) which supplies the local
value of the bi-linear expression F(x, y) = Ax + By + C byte-serially at 100 MHz.

The 8K PEs in the Rasterizer can be mapped onto a region of the display screen (the
rasterizer region) in several different ways:

1)  128 x 64 pixel region, with 1 PE per pixel

2)  64 x 32 pixel region, with 4 PEs per pixel
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3)  32 x 32 pixel region, with 8 PEs per pixel

For option 1, each PE's x,y address is the screen position of the pixel with which that PE
is associated.1  For option 2, the PEs are divided into groups of 4, and each group is
assigned to a pixel; the 4 PEs in each group are assigned to four samples in an anti-aliasing
kernel.  Since the x,y addresses are integers, pixel centers are defined to lie on an 8x8
pixlet grid, where F(x, y) is evaluated for pixlet x,y values. Thus, the region is 512 x 256
pixlets in size, and pixels are referenced to multiples of 8 on this pixlet grid.  The 4 samples
can be placed in a 16 x 16 pixlet box with origin at the pixel reference point. Option 3 is
similar to option 2, except the region is 256 x 256 pixlets in size, and there are 8 samples in
the anti-aliasing kernel.

In all 3 cases, the PEs operate on the F(x, y) data from the LEE and pixel-memory, storing
their results back into pixel-memory.

The TASICs are CMOS datapath chips, which connect the EMCs to the GP bus (via the
GNI chip—described elsewhere), to external SDRAM memory (for texture and image
storage), and optionally, to video circuitry (on frame-buffer and frame-grabber boards).

The IGCs interpret instructions from the GP that are queued in their input FIFOs.  Each is a
microcoded sequencer which executes high-level instructions for the EMCs and TASICs,
controlling their cycle-by-cycle operation.  

Section II describes the rasterizer's hardware components.  Sections III through VI
describe its programming interface.

II RASTERIZER HARDWARE OVERVIEW

II .1 Rasterizer Input Interface

Before rasterization of a frame can begin, the Geometry Processor (GP) on each system
board generates rendering commands and stores them in its local memory.  The GP writes
these commands to the rasterizer's 32-bit input interface, and each command is loaded into
one of the IGCs.

Each IGC can process commands at peak rates of 100 Mword/second. Each IGC has
programmable almost-full flags for its RFIFO and TFIFO, which are asserted when the
FIFO can accept only a limited number of additional commands; these flags are or'ed
together and go back to the GP.

_____________

1We sometimes refer to the PEs as pixel processors, but there is a one-to-one correspondence between PEs
and pixels only for the 128x64 case; sometimes, in fact, the PEs may contain data totally unrelated to pixel
values.
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I I .2 Image Generation Controllers

Each Image Generation Controller  (IGC) is a custom chip with a sequencer and microcode
store which controls the EMCs (in the case of the EMC Control IGC, or EIGC) or the
TASICs (in the case of the TASIC Control IGC, or TIGC); the EIGC includes a serializer
to convert integer or floating-point input coefficients into the fixed-point, byte-serial form
required by the EMCs. The two IGCs can be thought of as a single logical entity which
processes commands from the rasterizer input interface,  controls and sequences the EMCs
and TASICs, and synchronizes the rasterizer with the image-composition network.  A set
of semaphores interlocks operation of the Sequencers of the two IGCs, and processing of
RFIFO and TFIFO commands. Figure 2 shows a block diagram of the IGCs.
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Figure 2:  Block diagram of the IGCs.

Stream Parser.  IGC Commands consist of an I-word opcode, and optional additional
arguments,  depending on the purpose of the instruction:

• I-word.  Mandatory.  Contains the instruction opcode and parameters for the
microcode routine.  The I-word is present in every command and is the first word
in the command. The I-word also specifies which FIFO and which Sequencer the
command is for.

• P-word.  Optional.  Contains additional parameters for the microcode routine.

• A , B , and C coefficients.  Optional.  Operands for the linear expression
evaluator. C coefficient also used in some initialization commands.
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The I-word and P-word are each 32-bit quantities.  The A, B, and C coefficients may be
either 32- or 64-bit integers or floating-point numbers. The RFIFOs contain 256-bit wide
slots for each command; the TFIFOs contain 64-bit wide slots (TFIFO commands cannot
use the A, B, and C operands). The physical input interface to the IGCs is 32-bits wide; a
stream parser  parses the input stream (rejecting commands for the other IGC) and building
complete commands, which are loaded into a slot in the specified FIFO.  The FIFOs, RT
controllers, and Sequencers,  handle each comand as a single unit, irrespective of its
original format.  The formats for IGC commands are described in more detail in Sections
IV through VI below.

RFIFO and TFIFO.  The rasterizer's task consists of two parts:  (1) rasterization—the
calculation (or shading) of pixel values, and (2) compositor setup—copying pixel data to
the transfer buffer section of EMC pixel memory and controlling the compositor logic.
Unfortunately, the two parts must be performed as asynchronous processes, since region
transfers can occur at unpredictable times (whenever all system boards are ready to transfer
the next region).

To be able to execute these tasks asynchronously, incoming IGC commands must be
buffered into two streams: the RFIFO buffers rendering commands, and the TFIFO buffers
transfer commands.  Semaphores, described below, synchronize the operation of the two
FIFOs.

The FIFOs are wide enough to hold an entire command in each entry.  A bit in the I-word
of each command determines whether the command is to be loaded into the RFIFO or
TFIFO.  The RFIFO can hold up to 128 commands and the TFIFO can hold up to 512
commands.  Hardware keeps track of the number of commands stored in the FIFOs and
asserts the status register bit SRFullH  or STFullH  if either FIFO reaches a programmable
high-water mark.  If the high-water mark is close to the FIFO size, then the FIFO can
inadvertently be overflowed because there is a several instruction pipeline between the IGC
inputs and the Full flags.

RT Controller.  Each IGC contains an RT Controller which reads commands from the
R- and T-FIFOs and writes them to the Sequencer. The RT Controller includes four
semaphore counters; two can block the RFIFO, and two can block the TFIFO. Each
semaphore blocks its FIFO if its value is zero and a P command is in the FIFO's read latch.
One of the RFIFO-blocking semaphores can be V'ed by the appropriate TFIFO command
on the same IGC, and one of the RFIFO-blocking semaphores can be V'ed by the
appropriate RFIFO command on the other IGC;  similarly, one of the TFIFO-blocking
semaphores can V'ed by the appropriate RFIFO command on the same IGC, and one of the
TFIFO-blocking semaphores can be V'ed by the appropriate TFIFO command on the other
IGC.  There is also a "preference" register which determines which of the two FIFOs on
each IGC is the preferred one for executing commands; the preferred FIFO takes
precedence unless it is blocked, even if it is empty.

IC Controller.  Each IGC also contains an IC Controller, which controls Image
Composition port operation.  However, only the IC Controller on the EIGC is used. Each
FIFO can also be blocked by a P-like command which waits until the IC Controller no
longer has a pending composition cycle.
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These semaphores and their control commands are described in Section VI.

IGC Sequencers.  Each IGC contains a sequencer.  The EIGC Sequencer generates
micro-instructions for the pixel-ALUs, addresses into pixel-memory, and ABC coefficients
for the linear expression evaluator; commands to the EIGC are used to rasterize polygons
(on Renderer boards) and to perform shading calculations (on Shader boards).  The TIGC
Sequencer controls the TASICs and attached memory; commands to the TIGC are used for
moving data between the pixel-memory on the EMCs and external texture/frame-buffer
memory, or between pixel-memory on the EMCs and the geometry processor bus.

The Sequencers each contain local microcode memory.  A bit in the I-word of each
command indicates which sequencer is to execute the command.  The I-word also specifies
the starting microcode address for the command.  Each sequencer can conditionally branch,
both on internal conditions (such as the value of loop counters) and external conditions
(three condition code inputs for each sequencer).  The sequencers have a one-level stack;
they can store a single microcode return address, allowing one level of procedure calls.
They have several external control outputs which allow them to perform miscellaneous
control functions on the rasterizer board.  

There is a delay of approximately 20 cycles between the time a Sequencer issues a micro-
instruction and when the micro-instruction is executed within the EMCs or TASICs.  The
external control outputs are subject to a somewhat smaller latency.  The programmer need
not normally be concerned with these latencies, except in some situations described in the
command descriptions and examples in the remaining sections.

Sequencer commands and their formats are described in detail in Sections IV and V.

I I .3 EMC Array

The array of 32 PixelFlow EMCs implements a 2-dimensional SIMD processor array that
covers a 128x64-, 64x32-, or 32x32 - pixel region of the screen, as described above.  This
logical array can be "moved" to process any region of the display screen;  the region is
normally aligned to region boundaries, but it can be positioned arbitrarily.

Each PE is provided with its own 8-bit ALU, an output of the linear-expression evaluator
tree (the LEE), 256 bytes of local memory, two 32-byte transfer buffers, and two 32-byte
local-port buffers.  Figure 3 shows a logical diagram of an EMC.
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Figure 3:  Logical diagram of a PixelFlow EMC.

PE ALUs.  Each PE's ALU is a general-purpose 8-bit processor; it includes an enable
register which allows operations to be performed on a subset of the PEs.  The PE can use
tree results or local memory as operands and can write results back to local memory.  It can
also transfer data between memory, the carry register, and the I/O buffers. Figure 4 shows
a logical diagram of the ALU.
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Figure 4:  Logical diagram of EMC PE ALU.

The 256 PEs are divided into 8 panels of 32 PEs each.  Some limited communication
among the PEs in a panel is possible, via the ALU pathways.

Linear-expression evaluator (LEE).  The linear-expression evaluator evaluates
bilinear expressions Ax + By + C for each PE of the array in parallel.  A, B, and C are
coefficients loaded from the IGC and (x, y) represent the PE's x,y address.  Many graphics
calculations can be cast into the form of bilinear expressions, such as the edge, depth, and
color calculations required to render Gouraud-shaded triangles.  

The IGC controls the operation of the EMC array.  IGC instructions and coefficients are
serialized and broadcast to all of the EMCs in parallel.  The SIMD array of PEs execute
these instructions in lock-step.  The enable registers in each PE are used to control which
subset of the PEs are active at any given time.

Pixel Memory.  Each PE is provided with 256+4*32 bytes of local memory.  The
memory is divided into 5 partitions:  a 256-byte main partition, which is used for most
computation, and four 32-byte partitions used for external communication.  Two of these,
the local port buffers, are connected to the local port.  The local port is connected to the
TASICs, so that data can be exchanged between the local buffer and attached external
memory.  The others, the transfer buffers (or image-compostion buffers) are connected to
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the image-composition port.  Data that is ready to be composited is placed into this area.

Address Range Length (bytes) Partition
0 – 255 256 Main memory

256– 287 32 Left-to-Right Transfer  Buffer
288 – 319 32 Right-to-Left Transfer  Buffer
320-381 62 Unmapped

382 1 Local Port In Mark Register
383 1 Local Port Out Mark Register

384 – 415 32 Local Port Input Buffer
416 – 447 32 Local Port Output Buffer
448– 511 64 Base Address Offset Area

Table 1:  EMC Pixel Memory Address Map.

Table 1 shows the memory map for pixel memory.  Addresses 382 and 383 are 1-bit
read/write registers used for the enable flags for local port operation; this is handled within
the local port control instructions, and these addresses should not be accessed directly.

Addresses 448-511 are not physically implemented.  This portion of the address space is
used for base address registers, described below.

Normally, all 384 bytes of pixel memory can be accessed.  However, when
communication-port operations are performed, their buffer data temporarily is unavailable.
For example, after pixel data to be composited is copied into the transfer buffers and the
composition operation is initiated, memory in the transfer buffers cannot be accessed by the
ALU until the composition operation is complete.  Similarly, to perform a local-port
operation, data is moved into the local output buffer, the local-port operation is initiated,
and data may be unloaded from the local input buffer; during the local port operation, the
local buffer being used must not be accessed by the ALU until the operation is complete
(although the other local buffer can be accessed by the ALU if it is not involved in the local
port operation).  If any one of the four communications buffers is accessed while its port is
in operation, unpredicatable results will occur; the write or read may or may not happen,
but the port operation will not be disturbed.  This occurs if the address being read or
written is anywhere in the 32-byte address space of the active port, even if it is not one of
the addresses actually being used by the port operation.

All pixel memory is dynamic and so must be periodically refreshed.  This refresh is
performed opportunistically by the EIGC Sequencer.  Only under very unusual
circumstances (mass quantities of memory-intensive EMC Sequencer instructions) may it
be necessary to explicitly refresh EMC pixel memory.  This can be done by interspersing
refresh commands.  The local and transfer buffer portions of pixel memory are not
accessible under IGC control when port operations are in progress, so untouched data may
be corrupted; therefore, unused portions of the local and transfer buffers must not be used
for data storage.  For example, if composited pixels are to be 192 bits in size, so only the
low 24 bytes of a transfer buffer are needed, the remaining 8 bytes should not be used for
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general storage.

Communication Ports.  The image-composition port and local port allow pixel data to
be transferred serially to/from the EMCs to other EMCs (for compositing) or to/from the
TASICs (to perform texture lookups or pixel-data writes to texture or video memory).  Data
from each PE is presented serially at each port.  The number of bytes transferred to/from
each PE and their location in the communication buffer are designated by configuration
commands described in Section IV below.  The image-composition port is an 8-bit port
which runs at 200 MHz.  The local port is a 4-bit port which runs at 200 MHz, with
simultaneous bi-directional traffic.   

Global enable.  Each EMC has an output which represents the logical-OR of the enable
registers of all PEs.  These outputs are wire-anded together to form the global-enable signal
(EOrH), the logical-OR of the enable registers for the entire SIMD array.  EOrH is fed into
an external condition-code input of the EMC sequencer.  Commands to the EMC sequencer
can test the status of EOr, and based on the result, can conditionally execute.  The status of
EOr can be communicated to the GP using a special command that waits until EOr is valid
(must wait for last commands to be executed by the EMCs and EOr to become valid).
Depending on the state of EOr, it asserts one of the two EMC sequencer external outputs to
the GP status register.  The GP status register contains a sticky bit for each of these
signals.  The GP can determine the status of EOr by waiting for one of these bits to be set,
then clearing it.  Note that the EMC sequencer may execute commands after the test-EOr
instruction.

Panel organization of an EMC.  The 256 PEs on an EMC are arranged in 8 panels of
32 PEs each.  For some screen organizations, the panels are paired up, so that the PEs are
effectively arranged as 4 panels of 64 PEs each. Note that no communication is possible
between the lower and upper 32 PEs in these 64 PE panels, since they are separate panels
hardware-wise. This organization is mostly transparent  to the user, but the user must be
aware of panels in several instances, so panels are discussed in the PE organization
information given below.

PE Organization within a Region.  The 256 PEs on each of the 32 EMCs in a
rasterizer are mapped to the display screen in different patterns for different tasks.   Figures
5 A-C show the three configurations (1, 4 and 8 samples per pixel) for rendering
displayable images and Figures 5 D-F show the three configurations for rendering texture
maps.  Note that the EMCs are interleaved in both the x and y  dimensions.
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Figure 5A:  Screen-space organization of EMCs for a single-sampled
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In the single-sampled organization of Figure 5A, a given panel on a given EMC represents
every fourth pixel on a given scanline.  Four panels, one from each of 4 different EMCs,
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represent an entire scanline.  
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In the 4-sample per pixel organization of Figure 5B, the PEs on an EMC are arranged so
that the even-numbered panels cover the left-half of the region and the odd-numbered
panels cover the right-half of the region.  Four neighboring PEs on a panel represent the 4
samples of a pixel, so each panel contains 16 pixels.



§Rasterizer p. 13
________________________________________________________________________

______________________________________________________________________________________

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0  jge/sem

32
pixels

32
pixels

= 

= PE number (0-31)

m
n Panel number (0-7)

EMC number (0-31)

0
7

x=
0

y=31

y=0

y=7

y=15

y=24

x=
3

y=8

x=
4

x=
7

x=
28

x=
31

0
0

8
0

16
0

24
0

9 251 17
0

0 0 00
23 317 15

0 0 0

0
7

0
0

8
0

16
0

24
0

9 251 17
0

0 0 00
23 317 15

0 0 0

8
15

24
31

0 8 16 24

9 251 17

23 317 15
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
0 8 16 24

9 251 17

23 317 15

0
7

0 8 16 24

9 251 17

23 317 15

8
15

24
31

0 8 16 24

9 251 17

23 317 15

1 1 1 1

1 1 1 1
0 8 16 24

9 251 17

23 317 15

0
7

0 8 16 24

9 251 17

23 317 15

8
15

24
31

0 8 16 24

9 251 17

23 317 15

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

7 7 7 7

7 7 7 7

7 7 7 7

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

3 3 3 3

3 3 3 3

3 3 3 3

Figure 5C:  Screen-space organization of EMCs for an 8 sample-per-pixel
32x32 pixel region - for display.

In the 8-sample per pixel organization of Figure 5C, the PEs on an EMC also are arranged
so that the even-numbered panels cover the left-half of a region and the odd-numbered
panels cover the right-half of a region. Eight neighboring PEs on a panel represent the 8
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samples of a pixel, so each panel represents 8 pixels.

The primary difference between the standard rendering configurations and the texture map
configurations is that for rendering texture maps, 4 different panels of one EMC must be
clustered into a 2x2 grid to facilitate writing to texture memory (this has to do with the
order in which PEs from a given EMC are accessed - see the section on the TASICs).
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Figure 5D:  Screen-space organization of EMCs for a single-sampled
128x64 pixel region - for texture maps.

In the single-sampled organization of Figure 5D, the top half of the region is covered by
panels 0-3 of all EMCs while the bottom half is covered by panels 4-7.  The EMCs are
interleaved as before, except now the panels are interleaved in x and y as well: 2 interleaved
panels from each of the (interleaved) EMCs form a single scan-line.
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Figure 5E:  Screen-space organization of EMCs for a 4 sample-per-pixel
64x32 pixel region- for texture maps.

The 4 sample-per-pixel organization of Figure 5E is similar to the single sample
configuration, except now 4 adjacent PEs within a panel form one sample for a pixel.
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Figure 5F:  Screen-space organization of EMCs for an 8 sample-per-pixel
32x32 pixel region- for texture maps.

Again, the 8 sample-per-pixel organization of Figure 5E is similar to the 4 sample
configuration, except now 8 adjacent PEs within a panel form one sample for a pixel.

EMCs are grouped into 4 modules, containing 8 chips each; modules 0-3 contains EMCs 0-
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7, 8-15, 16-23, and 24-31, respectively.  Because of the EMC arrangement within each 4 x
8 block of pixels seen in Figures 5A-C, then means that each module represents the pixels
on every 4'th column in the region.

I I .4 TASIC Array

The array of 8 Texture ASICS or TASICS implement a data-parallel communication
interface between pixel memory in the EMCs, the Geometry Network Interface (GNI) chip,
texture/video memory, and optional video circuitry.  They perform the buffering and data
conversion required to read and write SDRAM memories and contain internal counters to
refresh a video display or read video data from a frame grabber.

Although there are two physical TASIC chips per module, the two function together as a
single logical TASIC.  Each physical TASIC represents one bit-slice of two:  the even bits
of all external datapaths connect to one physical TASIC and the odd bits of all external
datapaths connect to the other.  The 8 physical (4 logical) TASICs are divided among the 4
modules, so that each module consists of eight EMCs and two TASICs.  Figure 6 shows
the EMCs and TASICs one module and the various data connections to/from the TASICs.
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Figure 6:  Interconnection between components in a module (one of four
modules).

The TASICs of one module connect to the local ports of the module's eight EMCs in bit-
slice fashion.  They also connect to the corresponding TASICs of the other modules via a
bit-sliced 16-bit ring network composed of Inter-module TASIC Links.  This ring network
provides communication between modules and the GNI, allowing pixel data to be shared
between modules, and allowing the GP to participate in pixel calculations or to access pixel
memory for diagnostic purposes.

Both the EMC-to-TASIC connections and Inter-Module TASIC links operate at 200 MHz,
bidirectionally.

The TASICs of each module also contain a 32-bit bidirectional interface to optional video
circuitry.  This port, which also is bit-sliced by 2, is clocked with an external clock that can
run up to 100 MHz.  The port is used to send pixels from DRAM memory to video DACs
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(when refreshing a screen) or to read pixels from video ADCs (on a frame grabber) into
texture/video memory.

Figure 7 shows a block diagram of a physical TASIC chip.  Internally, it is composed of
three dual-ported RAMs, several configurable datapaths, and a number of control and
address registers and counters.  One dual-ported RAM buffers SDRAM memory addresses
(the Address Corner Turner or ACT); one buffers SDRAM data (the Data Corner Turner or
DCT); the third buffers video data to/from the video port (the Video FIFO or VFIFO).
Cycle-by-cycle operation of the TASICs is controlled by the TIGC Sequencer, which also
controls the EMCs' local ports (since these interface directly to the TASICs).
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Figure 7:  Block diagram of Texture ASIC (TASIC).  Each physical TASIC
(pictured here) represents one of the two bit-slices in a logical TASIC. 1

Throughout the remainder of the document, unless otherwise indicated, we will refer to
logical TASICs (both bit slices), not physical TASICs.

Address Corner Turner.  The Address Corner Turner (ACT) is a dual-ported memory
that “corner-turns” serial addresses arriving from the EMCs or GNI and buffers them up

_____________

1 Two revisions of the TASIC have been fabricated, Rev1.0 and Rev2.0. Rev2.0 is almost identical
functionally to Rev1.0, but has two extra signal pins (shown in gray), a more general SDRAM clock
generator, and different semantics for 1to1 CommPort transfers (see below).  A complete list of the
differences between revs can be found in the PixelFlow TASIC Functional Description.
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into the parallel format required at the Address Port.  It is composed of a 32x64x8 dual-
ported memory, as shown in Figure 8.  Address data from the eight EMCs in the module
stream into this memory from the left.  The eight addresses from a single EMC are read out
from below.  Separate write and read pointers keep track of where in the ACT addresses
are currently being written or read.1
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Figure 8:  Address Corner Turner.

The ACT can be configured to mask outputs to the low or high sets of four SDRAMs.
Commands to configure the ACT are described in Section V.2.

Data Corner Turner.  The Data Corner Turner (DCT) is similar to the ACT, except it
buffers data rather than addresses and can transfer data in both directions, from EMCs (or
GNI) to SDRAMs, or vice versa.  Like the ACT, it is composed of a 32x64x8 dual-ported
memory, as shown in Figure 9.  When writing textures to SDRAM memory, it receives
data from eight EMCs from the left.  The eight data values from a single EMC are read out
from below.  Separate write and read pointers keep track of where in the DCT data values
are currently being written or read.

_____________

1Access patterns for these pointers and detailed timing for the ACT and DCT can be found in the PixelFlow
TASIC Functional Description.
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Figure 9:  Data Corner Turner.

The DCT can be configured to send data in either direction and to transfer either 1, 2, or 4
byte data types.  There are no commands to do this explicitly; rather DCT configuration is
done at the beginning of data transfer commands (described in Section V.3).

Configurable Datapath.  The datapath between the EMC port, the inter-module TASIC
links, and the ACT/DCT is configurable to allow data to be transferred in a variety of
directions, both between the modules (and GNI) of a rasterizer and within a given TASIC.

Options for transferring data between modules (and GNI) using the inter-module links are
shown in Figure 10:
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Figure 10:  Options for transferring data between modules (and GNI).
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Data can be sent point-to-point from the EMCs of one module to the SDRAMs of another
module.  It can be broadcast to the SDRAMS of all modules.  It can be written in parallel
for each of the modules.  Similarly, data can be sent point-to-point from the GNI to one
module’s SDRAMs or broadcast to every modules’ SDRAMs.  Reads can be done in
parallel for all modules, or read data from one module can be sent to the GNI.

Possible datapath configurations within a TASIC are shown in Figure 11:
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Figure 11:  TASIC internal datapath options.

Portions of the datapath configuration are done implicitly as part of data transfer
commands.  Explicit setup commands are used to perform other parts of configuration.
These commands are described in Section V.2.

Internal Address Generator.  Under some circumstances, such as many texture writes
and transfers of texel data to/from the GNI, it is impractical to provide memory addresses
from the EMCs.  To support these kinds of operations, the TASIC contains an internal
address generator.  It has three main parts:

1)  A set of eight immediate address registers.

2)  A 32-bit presettable up-counter followed by a programmable crossbar.

3)  Multiplexing circuitry at the memory address outputs that can select and combine
addresses from different sources.

The immediate address registers are 16-bit registers that can be set to arbitrary values via
the TIGC.  The value in a particular register can be sent directly to all eight TIGC address
outputs or it can be xor’ed with other address sources.

A 32-bit presettable up-counter followed by a crossbar is available to provide incrementing
addresses.  The crossbar allows allows address bits to be interchanged, so fairly general
addressing patterns are available.

Multiplexing circuitry at the memory address outputs selects among the different possible
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address sources.  Some address sources can be xor’ed together as well, providing even
more flexibility when generating addresses.  Commands to configure the address
generation logic are described in Section V.2.

Video FIFO and Video Port.  On video boards (frame-buffer or frame-grabber
boards), SDRAM memory is used to store pixels, making it unnecessary to provide
additional frame-buffer memory for this purpose.  Access to SDRAM memory is time-
shared on video boards between video reads/writes and normal texture/backing-store
accesses.   

Since the video port runs asynchronously with respect to the rest of the system, some
buffering is needed between the SDRAMs and the video port.  This buffering is provided
by the Video FIFO (VFIFO), another dual-ported memory.  It is a 256x32x8 memory,
which can load (or store) eight pixels simultaneously from the SDRAMs while
asynchronously transmitting (or receiving) a stream of pixels over the video port (Figure
12).  The TIGC controls the loading and unloading of pixels from the SDRAM end of the
VFIFO, while an external video controller controls the other end via the video port. 1

32
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8

bits of 
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Video FIFO
256x32x8 bits

Each cell 
contains 
8 bits

Pixel Selection Logic

32-bit wide pixel data
to/from Video Port

Data to/from: Mem
7

Mem
6

Mem
5

Mem
4

Mem
3

Mem
2

Mem
1

Mem
0

Figure 12:  Video FIFO.

_____________

1The memory access pattern and detailed timing info for the VFIFO can be found in the PixelFlow TASIC
Functional Description.
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In addition to buffering pixels, the TASICs also have internal address registers for keeping
track of pixel row/column addresses for the starting scan line of up to eight independent
video fields, plus counters for the address of the current scan line and pixel.   It also
contains registers which specify the order fields are to be displayed, so interleaved and/or
stereo displays can be refreshed continuously without intervention by the GP.  Special
TIGC Sequencer instructions update these address address and field registers.  These are
used to swap buffers when double-buffering and to synchronize GP operation with video
scanout when desired.

Commands to configure and operate the VFIFO and Video Port are described in Section
V.5.

I I .5 Texture/Video Memory

As described above, two TASICs in each module connect to eight 2-M x 8 (16 megabit)
synchronous DRAM (SDRAM) memories, a total of 32 SDRAM chips per system board.
These memories are used to store image-based textures, provide inter-pixel communication
for image-warping operations, serve as backing store for memory-intensive rendering
algorithms, and store video frames in frame-buffer or frame-grabber boards.

The 8 SDRAMs in a module are arranged as shown in Figure 6 above.  Each SDRAM chip
contains 4K x 512 bytes of storage.  The chips are controlled globally by the TIGC
Sequencer (all eight do a memory operation at the same time), but addresses for each bank
are independent.  The total storage per module is 16 MBytes.  Each SDRAM can read or
write data to/from a random location in memory at a peak rate of 100 Mbytes/sec, so the
raw memory bandwidth per module is 8 • 100 MBytes/sec = 800 MByte/sec (the attainable
memory bandwidth for four-byte reads/writes is approximately 580 MBytes/sec).

Addresses for texture reads/writes can come from one of three sources:  1) computed on
EMCs and sent over local-port to TASICs, 2) sent to TASICs over geometry network, 3)
generated on the TASICs themselves using a simple 32-bit presettable counter followed by
a crossbar that allows permutations of address bits within the 32-bit word.

The external memories on both the shader and video boards are dynamic memories—they
'forget' data that is stored within them if they are not refreshed periodically.  Refreshing
consists of visiting every row in the memory array of every memory chip at least every 8
msec.  This is done by a TIGC Sequencer microcode subroutine that performs refresh
cycles.  Calls to this subroutine are in TIGC sequencer microcode routines so that refresh
cycles are guaranteed to occur sufficiently often.  Section V.2 describes this refreshing
method in more detail, and special precautions that must be taken when loading microcode.

I I .6 Video Interface

The optional video controller multiplexes pixel data to/from the four modules and converts
between digital and analog formats.  It contains its own pixel clock and counters for the
number of pixels in a scanline, the number of scanlines in a field, and the fields in a frame
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(we define a frame as one or more fields that are displayed consecutively without requiring
intervention by the GP).  The video controller may contain an auxiliary frame buffer (for X
overlays, for example) whose output is merged with the video signal from PixelFlow.

The basic strategy is to make the video controller the master of all video processing and
make TIGC and TASIC video ports synchronize to it.  This allows external gen-locking
and prevents TIGC failures (hanging, for example) from disrupting all video.

The pixels in a scan line are interleaved over the modules, so that every 4 (contiguous)
pixels on a horizontal scan line come from different modules.  The SDRAMs provide
storage for 4Kx4K 32-bit pixels, sufficient to double-buffer images for any display up to
4Kx2K pixels.  The video port can be clocked at up to 100 MHz.  By multiplexing the
outputs of the four modules together, as shown in Figure 13, the overall pixel rate can be
as high as 4 • 100 Mpixels/sec = 400 Mpixels/sec, sufficient to update a 2K x 2K monitor
at 60 Hz.  Portions of memory not needed for storing images can store texels for image-
based texturing or other data as in any other system board.

Module 0

Logical TASIC for one module 
(both bit-slices)

Module 1

Module 2

Module 3

4 
: 1

 M
U

XD0

D1

D2

D3

32 bits @ 90 MHz
TASIC

TASIC

TASIC

TASIC

360 MHz
RAMDAC

32 bits @ 
360 MHz

Analog
video out

(360 MHz)

2k x 2k
Monitorx3 

(for RGB)

Figure 13:  Video connections for a 2K x 2K-pixel frame-buffer board.

The TIGC Sequencer polls a video request input and reads or writes batches of pixels
from/to SDRAM memory when indicated.  Video pixels are buffered in the TASICs’
internal VFIFO, which can store up to 4096 pixels (enough for two scan lines of a 2K x
2K display.  The video controller handshakes with the TIGC sequencer so that the video
buffer is always partially full when scan lines may be requested.

Figure 14 shows the connections between a sample video controller and rasterizer.
TASStrobe and TASStrobeDel communicate status information from the TIGC to the GP
(TASStrobeDel outputs are delayed by the tree latency).  GPStrobe communicates status
information from the GP to the TIGC.  One of eight internal status bits is multiplexed onto
GPStrobe under control of TASMuxSel, generated by the TIGC.  VidReq conveys video
requests to the TIGC.  VidStat indicates the type of request (0x0 = unused, 0x1 = new line,
0x2 = new field, 0x3 = new frame).  VidClk is the video subsystem clock (independent of
the normal rasterizer clock).  VidEn is the pixel read/write enable for the TASICs’ video
port.  VidRst resets and initializes the video controller.  Note that this is only one example
implementation of a video interface.  The encodings of video status and use of TIGC
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ExtOP signals are programmable—the video controller, rasterizer glue chip, and TIGC
video microcode just have to agree.

Video
Controller

GP status/
control PLD

TIGC

TASIC

TASIC

VidAck

VidReq

VidClk VidEn

External 
Synch 
(optional)

TASStrobeDel<1:0>

TASMuxSel<2:0>

GPStrobe
3

to GP bus

VidStat

VidRst

22

TASStrobe<1:0>

2

Figure 14:  Video control interface (example).

The counters and finite-state machines in the Video Controller orchestrate video operation.
Each time a new scanline, new field, or new frame is needed, the video controller asserts
VidReq.  The TIGC polls the VidReq input and reads the request type from VidStat via the
GP status register using TASMuxSel to select the appropriate status bits.  When the TIGC
has recognized a request, it asserts VidAck, which clears VidReq and VidStat until the next
video request.  The GP status register PLD monitors VidAck to ensure that the TIGC is
responding to video requests.  If no VidAck occurs during a specified time interval, it can
be inferred that the TIGC is operating incorrectly or is hung, necessitating a GP interrupt to
reset the video subsystem.

The TIGC uses VidStat information to synchronize fields and frames with the video
controller and to ensure that each frame is displayed at least once.

The video interface is left unconnected on non-video boards.

III GENERATING RASTERIZER COMMAND INPUT

When generating Rasterizer command input, the two IGCs are though of as a single logical
entity. IGC commands consist of three types:
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• EIGC commands.  These perform computations on the SIMD array of pixel
ALUs on the EMCs, and do setup for the two I/O port operations.

• TIGC commands.  These control the TASICs, the EMC local port, and external
DRAM memory.

• RT Controller commands.  These control the operation of the semaphores
which interlock the FIFOs and Sequencers, and operation of the Image
Composition Controller.  They pass through the input FIFOs and are intercepted by
the RT Controller, but they are not executed by either Sequencer.

The commands of each type are defined in header files <root>_opcodes.h  and
<root>_commands.h.  For EIGC commands, <root>  = "EMC"; for
TIGCcommands,<root>  = "TAS".  For RT Controller commands, <root>  = "EMC" or
"TAS", depending upon which semaphore is being controlled.     

The opcode for each command is defined by a macro I_<root>_<cmdname> in the
header file <root>_opcodes.h.  Some EMC and TIGC sequencer commands require a
supplementary opcode, which is defined by an additional macro
P_<root>_<cmdname>, also in the header file<root>_opcodes.h.  EIGC commands
may also include either one or three coefficients (either just C, or A, B, and C); TIGC
commands may include a single coefficient (C).  The opcode and supplementary opcodes
are each 32-bit quantities;  the coefficients may each be either 32-bit (one word) or 64-bit
(two word) quantities.  

The <root>_commands.h header file contains C++ function definitions that generate entire
IGC commands.  The use of these commands is described in the following section.  The
<root>_opcodes.h and <root>_commands.h header files are generated by the PixelFlow
IGC microcode assembler from microcode source (written by the hardware designers)
contained in the file <root>.ucode.  The assembler also generates files containing
microcode:  EMC_ucode.h contains microcode for the IGC sequencer, and
TAS_<type>_ucode.h contains microcode for the TIGC sequencer (<type> refers to the
particular video-port configuration on a given board, since TIGC microcode differs slightly
depending on whether a board is a frame-buffer, frame-grabber, etc.).  The microcode for
the respective sequencer is declared as an initialized static array unsigned EMC_ucode[]
or unsigned TAS_<type>_ucode[].  Portions of these files ar generated by hand,
which specify the RT Controller commands.

III.1 Generating Commands with Inline C++ Functions

To generate IGC commands from within a C++ program, the user need not be concerned
with the exact formatting of commands.  The header files <root>_commands.h provide an
easy way of generating command input. For each command <root>_<cmdname>
described in the following sections, <root>_commands.h contains a C++ function:

void <root>_<cmdname>(stream, args,...)



§Rasterizer p. 29
________________________________________________________________________

______________________________________________________________________________________

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0  jge/sem

These functions are normally declared as inline functions, so there is no procedure-call
overhead for their execution.  These functions generate all the instruction words for the
command.

The first argument to each of these functions, stream, is a reference to an element of a
special C++ class called IGCStream, defined in the header file IGCStream.h.
IGCStream contains routines for managing IGC command input buffers.2  The stream
argument must be defined prior to calling IGC command functions.  When an IGC
command function is called, it writes data to the stream, appending it to the current
command buffer.  When a buffer is filled, handlers within IGCStream automatically
process the filled buffer and allocate a new one.  This makes it possible to use IGC
commands without worrying about block boundaries.  IGCStream is implemented so that
inline functions handle all routine operations.  The only time a procedure call is needed is
when a buffer fills and must be flushed (IGCStream is patterned after Unix stdio in this
respect).

The remaining arguments to each IGC command are command-specific.  They may be
addresses into pixel memory, operand lengths, C or ABC coefficients, or other quantities
as described in the command synopses below.

Error Checking

The IGC command functions and IGCstream provide several types of error checking and
exception handling, which can be disabled under certain circumstances to increase speed.
The three types of checking are:

1 ) Need checking (buffer-space checking).  Ensuring that commands do not
append data past the end of the current command buffer.

2)  Alignment checking.  Ensuring that double-word coefficients are aligned to
even-word boundaries in the command buffer.

3 ) Argument checking.  Ensuring that command functions are called with valid
arguments.

All of these types of checking are performed by default.  They can be disabled at compile-
time by defining an appropriate symbol (described below) with a #define statement, prior
to including the IGC command-function header file(s).

Need checking

Need checking or buffer-space checking, prevents command functions from appending
data past the end of the current command buffer.  They do this by comparing the number of
words to be written with the number of free words left in the buffer.  If there is not enough
space, the flush and alloc handlers are called to create new space.

Performing "need" checking within each command function ensures that buffer overflows
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will never occur, but performs checks very frequently (every 1 – 5 words, on average).  In
some cases, it may be desirable to defeat need checking within command functions and to
perform it for blocks of commands at a time.  Need checking is disabled by inserting the
line '#define IGCNOCHKNEED ' prior to including the IGC command-function
header file(s).  In this case, the code that calls the IGC command functions must contain a
statement of the form s->need(nwds) before the IGC command functions are called.
Here s is a pointer to the current IGC stream, and nwds is the number of words that will
be appended by all of the IGC commands to be called before the next s->need statement.  

As an aid in determining nwds, the header file <root>_commands.h defines macros for
the number of words in each command.  These have the form:

<root>_<cmdname>_<suffix>_len

For example, the macro for the number of words in the EMC_TreeEqZero command
with ABC floating-point coefficients is:

 #define EMC_TreeEqZero_Lf_len    4

If alignment checking (see below) is enabled, commands with double coefficients may
actually require one additional word, if a no-op needs to be added.  The need checking code
does this automatically.

Alignment checking

Alignment checking ensures that the coefficients of commands with double-word
coefficients are aligned to even-word boundaries in the command buffer.  This may or may
not be necessary, depending on the operand alignment requirements of the graphics
processor and IGC input structure.  If alignment checking is enabled (default), a test is
made within every IGC command function which uses double-word coefficients to
determine the alignment of the current buffer address.  If the address is odd-word aligned
and the command has a two word opcode (I and P words), or if the address is even-word
aligned and the command has a one-word opcode, then a special "ignore" instruction is
placed in the buffer ahead of the current instruction, to align it the coefficients to an even-
word boundary; this dummy instruction is ignored by the Stream Parsers.

Alignment checking is disabled by inserting the line '#define IGCNOCHKALIGN '
prior to including the IGC command-function header file(s).  In this case, the commands
are placed in the buffer without alignment restrictions, and no dummy instructions are
added.

Argument checking

Argument checking performs range checking on the arguments to IGC command functions.
It ensures that pixel addresses and lengths are valid according to the command
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specification, but increases the run-time cost for executing each command.

Argument checking can be disabled by inserting the line '#define IGCNOCHKARGS '
prior to including the IGC command-function header file(s).    This eliminates the run-time
cost of argument checking, but can cause unpredictable operation of the IGC (including
hanging) if command functions are called with invalid arguments.  We anticipate enabling
argument checking during code development, and disabling it for production code.

TFIFO Commands

So far we have assumed that commands are directed to the RFIFO, the FIFO for normal
rendering commands.  Most commands can also be directed to the TFIFO, the FIFO for
commands which move data into the image-composition buffers and initialize image-
composition operations.  These commands are generated by functions with a special T_
prefix, or having the form T_<root>_<cmdname>(stream, args,. . . ).  These
commands are used in the system software that operates the image-composition network.
Not every command has a corresponding version with a T_ prefix (particularly those
which use the coefficient arguments A, B, and C, which cannot be stored in the TFIFO).
The command descriptions below indicate which commands have T_ versions and which
do not; in particular, none of the commands which use the linear expression evaluator have
a T_ version, and some others also do not, as noted.

RT Controller Commands

RT Controller commands must be directed to the correct FIFO on the correct IGC, for the P
or V function they are to perform.  These are described below in Section VI.

III.2 Generating Commands with opcodes.h Macros

The functions in <root>_commands.h append command words to an IGC stream.  For
some purposes, such as assembly language programs, these functions cannot be used.  The
<root>_commands.h functions are built on top of a set of macros defined in
<root>_opcodes.h.  These macros define the command opcodes, and can be used in C or
C++ programs to generate IGC command words explicitly (providing more flexibility), or
in assembly language programs, where there is no alternative.

For a given command <root>_<cmdname>, defined in <root>_commands.h,
<root>_opcodes.h contains a macro definition:   I_<root>_<cmdname>(args,...).
This macro generates the opcode or I word for the command.  Some commands require a
supplementary opcode or P word.  For these there is an additional macro definition,
<root>_P_<cmdname>(args,...), which generates this supplemental opcode.  The I
word is always the first word of a command.  The P word, if necessary, is the second
word.  The opcode(s) may be followed by C or ABC coefficients.  The I word contains bit
fields which indicate the format of the remainder of the command.

Generating the command words using these macros is accomplished using the following
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steps:

1) Generate the main (I word) opcode, by evaluating the appropriate macro of the form
I_<root>_<cmdname>().

2) If the command is intended for the TFIFO, set bit 30 (the TCmd bit) of the opcode.
Note that some commands, including those which use the tree coefficients, cannot
be sent to the TFIFO.

3) Check bit 28 of the opcode, (the Long bit), or alternatively, check to see if the
macro P_<root>_<cmdname>() is defined in <root>_commands.h,; if so,
evaluate P_<root>_<cmdname>()  to generate the supplementary opcode.

4) Add the coefficients if required; first check bit 27 (the Coef bit) of the I opcode, to
see if the instruction uses coefficients; if so, check bit 26 (the Linear bit), to see
whether one (C) or three (A, B, and C) coefficients are required, bit 25 (the Double
bit) to see if the coefficients are 32- or 64-bit, and bit 24 (the Float bit) to see if the
coefficients are integer or floating-point; finally, add the coefficients words.  Note
that some commands use the C coefficient in a way that is invisible to the user, so
the above opcode bits must be checked even if the command is not an LEE
command.

It is important that the command words be ordered as described above:  I-word, P-word,
A-lsw, A-msw, B-lsw, B-msw, C-lsw, C-msw  (the ordering of the two words for 64-bit
A, B, and C is reversed if the "endian" bit in the Interface Control Register is set , see
EMC_IFSpec instruction below).

Some of the RT Controller commands require padding with no-op instructions in order to
function correctly; these are inserted within the inline functions incommands.h  , but must
be explicitly inserted when using the opcodes.h macros.

More details on the meaning of the bits of the I-word and P-word opcodes are found in the
IGC documentation.

IV EIGC COMMANDS

Commands for the EMC Sequencer can be divided into several categories:

1) Commands for the SIMD processor array

2) Commands for configuring the linear expression evaluator (LEE)

3) Commands for configuring the image-composition port

4) Commands for configuring the local port

5) Miscellaneous EIGC Sequencer commands
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These are described in the following sections.

IV.1 Commands for the SIMD Processor Array

These commands are executed in parallel on the SIMD array of PEs:  each PE performs the
same operation at the same time.  Each can write results only into its own pixel memory.
PEs can communicate with their two neighbors within a panel, via a simple inter-ALU
path.    Each PE ALU contains a number of registers, of which the following are visible to
the programmer (also see Figure 4 in  Section I):

• Enable Register.  Allows conditional writes into pixel-memory.  Most
instructions which generate arithmetic/logical results write those results into pixel
memory only at enabled PEs (those PEs where the Enable register contains a '1').

• Carry Register.  A one-bit register used for passing results between commands.
It is not like the Carry register in a conventional ALU, since it does not reliably
contain overflow information from arithmetic instructions and it need not be
explicitly cleared before operations such as addition. In the instruction descriptions,
the 'C' column indicates the effect on the Carry register: an 'X' indicates that the
instruction corrupts the Carry register, and a '√' indicates that the instruction leaves
a well-defined result in the Carry register (but only at Enabled PEs).  A few
instructions affect the Carry at all PEs (regardless of Enable), and these are
explicitly mentioned.

• S Register.  An 8-bit register used for accumulating intermediate results (mainly
in more complex arithmetic calculations like division).  In the instruction
descriptions, the 'S' column indicates the effect on the S register: an 'X' indicates
that the instruction corrupts the S register, and a '√' indicates that the instruction
leaves a well-defined result in the S register.  The S register is affected at all PEs.

All PEs execute the same instruction on each cycle, but memory writes for arithmetic
operations are conditioned by each PE's Enable register (this is indicated by the symbol '≅ '
in the command synopses below).  A PE whose Enable register has been cleared can be
thought of as disabled or "turned off."  For example, the standard polygon algorithm scan-
converts a polygon by disabling pixels outside the polygon before loading color
information to shade the polygon.

Specifying Memory Segments

The instruction set for the SIMD array of PEs resembles that of a simple microprocessor.
Operands may include:  arbitrary length signed or unsigned integers in pixel-memory;
constant or linear expressions from the LEE; the Enable register, the Carry register, and the
S register.  Since many instructions invisibly corrupt the Carry and S registers, they may
be used only when explicitly stated for calculations which require more than one
instruction.
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Integers defined in pixel-memory have their least significant byte at their lowest address.
Memory segments are identified with the notation mem[lsb : len].  For example, a 32-bit
(4-byte) integer in the memory segment at bytes 24 through 27 (with LSByte at byte 24) is
denoted mem[24 : 4].  Contents of memory segments may represent unsigned or two's-
complement signed integers.  For many instructions, the computation is the same whether
the contents of the memory segment are treated as signed or unsigned; for others it does
matter, and these are noted.  Each memory segment must lie wholly within one of the five
partitions of pixel-memory (main memory, the two local port buffers, and the two image-
composition port buffers).  Maximum length of memory segments is 8 bytes for most
instructions; it is greater than 8 for a few instructions noted below.  Minimum length is 1
unless otherwise specified.

A few instructions operate on individual bits within pixel memory.  Bits are identified with
the notation membit[byte : bit] , where byte indicates the byte and bit is between 0 and
7, with 0 indicating the least significant bit  and 7 indicating the most significant bit.

A section of the pixel memory address space, addresses 448-511, is reserved for use by the
pixel-memory address base register.  This register is loaded using the EMC_PMABase
command, described below.  Any address in the range 448-511 has 448 subtracted from it,
and then is added to the base register contents.1

Specifying Tree Results

The LEE can be used in several different modes.  In constant mode the LEE result is just
F(x, y) = C; in linear mode, the LEE result is F(x, y) = Ax + By + C.  The x,y values are
in pixlets.  Thus, for the multiple-sample-per-pixel screen organizations used for  sample-
parallel rendering (Figures 5B-5C), the A,B,C coefficients computed in terms of pixels
must be converted to pixlet dimensions before being used as instruction arguments; this is
done by multiplying the coefficient values by the pixel dimension in pixlets, normally 8.  

The coefficients for the LEE expression can be:  32- and 64-bit signed integers, single-
precision (32-bit) IEEE floating-point numbers, and double-precision (64-bit) IEEE
floating-point numbers. For linear mode, coefficients also can be 32- or 64-bit fixed-point
numbers.  There is a separate command for each of these 10 combinations of coefficient
type and tree mode, all having the same base command name but with a different two-letter
suffix.2  The LEE result is treated the same in each case, and is simply denoted as tree in
the command set description, but its actual form is specified by the user according to which
specific command is invoked. The tree result is computed for some fixed number of bytes
specified as an argument to the instruction; it is identified with the notation tree[len],
where len is the number of bytes.  If the tree result is less than len bytes in magnitude, it is
sign-extended to len bytes; if it is greater than len bytes in magnitude, the upper bytes are

_____________

1It is also possible to specify distinct base addresses for the different types of operands; contact Eyles for
details.  The pixel-memory address refresh counter can also be under program control, and retains its value
between instructions; contact Eyles for details.

2 The fixed-point types are not yet implemented for most of the instructions. See Eyles if they are needed.
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discarded. Maximum value for the len argument for commands which use the LEE is 8;
minimum value for len is 1.1

The LEE performs only fixed-point calculations. If the LEE coefficients are floating-point,
they are converted within the IGC.  For constant LEE mode instructions, the number of
fraction bytes used in the fixed-point representation is 0. For linear LEE mode instructions,
the number of fraction bytes is user-specified, as the argument  FB to the instruction, in the
range 1 - 3; the maximum value of 3 provides the greatest precision, while smaller values
allow faster instruction execution, but with some loss of precision, depending on the
magnitude of the coefficient.  If the LEE coefficients are fixed-point, the number of fraction
bytes is user-specified in the range 1 - 3, but the fixed-point number is assumed to have
one additional fraction byte; for example if the FB argument is 1, and the instruction uses
32-bit fixed-point coefficients, then the coefficients are assumed to be of the form 16.16
(16 integer bits, 16 fractional bits).  This extra fraction byte is ignored for the A and B
coefficients, but for the C coefficient it is used to add precision to calculations with
subpixel offsets, as described below.

The LEE result, F(x, y) = Ax + By + C, is computed from the integer or fixed-point
coefficients. For contant mode instructions and/or instructions with integer coefficients, the
coefficients are truncated to integers and an exact calculation is performed. For linear mode
instructions with floating- or fixed-point data types, the A and B coefficients have FB
fraction bytes, and the C coefficient has FB+1 fraction bytes; the Ax + By + C calculation
is exact to FB+1 fraction bytes.  This extra byte of calculation is free, and adds precision
for situations where the subpixel offset is non-zero. Finally, the LEE result is truncated to
an integer; this trunction is always downward, so negative values are truncated away from
zero.  After truncation, the len least significant bytes of this integer are used in the
instruction as tree[len].

Several types of error can be introduced in this process, and the user must be familiar with
them.  Floating-point coefficients with magnitude smaller than 2-FB will be converted to 0,
as expected, since the fixed-point equivalent is 0; denormalized numbers are also converted
to 0.  Floating-point exceptions such as infinities and NaN's are converted to 0 as well.
When the magnitude of the LEE result is too large to be represented by a len byte integer,
the upper bytes of the LEE result will be discarded and the sign of tree[len] will generally
be incorrect; in the extreme, very large LEE results computed using floating-point
coefficients will degenerate to zero when all the significant bits of the mantissa are shifted
8*len bits to the left of the radix point and the len least significant bytes are zero.  The
truncations can have more subtle effects as well. For example, the linear expression
x+y+1.99 will evaluate to the integer '1' at pixel x=0, y=0, while x+y-1.99 will evaluate to
the integer '-2'.  Coefficient truncation can also give suprising results; for example, the
linear expression 0.1x + y + 0 will evaluate to the integer 0 at x=10, y=0, since 0.1
truncates to the fixed-point number 6553/216, so the LEE result at pixel (10,0) is
65530/216, and this is truncated to 0. On the other hand, -0.1x + y + 0 evaluates to the
integer -1 at x-10, y=0.  Since the LEE supports a maximum screen-size of 16k x 16k
_____________

1 It is possible to provide LEE commands that allow tree results up to 16 bytes in length, at some expense.
Contact Eyles for details.
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pixlets, two fractional bytes of precision gives a maximum error in Ax + By + C equal to

214 • 2-16 + 214 • 2-16 + 2-16 = 2-1; this is less than the quantitization error introduced when
the LEE result is truncated to an integer.  

The LEE result can be viewed as an immediate operand.  Some instructions which require
only a single byte of data do not use the LEE. Their single-byte operand is identified with
the notation byte_data.  These instructions are useful because T_ forms are defined
(unlike instructions which use the LEE, which cannot be placed in the TFIFO), and
because they conserve command words.

Command Prefixes

For most of the commands described below, two functions are defined in
EMC_commands.h, corresponding to the ordinary (RFIFO) and TFIFO versions of the
command.  For example, the command denoted SetEnab() in the instruction descriptions
has two functions defined:

EMC_SetEnab (p)

T_EMC_SetEnab (p)

Each function simply places the opcode for SetEnab in the IGC stream indicated by ' p '
(the argument 'p' is omitted from the command descriptions to save space).  Were
SetEnab an instruction which requires the double IP opcode, the P-word of the opcode
would be placed in the stream next.  The macro T_EMC_SetEnab (p) sets the TCmdbit
of the opcode so that the command is placed into the TFIFO, rather than the RFIFO.

Command Suffixes

Commands which use the LEE have names with the suffix _Mt  in the instruction
descriptions. This suffix is expanded to produce ten distinct functions in
EMC_commands.h, corresponding to the different LEE Modes and coefficient types: 'M '
can be either 'S', for constant mode, or 'L', for linear mode; 't ' can be 'i', 'l,' 'f', 'd', ' p ' ,
or 'q', for 32-bit integer, 64-bit integer, 32-bit float, 64-bit float, 32-bit fixed-point, and
64-bit fixed-point, respectively (but _Sp and _Sq are not defined).  For example, the
command denoted MemPlusTree(dst,src,len[,A,B],C) in the instruction descriptions
has ten inline functions defined in EMC_commands.h 4 :

EMC_MemPlusTree_Si (p,DST,SRC,LEN,C)
_____________

4 Since 64-bit integers are not supported on platforms on which the simulator is currently implemented,
the _Sl form of the macro is actually EMC_MEMplusTREE_Sl(p,DST,SRC,LEN,Clo,Chi) ,
where Clo and Chi are the low-order and high-order 32-bits of the C coefficient respectively.   Similarly,
the _Ll  form is EMC_MEMplusTREE_Sl(p,DST,SRC,LEN,Alo,Ahi,Blo,Bhi,Clo,Chi) ,
and the _Lq  form is
EMC_MEMplusTREE_Sl(p,DST,SRC,LEN,FB,Alo,Ahi,Blo,Bhi,Clo,Chi) .
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EMC_MemPlusTree_Sl (p,DST,SRC,LEN,C)

EMC_MemPlusTree_Sf (p,DST,SRC,LEN,C)

EMC_MemPlusTree_Sd (p,DST,SRC,LEN,C)

EMC_MemPlusTree_Li (p,DST,SRC,LEN,A,B,C)

EMC_MemPlusTree_Ll (p,DST,SRC,LEN,A,B,C)

EMC_MemPlusTree_Lf (p,DST,SRC,LEN,FB,A,B,C)

EMC_MemPlusTree_Ld (p,DST,SRC,LEN,FB,A,B,C)

EMC_MemPlusTree_Lp (p,DST,SRC,LEN,FB,A,B,C)

EMC_MemPlusTree_Lq (p,DST,SRC,LEN,FB,A,B,C)

Note that the argument lists are slightly different for the different functions. The _S types
have only the C coefficient, whereas the _L  types have A, B, and C coefficients. All the
_L types, except _Li  and _Ll , have an additional FB argument to specify the number of
fractional bytes of precision; FB can be in the range 1 to 3.

Commands which use the LEE coefficients cannot be directed to the TFIFO (the TFIFO
word is wide enough for only the I and P opcode words).  Hence no commands of the
form T_EMC_<cmdname>_<Mt>() are defined.  A few other commands use the LEE
coefficients for special purposes, rather than for LEE operation; these also do not have
TFIFO forms, as specified in the comments or notes associated with the command.

Commands for the SIMD array can be divided into several categories:  commands to
modify the Enable register,  commands to store the Enable register, arithmetic/logical
commands, commands for advanced arithmetic operations, global commands, special-
purpose commands, inter-pixelcommands, and miscellaneous commands.

Unpredictable behavior may occur if illegal arguments are given.  Argument checking can
be invoked at some cost in performance (see Section III above).
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Commands to Modify the Enable Register

These commands alter the contents of the Enable register.  Remember that most of the
arithmetic/logical commands, to be described below, affect only pixels whose Enable
register is set.

Command: Synopsis: S C Note
:

ClrEnab ( ) enable  = 0

SetEnab ( ) enable  = 1

EnabInv ( ) enable = ! enable

SetEnabPixel (x, y) enable = this is pixel (x,y) 25, 29

EnabPixel (x, y) enable &&= this is pixel (x,y) 25, 29

MemIntoEnab (byte, bit) enable  = membit [byte:bit]

CryIntoEnab () enable = carry

BitTstHi (src, bytedata) enable &&= ( mem [src :1]  & bytedata) == bytedata

BitTstLo (src, bytedata) enable &&= (~mem[src:1] & bytedata) == bytedata

TreeEqZero_Mt (len,[A,B,]C) enable &&= (tree[len]  == 0)

TreeGEZero_Mt (len,[A,B,]C) enable &&= (tree[len] >= 0)

TreeLTZero_Mt (len,[A,B,]C) enable &&= (tree[len] < 0)

SNETree_Mt [A,B,]C) enable &&= (S_register != tree(1))

Mesh_Mt (bits,[A,B,]C) enable &&= ((tree[[len]  % 2̂ bits)== 0)   X 19

MemEqByte (src, byte_data) enable &&= (mem [src:1] == byte_data)

MemEqZero (src, len) enable &&= (mem [src : len]  ==  0)

MemEqOnes (src, len) enable &&= (mem [src : len]  ==  ~0)

MemNEZero (src, len) enable &&= (mem [src : len] != 0)

MemNEOnes (src, len) enable &&= (mem [src : len] !=  ~0)

MemEqMem (src0, src1,len) enable &&= (mem [src0 : len] ==  mem [src1 : len])

MemNEMem (src0, src1,len) enable &&= (mem [src0 : len]  !=  mem [src1 : len])   X

MemGEMem (src0, src1,len) enable &&= (mem [src0 : len] >=  mem [src1 : len])   X 1

MemGTMem (src0, src1,len) enable &&= (mem [src0 : len]  >   mem [src1 : len])   X 1

Mem2GEMem2 (src0, src1,len) enable &&= (mem [src0 : len] >=  mem [src1 : len])   X 2

Mem2GTMem2 (src0, src1, len) enable &&= (mem [src0 : len]  >   mem [src1 : len])   X 2

MemEqTree_Mt (src, len,[A,B,]C) enable &&= (mem[src : len]  ==  tree[len])

MemNETree_Mt (src, len,[A,B,]C) enable &&= (mem[src : len]  !=  tree[len])   X

MemLETree_Mt (src, len,[A,B,]C) enable  &&= (mem [src : len] <= tree[len])   X 3

MemLTTree_Mt (src, len,[A,B,]C) enable  &&= (mem [src : len]  <  tree[len])   X 3

MemGETree_Mt (src, len,[A,B,]C) enable  &&= (mem [src : len] >= tree[len])   X 3

MemGTTree_Mt (src, len,[A,B,]C) enable &&= (mem [src : len]  >  tree[len])   X 3

EnabOrEqMem (byte,bit) enable | | = membit [byte : bit]

EnabXorEqMem (byte,bit) enable ^̂ = membit [byte : bit]   X

EnabAndEqCry ( ) enable &&= carry
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Commands to Store the Enable Register

These commands store the Enable register into memory or the Carry register.  Unlike most
memory writes and Carry register loads, these writes occur regardless of the contents of the
Enable register.

Command: Synopsis: S C Note:

EnabIntoCry ( ) carry = enable √

EnabIntoMem ( byte,bit) membit [byte: bit]  = enable

MemOrEqEnab ( byte,bit) membit [byte: bit] | | = enable

MemAndEqEnab ( byte,bit) membit [byte: bit] && = enable

Arithmetic and Logical Commands

These commands operate on signed LEE results and signed or unsigned integers in pixel
memory.

Commands may have up to 3 possible pixel-memory operands:  the destination operand
dst, and a source operand, src, or two source operands, src0 and src1.  Unless otherwise
noted, the destination and source operands need not be distinct, but they must not partially
overlap; that is, if they overlap at all, their LSBs must align.  Unless otherwise noted, dst
and src0 must have the same length, dlen..  The source src1 may have a different length,
slen..  The following default rules apply to commands which have separate length
arguments:

dlen == slen : overflow and underflow are discarded

dlen > slen : carry/borrow is rippled through all bytes of destination; src
may be considered unsigned or signed, as noted

dlen < slen : higher order bytes of src are ignored

As described above, minimum and maximum values for the len, dlen and slen arguments
are 1 and 8, respectively (unless otherwise noted).  Segment lengths must be contained
within one of the partitions of pixel memory (the 256-byte main partition, or one of the 32-
byte communication-buffer partitions).

Writing of the result of these commands is conditioned by the Enable register; that is, no
result is written to memory unless the Enable register contains a 1 prior to the instruction
(this is indicated by the "≅ "  symbol in the instruction synopsis).  For commands which
have a defined effect on the Carry register, it is correct only for Enabled pixels, although it
may be affected at all pixels.  For commands which affect the S register, it is affected
regardless of the Enable register setting.
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Command: Synopsis: S C Note:

LoadPixel (x, y, dst, len, value) at pixel (x,y)

 mem[dst : len] ≅ value

24, 25

Clear (dst, len) mem [dst : len] ≅ 0

Set (dst, len) mem [dst : len] ≅ ~ 0

BitClr (dst, byte_data ) mem [ dst : 1 ] & ≅  ~ byte_data

BitSet (dst,  byte_data ) mem [ dst : 1 ] | ≅  byte_data

BitXor (dst, byte_data ) mem [ dst : 1 ]  ̂   ≅  byte_data

ByteIntoMem (dst, byte_data) mem[dst:1] ≅ byte_data

TreeIntoMem_Mt (dst, len,[A,B,]C) mem [dst : len] ≅ tree [len]

TreeClmpIntoMem_Mt (dst,dlen,s len,[A,B,]C) mem [dst : dlen] ≅ tree [slen] X 17

TreeIntoS ((A,B,)C} S_register = tree{1} √

MemIntoS (src) S_register = mem [src : 1] √

Copy (dst, src, len) mem [dst : len] ≅ mem [src : len] 12, 21

Swap (src0,src1, len) mem [src0 : len] <∼ > mem [src1 : len] 18, 23

Inc (dst, src, len) mem [dst : len] ≅ mem [src : len] + 1 √ 22

Dec (dst, src, len) mem [dst : len] ≅ mem [src : len] - 1 X

Merge (dst, src, mask) mem[dst:1] ≅ (mem[dst:1]  &  ~mask )

|  (mem[src:1]  &  mask)

20

LSL (dst, src, len) mem [dst : len] ≅ mem [src : len]  <<  1 √ 5

LSL4 (dst, src, len) mem [dst : len] ≅ mem [src : len]  <<  4 X 5

LSR (dst, src, len) mem [dst : len] ≅ mem [src : len]  >>  1 √ 5

LSR4 (dst, src, len) mem [dst : len] ≅ mem [src : len]  >>  4 X 5

ASR (dst, src, len) mem [dst : len] ≅ mem [src : len]  >>  1  (signed) X √ 6

ASR4 (dst, src, len) mem [dst : len] ≅ mem [src : len]  >>  4  (signed) X X 6

ROL (dst, src, len) mem [dst : len] ≅ mem [src : len]  <<  1 w/ carry √ 4

ROR (dst, src, len) mem [dst : len] ≅ mem [src : len]  >>  1 w/ carry √ 4

Invert (dst, src, len) mem [dst : len] ≅ ~mem [src : len] X

Negate (dst, src, len) mem [dst : len] ≅ - mem [src : len] X 2

AbsVal (dst, src, len) mem [dst : len] ≅ |  mem [ src : len ]  | X X 2

MemPlusMem (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0 : dlen] + mem [src1:slen] √ 1, 7, 22

MemClmpPlusMem (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0 : dlen] + mem [src1:slen] √ 1, 7,15, 22

MemMinusMem (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0 : dlen]  -  mem [src1:slen] X 1, 7

MemClmpMinusMem (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0 : dlen]  -  mem [src1:slen] X 1, 7, 27

MemPlusMem2 (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0: dlen] + mem [src1 : slen] X X 2, 8

Mem2ClmpPlusMem2 (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0: dlen] + mem [src1 : slen] X X 2, 8,16

MemMinusMem2 (dst, src0, src1, dlen, slen) mem [dst : dlen] ≅ mem [src0 : dlen] - mem[src1:slen] X X 2, 8

MemAndMem (dst, src0, src1, len) mem [dst : len] ≅ mem[src0:len ]  & mem [src1 : len]

MemOrMem (dst, src0, src1, len) mem [dst : len] ≅ mem[src0:len ]  |  mem [src1 : len]

MemXorMem (dst, src0, src1, len) mem [dst : len] ≅ mem[src0:len ]  ̂  mem [src1 : len]

MemPlusTree_Mt (dst, src, len,[A,B,]C) mem [dst : len] ≅ mem [src : len]   +  tree [len] X
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TreeMinusMem_Mt (dst, src, len,[A,B,]C) mem [dst : len] ≅ tree[len]  -  mem [src : len] X

MemAndTree_Mt (dst, src, len, [A,B,]C) mem [dst : len] ≅ mem [src : len]   &  tree [len]

MemOrTree_Mt (dst, src, len, [A,B,]C) mem [dst : len] ≅ mem [src : len]   |   tree [len]

MemXorTree_Mt (dst, src, len, [A,B,]C) mem [dst : len] ≅ mem [src : len]   ̂   tree [len]

Min (dst, src0, src1, len) mem [dst : len] ≅ MIN ( mem[src0:len], mem[src1:len]) X 1

Min2 (dst, src0, src1, len) mem [dst : len] ≅ MIN ( mem[src0:len], mem[src1:len]) X 2

Max (dst, src0, src1, len) mem [dst : len] ≅ MAX ( mem[src0:len], mem[src1:len]) X 1

Max2 (dst, src0, src1, len) mem [dst : len] ≅ MAX ( mem[src0:len], mem[src1:len]) X 2

OvFix (dst, len) if (carry)

    mem [dst : len] ≅ ~ 0

ClrCry ( ) carry ≅ 0 √

CryIntoMem (byte,bit) membit [byte : bit] ≅ carry

MemIntoCry (byte,bit) carry ≅ membit [byte : bit] √

Advanced Arithmetic Commands

These commands support advanced arithmetic operations such as multiplication, division,
and square roots.
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Command: Synopsis: S C Note:

SLoad (byte_data) S_register = byte_data   √

WriteS (dst) mem [dst : 1] ≅ S_register

MulUUn (dst,src0,src1,dlen,slen) mem [dst : dlen] ≅ mem [src0: 1] * mem [src1 : slen]   X  1, 9, 11

MulUSn (dst,src0,src1,dlen,slen) mem [dst : dlen] ≅ mem [src0: 1] * mem [src1 : slen]   X X  9, 14

MulSSn (dst,src0,src1,dlen,slen) mem [dst : dlen] ≅ mem [src0: 1] * mem [src1 : slen]   X X  9, 14

SqRoot (dst, src) mem [dst : 1] ≅ square_root ( mem [src : 2] )   X X 1, 23, 25

RootStep1 (dst, src, len, bit) carry ≅ mem[dst:len]   >=

mem[src:len]  |  (1 << bit)

√ 1, 23,28

RootStep2 (dst, src, len, bit) if  ( carry )

        mem[dst : len]

        mem [src : len]

-    ≅
| ≅

mem[src : len]  |  (1 << bit)

1 << (bit + 1)

X  1,23,

 25,28

Divide (dst, src0, src1, len) mem [dst+1 : len-1]

mem [dst : 1]

 ≅
 ≅

mem [src0 : len] / mem [src1 : 1]

remainder

  X X  1, 7

DIvStep1 (dst, src, dlen, slen) carry ≅ mem[dst: dlen]   >=  mem[src: slen] √ 1, 23, 26

DivStep2 (dst, src, len,  aux, bit ) S_register

if  ( carry )

             mem[dst : len]

             mem [ aux : 1 ]

=

-   ≅
| ≅

carry

mem[src : len]

1  <<  bit

  √ X  1, 23

InvSqStep (dst, src, dlen, slen) if (S_register  &  1)

        mem [dst : dlen ] +   ≅ mem [src : slen]

X  1, 7, 23

DivAddSub (dst,src0,src1,dlen,slen) mem [ dst : dlen ] ≅ mem [src0:dlen]  +/-  mem [src1 : slen] X  1, 7

DivShift (dst, src,  len) carry

S_register

mem [dst : 1]

mem [ dst : len ]

≅
≅
≅

<< ≅

!   ((mem[dst+dlen-1:1]  >> 7) & 1)

(S_register << 1) | carry

mem [ src : 1]

 1

  √   √  1, 7

ClampFix (dst, len,  left) ≅  1

ByteToShort (dst, src) mem [ dst : 2 ] ≅ mem [ src : 1] << 4 X  1

Some of these instructions use the S register to accumulate results of complex arithmetic
operations, such as divides, that require more than one instruction to implement.  SLoad
and WriteS  are used for initializing and writing a result.  Care must be taken to avoid
mistakenly corrupting the S register.  Similarly, the Carry register can also be used to pass
information between instructions, so care must be taken not to corrupt its value.

The Mul**n instructions perform various flavors of 1-byte by N-byte multiplication.  The
first U or S indicates that the 1-byte operand is Unsigned or Signed, respectively; the
second U or S indicates that the N-byte operand is Unsigned or Signed. To multiply two
N-byte unsigned numbers, MulUU  is called N times (using add instructions and
temporary buffers to form the final product).  To multiply two N-byte signed numbers,
MulUS  is used N-1 times and MulSS is used once (to multiply the MSByte of one
operand times the other operand).  The dst and src0 operands must not overlap at all; dst
and src1 may not partially overlap, and src0 and src1 may overlap in any way.
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SqRoot finds the 8-bit square root of a 16-bit integer.  RootStep1 and RootStep2 are
designed to be used in square root routines for longer operands.

Divide divides an N-byte unsigned integer by a 1-byte unsigned integer.  It assumes that
the quotient will fit in N-1 bytes (no overflow). It can be used alone, or to get an
approximate quotient to begin an iterative algorithm.

DivStep1 and DivStep2 are for a compare-then-subtract division algorithm. DivStep1
will zero-extend dst if necessary; DivStep2 need not do this, since the test in DivStep1
will pass only if the higher-order bytes of src were zero.  InvSqStep is meant to facilitate
an inverse square root algorithm.

DivAddSub and DivShift  are for a subtract-then-correct division algorithm.
DivAddSub adds if the LSB of the S register and the Carry register are both 0 on input,
or subtracts if the LSB of the S register and the Carry register are both 1 on input.
DivShift  copies the byte at address src into the LSByte of dst, andthen shifts dst left one
bit; the original MSB of dst is inverted and put into the Carry register; also, the S regsiter is
shifted left one bit and the new Carry put into its LSB.

Enable Stack Commands

It is useful to maintain a “stack” of Enable register values.  There is no hardware Enable
stack; but it is possible to use a single byte of pixel memory as a 256-deep Enable stack, if
it is assumed that each time this stack is “pushed” that fewer pixels will be enabled. Thus
the value in each pixel’s stack counter says how many times the stack must be “popped” for
this pixel to be Enabled.  The following instructions are used for manipulating this Enable
stack:

Command: Synopsis: S C Note:

ResetEnab ( addr ) enable

mem [addr : 1]

=

=

1

0x00

   

PushEnab ( addr ) if ( enable)

              mem [ addr : 1 ] = mem [ addr : 1 ] + 1

PopEnab ( addr) enable

mem [ addr : 1 ]

enable

=
≅
=

( mem [ addr : 1 ] ! = 0x00 )

mem  [ addr : 1 ] - 1

!  enable

RestoreEnab ( addr) enable = ( mem [ addr : 1 ] == 0x00 )

XorEnab ( addr ) enable = (!  enable)  &&  ( mem [ addr : 1 ] == 0x00 )

BreakEnab ( addr , n ) if ( n > 0)

              mem [addr : 1]

              enable

≅
=

 n - 1

0

These compute global maxima and minima over all enabled
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Global Commands

These commands use the global-OR signal to perform global computations; these are
computations that are performed over all pixels in the rasterizer region, rather than locally at
each individual pixel.

Command: Synopsis: S C Note:

GMax (dst, src, len) mem [dst : len] ≅ MAX { mem [src : len]  }    X √ 1, 23

GMin (dst, src, len) mem [dst : len] ≅ MIN { mem [src : len]  }    X √ 1, 23

These compute global maxima and minima over all enabled pixels in the SIMD array.
EMC_GMax  computes maximum value of mem[src:len] over all enabled pixels
(treating it as an unsigned value) and writes this maximum into mem[dst:len] for all
Enabled pixels.  EMC_GMin  (not yet implemented) behaves similarly.  The Enable
register is not disturbed. Operands may not overlap at all.  On exit, Carry=1 at pixels which
had the maximum value (Carry=0 at other pixels); Carry is not disturbed at pixels which
were not Enabled.

ALU Register Save/Restore

These commands are used to save the ALU state to pixel-memory, and restore it.

Command: Synopsis: S C Note:

ALUSave (dst) // Save ALU state into mem[dst:6]

// (destroys ALU state)

X X

ALURstr (dst} // Restore ALU state from mem[dst:6] √ √

EMC_ALUSave and EMC_ALURstr  must be used in sequences on commands in the
TFIFO.  This is analogous to saving and restoring processor state in an interrupt service
routine.  A sequence of TFIFO commands may be thought of as an interrupt for the EMC
sequencer, and is guaranteed to be executed conitguously, without being interrupted by
RFIFO commands, provided there is no command which can block the TFIFO.  The
beginning of such a sequence must include an EMC_ALUSave command, to save the
states of the pixel-ALUs in some dedicated 6-byte area of pixel-memory.  Saved
information includes the S register contents, and the Carry and Enable registers (M and R
registers and ALU condition codes are also saved, but these are invisible to the user
anyhow).  Just before a sequence of TFIFO commands can be interrupted by RFIFO
commands (the TFIFO is blocked by a WaitXfer  or a T_EMC_P*  command) , an
EMC_ALURstr  command is used to restore the ALU state.  TFIFO interrupt sequences
are described in detail in Section VI.
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Special-Purpose Commands

These commands support special tasks for Rendering.

Command: Synopsis: S C Note:

Sample (base,xreg, xsub, yreg,
ysub)

FEdge_Mt (len,[A,B,]C) enable

carry

=
≅

1

(tree[len]  <  0)

√

MEdge_Mt (len,[A,B,]C) enable

carry

&&=
≅

carrybar

(tree[len]  <  0)

√

ZCmp_Mt (src, len,[A,B,]C) enable

carry

  &&=
≅

carrybar

(mem [src : len]  >=  tree[len])

√ 3

FLoad_Mt (dst, len,[A,B,]C) enable

mem [dst : len-1]

S regsiter

&&=
≅
≅

carry

first len-1 bytes of tree [len]

MSByte of tree[len]

√

MLoad_Mt (dst, len,[A,B,]C) mem[dst-1:1]

mem [dst : len-1]

S regsiter

≅
≅
≅

S _register

first len-1 bytes of tree [len]

MSByte of tree[len]

√

MLoad1_Mt (dst,[A,B,]C) mem[dst-1:1]

S regsiter

≅
≅

S_ register

tree[1]

√

LLoad_Mt (dst, len, [A,  B,] C) mem[dst-1:1]

mem [dst : len]

≅
≅

S_ register

tree [len]

X

TblStep_Mt (dst, len, [A, B,] C) mem[dst:len]

enable

S_register

≅

&&=

=

tree[len]

(S_register != 0x00)

S_register - 1

√ X

TblEntry_Mt (dst, src, dlen, slen,[A,B,]C) if (mem [src :  slen]  = = tree[slen]

                           mem [dst :  dlen]  =  tree[slen+dlen] >> 8*slen

13

EMC_Sample is used in applications for which multiple samples of an anti-aliasing
kernel reside in pixel-memory simultaneously.  It changes the pixel-memory address base
register and and region/subpixel offset, thereby combining the functions of
EMC_PMABase and EMC_Offset, which are described in the following sections, into
a single command, to save execution cycles and input bandwidth.

EMC_[FM]Edge, EMC_ZCmp and EMC_[FML]Load  are hand-tuned commands
for drawing convex polygons very rapidly.  These commands save cycles by pipelining
micro-operations between commands, and should allow the rasterizer to process up to 3
million triangles per second.  EMC_FEdge and EMC_MEdge behave similarly to
EMC_TreeGEZero, except that EMC_FEdge sets the Enable register prior to
evaluating the sign of the LEE result (so it's used for the first edge of a convex polygon)
and the sign-bit of the current instruction's LEE result is saved in the Carry register and the
Enable register is updated at the beginning of the following instruction.  EMC_ZCmp
behaves like EMC_MemGETree and is used for the Z comparison, but it also updates



§Rasterizer p. 46
________________________________________________________________________

______________________________________________________________________________________

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0  jge/sem

the Enable register based on the sign-bit contained in the Carry register for the last
EMC_MEdge instruction.  EMC_FLoad , EMC_MLoad  and EMC_LLoad  behave
like EMC_TreeIntoMem  and are used for loading the color and Z buffers, except they
leave the last byte of the LEE result in the S register and it is written into pixel memory at
the beginning of the following instruction.  Since the commands use the S and Carry
registers to pass information between commands, they should be called in the following
sequence; any intervening commands must not disturb the S and Carry registers:

EMC_FEdge
EMC_MEdge  (one or more)
EMC_ZCmp
EMC_FLoad
EMC_MLoad  (zero or more)
EMC_LLoad

The pixel memory operands for the sequence of EMC_[FML]Load  commands must
form an ascending sequence of contiguous addresses in pixel memory address space.
Minimum value of the len argument for all these commands is 2, except it is still 1 for
EMC_LLoad . Talk to Eyles for more details and assistance in changing or augmenting
this set of commands.

EMC_TblStep and EMC_TblEntry  are used for broadcasting lookup tables to the
SIMD array.  EMC_TblStep is much faster, but less general; to use it, the table key is
loaded into the S Register (using EMC_MemIntoS), and then the table entries are sent in
order using EMC_TblStep_Si or EMC_TblStep_Sl. This requires that there be a table
entry for all possible values of the key, that they be sent in order, and that the key be no
more than 8 bits.  EMC_TblEntry  is slower but much more general, since it sends a key
value and an entry value each time it is called.

Inter-Pixel Commands

These commands allow communication among the 32 PEs in a panel. The relative screen
positions of the PEs in a given panel depend upon the rasterizer configuration, as shown in
Figures 5A-C.  No communication between different panels is possible, except indirectly
by use of the communications ports.

Command: Synopsis: S C Note:

PixSwap{1,2,3,...,7} (src0, src1, len) see  below 21

PixCopyDn{1,2,4,8} (dst,  src,  len) see  below 21

PixCopyUp{1,2,4,8} (dst,  src,  len) see  below 21

The various versions of EMC_PixSwapN are used to exchange operands between PEs
within a panel.  The PEs to be swapped must N positions apart.  The operands must occur
in pairs, each pair consisting on a src0-operand and a src1-operand. A src0-operand is
mem[src0:len] at a PE for which the Carry register is set; a src1-operand is
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mem[src1:len] at a PE for which the Enable register is set; thus, all PEs for which either
the Carry or the Enable register is set are affected.  Each src1-operand must lie N PE
positions higher than its corresponding src0-operand.  Different pairs of operands can span
overlapping ranges of PEs; however, if the end-points of the ranges touch, that is, if any
src0-operands and src1-operands lie in the same PE, then  mem[src0:len] and
mem[src1:len] must not overlap at all (normally src0 and src1 may be identical), else
unpredictable results will occur.  The argument len can lie in the range 1 - 32.  The contents
of the Enable and Carry registers are not affected.

Additional functionality is available upon request.

EMC_PixCopyDnN copy operands from PEs to other PEs which are N positions lower
in the panel. EMC_PixCopyUpN copy operands from PEs to other PEs which are N
positions higher in the panel.Src-operands need not be marked (eg. with the Carry or
Enable register). Dst operands are marked with the Enable register; in other words, as
usual, only Enabled PEs are affected.   Any data shifted in from the end of a panel is all
0's.  For example, if all PEs are Enabled and EMC_PixCopyDn4 is executed, then
mem[dst:len] at PE[i] gets the value of mem[src:len] from PE[i+4], for i = 0 - 27, and
PEs 28 - 31 get 0's written into  mem[dst:len].

Notes:

1) The contents of the memory segment(s) are assumed to represent unsigned integers.

2) The contents of the memory segment(s) are assumed to represent two's-complement signed integers.

3) The contents of the memory segment is assumed to represent an unsigned integer, and an unsigned
comparison is performed.

4) Rotate through carry (carry is shifted into MSB or LSB, LSB or MSB is shifted into carry).

5) Logical shift (zero is shifted into MSB or LSB, LSB or MSB is shifted into carry).

6) Arithmetic shift right (MSB is sign-extended). For EMC_ASR, LSB is shifted into carry.

7) The contents of the src memory segment is assumed to represent an unsigned integer; it is zero-
extended if dlen > slen.

8) The contents of the src memory segment is assumed to represent a signed integer; it is sign-extended if
dlen > slen.

9) Arguments must obey dlen > slen.

10) Membit[byte:bit]  is written for all pixels, regardless of the value of the Enable register.  Dst and
src may point to the same memory location.

11) Product is zero-extended if dlen > slen + 1.  

12) The dst and src memory segments may overlap in any way.

13) Does lookup and write for a table entry in one instruction.  If the slen LSBytes of tree match
mem[src : slen], then the next dlen bytes of tree are written into mem[dst :  dlen].   Only
affects enabled pixels, and the Enable register is not disturbed.  Not allowed in TFIFO.

14) Product is sign-extended if dlen > slen + 1.

15) The result is clamped to all 1's if overflow occurs.  There is a penalty in execution time.

16) The result is clamped to the maximum respresentable positive value if overflow occurs, to the
mimimum respresentable negative value if underflow occurs.  There is a penalty in execution time.
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17) Mem[dst:dlen]  is clamped to all 1's if tree[slen] is larger than 2**dlen -1, to 0 if it is negative.
Requires slen > dlen.

18) The contents of the two memory segments are interchanged.  No temporary register is required.

19) Clears Enable unless bits LSBs of tree result are 0's. Len is implicitly bits/8 + 1.  Range for bits is
1-63.

20) Bits in dst are replaced by corresponding bits from src.  Mask defines which bits are replaced.

21) Maximum value for len is 32.

22) Carry is set if overflow occurred.

23) The memory operands may not overlap in any way.

24) The operation occurs only at pixel (x,y) and only if its Enable is set.  Range for len is 1 - 4.  Value
must be a 32-bit integer and only the len least significant bytes are used.  Enable is not disturbed.

25) No T_ version (for the TFIFO) of this command exists.  (This applies by default to all commands
with the _Mt  suffix).

26) The contents of the dst memory segment is assumed to represent an unsigned integer.  Arguments
must obey slen >= dlen; dlen is zero-extended if slen > dlen.

27) The result is clamped to 0 if underflow occurs.  There is a penalty in execution time.

28) Range for bit is 0 - 7 for EMC_RootStep1 and 0 - 6 for EMC_RootStep2.

29) Pixel(x,y) is defined within context of how the tree is configured.

IV.2 Commands to Configure the Linear Expression Evaluator

When the linear mode version of an LEE instruction is used, the tree result tree[len] is
computed as F(x,y) = Ax + By + C for each processor in the SIMD array.  In order to
process the entire display screen, it is necessary to move the rasterizer region to different
portions of the screen.  In order to sample geometry at sub-pixel offsets for anti-aliasing (if
anti-aliasing is done using multiple passes), it is necessary to offset the region by fractions
of a pixel.

These functions are accomplished using the instruction:

Command: Synopsis: S C Note:

EMC_Offset (xreg, xsub, yreg, ysub // Set rasterizer region to position given

//         by xreg, yreg  with subpixel offset given

//         by   xsub, ysub (in 64'ths of a pixel)

Xreg and yreg specify the region-offset (the upper left-hand corner of the rasterizer region);
values must lie in the range 0 - 16383 (values need not be multiples of the rasterizer region
size, but normally they would be).  Xsub and ysub specify the sub-pixel offset, in 64'ths
of a pixel; values must lie in the range -127 to 127 (so offset is in the range -1 and 63/64
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pixels to +1 and 63/64 pixels).   For example, to position the rasterizer at pixel 512, 128,
with sub-pixel offset -0.5, 1.625, the command:

EMC_Offset(p, 512, -32, 128, 104)

would be used.

Note that these commands, like all tree commands, do arithmetic on pixlet values, as
opposed to pixel values.  Thus, for the multi-sample-per-pixel organizations (Figures 5B-
5C) used for sample-parallel rasterization, it must be remembered that a pixel equals 8
pixlets (in linear dimension), so the arguments to EMC_Offset must be 8-times the pixel
values intended.  Also, for sample-parallel rasterization,the xsub and ysub arguments
normally would be set to 0.

The region- and sub-pixel offset values affect linear mode LEE instructions only; this is
because the A and B coefficients are effectively zero for constant mode instructions, and the
offset is accomplished by adding multiples of the A and B coefficients to the C coefficient.

Since EMC sequencer commands which use the LEE cannot be placed into the TFIFO, it
makes no sense to reconfigure the LEE within the TFIFO.  Consequently, no
T_EMC_Offset command is defined.
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Since the LEE includes logic on both the EMCs and the IGC, the EMC portion of the LEE
must also be configured. This need normally be done only at system or application
initialization time.  The EMC portion of the LEE is configured using a set of special
commands for loading the LEE configuration registers on the EMCs; these commands
specify the pixels within the rasterizer region for which each EMC is responsible. The
details for doing this are found in the EMC documentation and an IGC library function will
be supplied.  This  syntax of these commands is given here for completeness; they are not
intended to be used by most users of this document:

Command: Synopsis: S C Note:

EMC_CfgInit (numemcs) // Initialize the EMC ID registers (for numemcs)

EMC_RegLoad (chip, reg, value) // Load specified register on specified EMC

EMC_RegLoads0 (1stchip, reg, value, n) //  Load register reg on a sequence of n

// EMCs starting with EMC # 1stchip;

// load register with value.                                                    

EMC_RegLoads1 (1stchip, reg, 1stvalue, n) //  Load register reg on a sequence of n

// EMCs starting with EMC # 1stchip;

// load register with sequence of values

// starting with 1stvalue.                                                     

EMC_RegLoads2 (chip, 1streg, value, n1,N2) //  Load n1 + n2  registers on specified EMC

// Loads n1 registers, starting with 1streg, with

//     value, then loads next n2 registers

//     with value + 1.

EMC_GRegLoad (reg, value) //  Load register reg with value, on all  EMCs.

IV.3 Commands to Configure the Image-Composition Port

The following commands are used to configure the image-composition port:

Command: Synopsis: S C Note:

EMC_RevCopy (dst, src, len) // Copy mem[src:len] to mem[dst:len]

//         while reversing the byte-order.

23

EMC_ICEnds (leftend, rightend) // Specify if this is either end of machine

//          or in the middle

// also initializes pixel offset/stride to 0

EMC_ICInit (leftend, rightend) // same as EMC_ICEnds

EMC_ICPort (l2rmode,r2lmode,nbytes,zbytes) // Initialize both IC paths, as shown.

// Total number of bytes per pixel = nbytes,

// z-bytes per  pixel = zbytes

EMC_L2RInit (mode,nbytes,zbytes,offset,stride) // Set IC L2R port as specified

// Total number of bytes per pixel = nbytes,

// z-bytes per  pixel = zbytes
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EMC_IR2LInit (mode,nbytes,zbytes,offset,stride) // Set IC R2L port as specified

// Total number of bytes per pixel = nbytes,

// z-bytes per  pixel = zbytes

The image compostion network consists of two unidirectional pathways, the "left-to-right"
(L2R) path and the "right-to-left" (R2L) path, implemented on a single physical daisy chain
of simultaneous bi-directional signals.  The two virtual uni-directional paths on a set of
adjacent boards can be closed into a loop by specifying the leftmost and rightmost board in
the set.  This is done using EMC_ICEnds; leftend is set to 1 if this rasterizer is the left-end
of the loop, and rightend is set to 1 if this rasterizer is the right-end of the loop; both
arguments are set to 0 otherwise. Each EMC_ICEnds command must be accompanied by
an EMC_Alive  command with the same arguments (see Section VI).  These commands
are normally issued once, at machine initialization time, but the more twisted programmer
can imagine reconfiguring the Image Composition network topology within an application.
Also, at board reset, the "alive" and "ends" registers are all cleared (equivalent to issuing an
EMC_Dead and EMC_ICEnds(0,0) command).

Prior to each transfer operation, the image-composition port is initialized, and its operating
mode specified, using EMC_ICPort , EMC_L2RInit , and EMC_R2LInit  commands.
EMC_ICPort  initializes both the L2R and R2L paths; if more flexibility is needed,
EMC_L2RInit  and EMC_R2LInit  are used to initialize the two paths separately.

For EMC_ICPort , EMC_L2RInit , and EMC_R2LInit , nbytes specifies the total
number of bytes per PE to be transferred; valid range is 1 to 32.  Zbytes specifies the
number of bytes in the Z-buffer (used in the compositing calculation, see below); zbytes
should be 0 if mode does not specify a compositing operation (see below), otherwise, the
valid range is 1 - 8 for EMC_{ L2R,R2L } Init , or 3 - 6 for EMC_ICPort ; also, zbytes
must be less than or equal to nbytes.

The arguments l2rrmode and r2lmode for EMC_ICPort , or the argument mode for
EMC_ { L2R,R2L } Init , specify the mode for the transfer in each direction (the codes
marked with * duplicate function of other codes, and are used only for testing):
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Mode: Buffer Write Output Stream

0x0 — input

0x1 input input

0x2 composite input

0x3 * buffer input

0x4 * — input

0x5 * input input

0x6 * composite input

0x7 * buffer input

0x8 — composite

0x9 input composite

0xA composite composite

0xB * buffer composite

0xC — buffer

0xD input buffer

0xE composite buffer

0xF * buffer buffer

Each mode is defined by (1) the output stream from the Image Composition network, and
(2) the data (if any) written into the Image Composition buffer.  The possibilities for the
output stream are (1) input - the input stream, (2) buffer - the values read from the local
image-composition transfer buffer, or (3) composite - the composited pixel values (from
the input stream and the transfer buffer).  For the buffer-write, there is a fourth choice,
null, meaning that nothing is written back into the image-composition transfer buffer; the
buffer choice wouldbe used only for testing since null has the same (non-)effect by writing
the buffer contents back into itself.

The Image Composition network has a one-bit data path for each panel. Normally, all 32
PEs in each panel are acessed, in the order 0 through 31. It is possible to perform the
transfer for only some of the PEs, and/or to access the PEs in a different pattern. If fewer
than 32 PEs per panel are to be accessed, the nbytes argument to EMC_InitXfer (see
Section VI) is set proportionately less than the nbytes argument to  EMC_ICPort  or
EMC_{ L2R,R2L} Init .  For example, if the nbytes argument to EMC_InitXfer is half
the nbytes argument to the initialization command, then PEs 0 - 15 are accessed.

EMC_{ L2R,R2L} Init  allow some flexibility in PE access pattern.  The offset argument,
in the range 0 - 31, specifies which PE is accessed first.  The stride argument, in the range
0 - 3, specifies the stride between PEs accessed in log2 form (so 0, 1, 2, and 3 correspond
to strides of 1, 2, 4,  and 8 PEs, respectively).   For example, ifoffset = 4, stride = 3, and
the nbytes argument to EMC_InitXfer is set to access only 1/8'th of the PEs, then PEs
4, 12, 20,  and 28 are accessed. Once EMC_ { L2R,R2L } Init  are used with non-default
values for stride and offset,  transfers subsequently initialized using EMC_ICPort
commands will have the same stride and offset values, unless an EMC_ICEnds
command is issued, which has the effect of restoring offset and stride to their default



§Rasterizer p. 53
________________________________________________________________________

______________________________________________________________________________________

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0  jge/sem

values.

The Z-buffer, containing the unsigned Z-value for the composite computation, must lie at
byte addresses 0 to zbytes - 1 in the transfer buffer, and stored in reverse order, with
MSByte at address 0 and LSByte at address zbytes - 1.  The command EMC_RevCopy
is provided for convenience in placing a byte-reversed Z value into the Image Composition
buffer; normally dst is set to L2RBASE or R2LBASE and len is set to zbytes-1.

When doing the Z-comparison for a compositing operation, the smaller Z value wins; that
is, the pixel with the smaller (unsigned) Z value is forwarded to output and/or written into
the transfer buffer.   In a tie, when the Z-values are the same, the pixel from the input
stream "wins".

After the image-composition port is initialized using EMC_ICPort  or
EMC_{ L2R,R2L} Init , the transfer must be initiated using an RT Controller command,
such as T_EMC_InitXfer  (see Section VI). 1   After the transfer is initiated, it actually
begins at some non-deterministic time in the future, based on the status of the other boards
involved in the transfer.  It is important that once a transfer has been initiated, that the
transfer buffers not be addressed, and that the configuration not be disturbed (by another
EMC_ICPort , EMC_ { L2R,R2L } Init , or EMC_InitXfer  command), until the
transfer has completed. This is done using semaphores and the T_EMC_WaitXfer
command, using the protocol shown in  Section VI.

IV.4 Commands to Configure the Local Port

The local port consists of the local input port and the local output port; these two ports may
operate simultaneously and independently. Each must be initialized, prior to exercising it
with TAS commands.  This is done using the following commands:

Command: Synopsis: S C Note:

EMC_LPortIn ( nbytes, mode) // Initialize local input port

EMC_LPortInLoop ( nbytes, mode) // Initialize local input port, for loopback mode

EMC_LPortOut (nbytes, mode) // Initialize local output port

EMC_LPWeave (dst, src0, src1, len) // Weave two segments of memory into one X X

EMC_LPUnWeave (dst0, dst1, src, len) // Unweave a segment of memory into two X X

For each command, nbytes specifies the total number of bytes per PE to be transfered; valid
range is 4 to 32 (values less than 4 can be used with special TAS microcode, talk to Eyles

_____________

1 Under certain conditions, it is not necessary to issue initialization commands prior to each transfer. This
is because the PE counters wrap around; so if they wrap around exactly to 0, and the operating modes are to
be the same, then no initialization command is needed.  The saved overhead can be significant for some
algorithms.  See Eyles for details.
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and Molnar for details).  The argument mode specifies whether the local port accesses PEs
in panel-major (mode=0) or panel-minor (mode=1) order.

Execution of an EMC_LPortIn[Loop]  or EMC_LPortOut  command initializes the
local port controller, and sets the input or output "mark" register to the current value of the
pixel-ALU Enable register.  The appropriate TAS_ command(s) must then be executed to
exercise the local port and input or output data (See Section V below). Once either port is
initialized and TAS commands begin exercising the port, the port's buffer in pixel memory
must not be accessed by EMC_ commands, nor may the port be re-initialized, until the
port operation is complete; this interlocking is accomplished using the semaphores (see
Section VI below).  The input and output ports can be configured and used completely
independently.

The mark registers specify a subset of PEs to be involved in the local port operation.  For
example, if a triangle is scan-converted, so that only the pixels within that triangular region
are enabled, and then an EMC_LPortOut  command is issued, any subsequent local port
output will use only the pixels within the triangular region, that is, only the PEs which
were enabled at the time EMC_LPortOut  was executed.  If the local output port is
exercised after all marked PEs have been accessed, zeroes are output; if the local input port
is exercised after all marked PEs have been accessed, nothing happens (no data is written
into the buffer). Most of the TAS_ commands which use the local port check an "active"
signal from the EMCs and terminate after all marked pixels have been accessed.

With mode=0, the local port accesses the PEs in panel-major order; that is, all marked PEs
in Panel 0 are accessed, in PE order (PEs 0 through 31), then all marked PEs in Panel 1,
and so on through Panel 7.  Normally, this means that the marked pixels are accessed in
scan-line order (pixel-major, sample-minor), with the PEs representing all samples of a
pixel accessed together.  When mode=1, the PEs are accessed in panel-minor order.
<<STEVE, FILL THIS IN >>

The EMC_LPortInLoop  command configures the local input port, similarly to
EMC_LPortIn , except that the port is set for "loopback" mode, in which the output port
is connected to the input port.  This command is normally used only for chip test; it could
also be used to transfer pixel data among the panels within each EMC.

EMC_LPWeave takes segments mem[src0:len] and mem[src1:len] and weaves them into
a single segment mem[dst:2*len]. Src0 is packed into the even bits of dst, src1 is packed
into the odd bits of dst..  EMC_LPUnWeave undoes this process.  It takes the even bits
of mem[src:2*len] and creates mem[dst0:len]; similarly, the odd bits of src are packed
together to form mem[dst1:len].  << JGE, THESE SEEM TO BE BROKEN NOW >>

For more information on using the local port, see the description of TIGC command set in
Section V below.
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IV.5 Miscellaneous EMC Sequencer Commands

Miscellaneous Commands

The following are miscellanous commands that execute on the EMC Sequencer:

Command: Synopsis: S C Note:

EMC_Ignore () // No operation, does not get loaded into FIFO

EMC_NoOp () // No operation for sequencer (goes thru FIFO)

EMC_NoOp2 () // Same as NoOp, with 2 word (I and P) opcode)

EMC_MetaNoOp () // No operation, but flagged as meta instruction

EMC_EMCInit () // Initialize EMCs (for simulations)

EMC_RefClr () // Set pixel-memory refresh counter to zero

EMC_PMABase (base_address) // set pixel-memory address base register to

//        specified value

EMC_PipeFlush () // Idle for ?? cycles (to flush the EMC

// control and LEE pipelines)

EMC_Hang () // Hangs the sequencer in a tight loop

// (for debugging purposes)

EMC_FlogDBus () // Toggles memory data busses on all PE’s in

//       the SIMD, for worst-case power

EMC_EOrWait () // Waits fo EOrH to settle

EMC_EOrTest () // Waits fo EOrH to settle, tests it,

// sets appropriate bit in CSR

EMC_NoOpand EMC_NoOp2 are no-operation commands for the EIGC.  Both take
one cycle to execute, but perform no action.   EMC_PipeFlush is essentially a long
NOOP.  It inserts enough idle cycles into the EMC control and LEE pipelines to clear them
of any previous instructions or data.  It is used to ensure that a set of EIGC commands
have actually executed, prior to initiating TIGC or Image-Composition Network operations
which use data.

EMC_PMABase sets the pixel-memory address base register.  This offset is applied to
any pixel-memory addresses in the range 448-511 (after 448 is subtracted).  For example,
EMC_PMABase(100) followed by EMC_TreeIntoMem (460,2) writes to
mem[112:2].

<< PRELIMINARY>> EMC_EOrTest  is used to sample EOrH (the global-OR of the
Enable register).  It inserts enough idle cycles to allow EOrH to settle based on the results
of the previous commands.  It then tests EOrH, and sets the appropriate "sticky" bit in the
GP's CSR.  This bit must be cleared by the GP prior to issuing a successive
EMC_EOrTest command.
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Commands to Initialize the EIGC Sequencer

The EIGC Sequencer must be initialized after power-up or if the Rasterizer is reset (this
may be necessary if either IGC hangs due to faulty microcode or an invalid opcode, or if it
is waiting on an external handshake signal).  The initialization sequence involves putting
the sequencer into a special mode (RMode), loading the microcode store, setting the
program counter to 0, and exiting the special mode.  The user of this docuement need not
be concerned with the details of doing this, which are given in the IGC documentation; an
IGC library function will be supplied to initilaize the sequencers. The commands are
described here for completeness:

Command: Synopsis: S C Note:

EMC_IFSpec (Rlim,Tlim,Endian) // Set interface control register

EMC_RModeOn () // Put the sequencer in RMode

EMC_RModeOff () // Cause the sequencer to exit RMode,

//     and set sequencer program counter to 0

EMC_MCWrite (addr, low32, high32) // Load the 64-bit word (specified by two 32-bit

//    words) into the specified microcode location.

EMC_MCRead (addr) // Set the sequencer program counter to 'addr'.

// This command is also used to read

// microcode memory during chip testing,

// but this function is not available during

// normal operation)

On power-up, the interface control register is undefined; it should be initialized, using
EMC_IFSpec, before any other commands are sent, else the FIFO flags will behave
unpredictably. The argumentsRlim and Tlim define the high-water marks for the R and T
FIFOs. The status flag ERFullH is asserted whenever the number of commands in the
RFIFO is     greater        than     Rlim; similarly, ETFullH is asserted whenever the number of
commands in the TFIFO is greater than Tlim.  Endian is set to 0 if the low-order 32-bit
word of a 64-bit coefficient is input into the IGC before the high-order word; it is set to 1 if
the high-order word comes first.

To load the sequencer microcode store, it first must be put into RMode, either by doing a
Rasterizer reset (which places both IGCs into RMode by default) or by using the
EMC_RModeOn() command.  Next, an EMC_MCWrite()  command is used to load
each 64-bit word of microcode required.  Finally, the EMC_RModeOff() command is
used to reset the sequencer's program counter to 0 and put the sequencer in normal mode.

When the sequencer is in RMode, it can acccept only commands which do not execute
microcode, such as EMC_RModeOn, EMC_MCWrite , EMC_MCRead,
EMC_RModeOff , EMC_RefClr , EMC_Offset, EMC_PMABase, EMC_IFSpec
and the various “meta” commands. Other commands cause undefined results, including the
possiblity of hanging the sequencer. The EMC_MCWrite()  command must     never    be
issued except when the sequencer is in RMode.
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The standard location for the EMC sequencer microcode is in the file EMC_ucode.h, in an
the initialized array static unsigned EMC_ucode[]; this file is generated by the EMC
microcode assembler asmEMC, from microcode source provided by the IGC hardware
designer, as described above.

These commands can also be used to reload the EMC sequencer microcode on-the-fly, if it
becomes necessary to use more than one version of the microcode in the same application.

Initialization of the rasterizer also requires initializing the TIGC Sequencer and configuring
the linear expression evaluators on the EMCs.  Initializing the TIGC Sequencer is
accomplished using precisely the same command sequences described in this section, but
with the TIGC sequencer versions of the commands:  TAS_RModeOn,
TAS_MCWrite , TAS_MCRead, and TAS_RModeOff.  Configuring the LEE is
described above in Section IV.2.

No T_ version of EMC_MCWrite  and TAS_MCWrite  exists, since these commands
use the C coefficent.  Thus microcode loading cannot be done via the TFIFO.

IV.6 Commands for the Rasterizer Glue Chip

The following commands are used for manipulating the “scratch registers” on the Rasterizer
glue-chip.  

The most important of these can be used for handshaking with the GP:

Command: Synopsis: S C Note:

SetScratch{1,2} () // Set glue-chip sync bit which tells the GP to

//        do something

WaitScratch{1,2} () // Wait for the GP sync bit to be cleared

EOrReadMem ( src , len ) // Read len bytes of pixel memory through EOr

//        syncing with the GP after every byte

//   Assumes that exactly one PE is Enabled

EOrReadTree_Mt (len  [, A , B]   , C]) // Read LEE result through EOr

IV.7 Test Commands

A number of other commands exist; these were used for hardware debug and/or test vector
generation.  The intrepid heart will have to look at the IGC microcode source files to be
enlightened about these commands.  They are summarized here.

The following are primarily for simulation and fault-coverage of the IGC chip:
EMC_TESTSEQ1, EMC_TESTSTIN , EMC_TESTLoopCount, EMC_PMATest ,
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EMC_PMABase3, EMC_TESTRefCnt, EMC_FIFOEntry , EMC_MCReadC,
EMC_TreeBigMem, EMC_MemPlusTree3.

The following are primarily for simulation and fault coverage of the EMC chip:
EMC_EMCInit , EMC_SimBoot, EMC_FlogEOr, EMC_ALUTest, EMC_EOrMemTst ,
EMC_EOrMemTstPartial , EMC_FlogDBus.

The following commands are obsolete.  They have been replaced by equivalent commands
with better names:

EMC_EnabAndEqMem replaced by EMC_BitTstHi

EMC_EnabAndEqMemBar replaced by EMC_BitTstLo

 EMC_PixCopy{1,2,4,8} replaced by EMC_PixCopyDn{1,2,4,8}

V TIGC COMMANDS

The command set for the TIGC is similar to that of the EIGC, with two major exceptions:
(1) A, B, C coefficients cannot be not used (TASICs have no linear expression evaluator)
and (2) TIGC commands generally take many more cycles to execute than EIGC
commands.

TIGC commands execute in parallel on the array of TASICs to perform data-transfer
operations between the EMCs' local port buffers, the GP bus, and external texture/video
memory.  Data transfers can be local within module-local (i.e. data is transferred between
the EMCs and SDRAMs of each module) or they can be global (i.e. data is sent from one
module to other modules over the inter-module TASIC ring).

TIGC commands can be divided into the following categories:

1) Commands for reading/writing external memory

2) Commands for communicating with the GP

3) Commands for configuring the video port

4) Miscellaneous TIGC commands

These are described in the following sections.
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V . 1 External Memory Organization

Before describing the TIGC command set, we first give further details on the organization
of the external memory (texturing) subsystem of the rasterizer board.  As described in
Section II.4, the rasterizer is divided into four modules containing eight EMCs, two
TASICs (one logical TASIC), and eight SDRAM memories.  The TASICs' and SDRAMs'
main purpose is to perform high-speed image-based texturing and other table-lookup
operations which are difficult or time-consuming on the EMCs.  The driving problem is to
perform mipmap texturing on all the pixels in a 128x64-pixel region in a small multiple of
the time required to composite the region's pixels.

Mipmap textures require eight lookups per pixel:  four from each of two adjacent resolution
levels in the mipmap pyramid.  This can be accomplished by providing eight independent
memories:  any lookup will access each memory exactly once if they are interleaved 2x2 at
each resolution level (two resolution levels (even/odd) • 2x2 interleaves at each resolution
level = eight independent banks or memories).

Although only a modest amount of texture storage is needed (16 or so MBytes), the
bandwidth required to texture at these speeds requires a large number of memories.  32
SDRAMs were judged to provide a reasonable balance between bandwidth and
cost/space/power requirements, etc.  The 32 SDRAMs provide an aggregate peak
bandwidth of 32 • 100 MBytes/sec = 3.2 GByte/sec.  This is sufficient to look up eight
four-byte values per each pixel in a 128x64-pixel array in about 140 µsec.  Equivalently,
about 7,000 regions can be mipmapped per second.

Normally, texture data will be stored redundantly in each of the four modules (since any
pixel generally must be able to access any texel).  Replicating the memory in this fashion
increases lookup bandwidth four-fold, but unfortunately, does not increase texture storage
correspondingly.

The unit of operation in the memory subsystem is for each pixel in a module to look up a
value from each of the eight SDRAM memories in the module.  Initially, each pixel
processor calculates eight independent row and column addresses for the eight memories in
its module and copies these into its local port buffer.  The texture subsystem reads these
addresses from the local-port and applies them to the eight SDRAM memories, then reads
the eight corresponding data values and loads them into the pixel-processors' local-port
input buffer.  These operations are depicted schematically in Figure 15.
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Figure 15:  Logical operation of an external memory read operation.
Eight data values are read corresponding to the eight row/column

addresses stored in each enabled pixel in the local-port output buffer.

Specifying independent row/column addresses for each memory allows complete flexibility
in addressing:  the eight memory chips can be viewed as disjoint memories or as interleaved
memories in a variety of patterns (1x8, 8x1, 2x4, 4x2, 2x2x2).  For mipmap textures,
frame-buffer storage, etc., it is most natural to consider the eight chips as implementing a
pair of 2x2-interleaved memory systems or panels  (not to be confused with an EMC
panel), as shown in Figure 16.  If each panel stores a 2D array of texels, a filtered-texture
lookup requires precisely one access to each of the four banks ina panel, no matter where
the texture is sampled.  Having two panels allows two filtered texture lookups to be
performed simultaneously.  This is desirable for MIP-map texturing.  For simpler forms of
texturing, a pair of lookups can be done simultaneously (perhaps for two supersamples or
pixels in different regions).
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Figure 16:  Double 2x2 interleaving organization of external memory.
Each memory in a panel stores every second pixel (texel) in every second

row.

The SDRAMs contain one other complicating feature.  Each SDRAM memory contains two
internal memory banks.  Each bank can be accessed in a method analogous to fast-page
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mode of a conventional DRAM:  a row address is given first followed by potentially
multiple column addresses.  The SDRAMs contain internal column address counters that
permit burst accesses:  a single column address is given which initiates a burst of writes or
reads to/from consecutive memory locations.  The two-bank design of the SDRAMs allows
the row address command to be overlapped with burst reads/writes to/from the other bank,
essentially hiding the row access time.  If banks are accessed alternately, this can nearly
double the memory bandwidth of each chip.  One way to guarantee that banks will be hit
alternately is to store data redundantly in the two banks on each chip and have successive
lookups access the data in whichever bank is next.  The most significant bit of each
memory's row address indicates one of two banks on each SDRAM chip.  The TASICs
allow this bit to be manipulated independently of the other address bits.  

For 16 Mbit SDRAMs, row addresses are 12 bits long and column addresses are 9 bits
long.1  Address bit 11 selects which of the two banks in each SDRAM is to be accessed.
This means the effective size of the texture array in each module is 212 = 4096 rows by 27
= 128 columns per memory chip (assuming 4-byte texels).  If the memories are organized
as two panels of 2x2 interleaved memories, as described above, the size of the overall
texture array, therefore, is 2x8192x256 texels.  If we shuffle address bits around to make
the panels as square as possible, this provides two 2048x1024 panels of 4-byte texels, as
shown in Figure 17.   

00 4k bytes
1k texels

00

1k1k

4k bytes
1k texels

10
32
10
32
10
32

4-byte texel
assigned to

Memory 1

HI Panel
(Memories 

4–7)

LO Panel
(Memories 

0–3)

2k2k

Extra memory available 
when using SDRAM banks 

independently

   Figure 17:  Dimensions of external memory arrays allocated as two 2x2-
interleaved panels.  Each cell represents a logical 4-byte texel.

_____________

1For 64-Mbit SDRAMs, which may be used in the future, row addresses are 14 bits (bits 13 and 12 specify
1 of 4 banks); column addresses are 9 bits.
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Data alignment.  Due to the bit-sliced nature of the TASICs and for simplicity in
allocating external memory, external memory is allocated in 4-byte quantities (called logical
texels), with the 4 bytes stored at adjacent column addresses in the same memory, as
shown in Figure 17.  Data types shorter than 4 bytes are supported by overlaying multiple
texture (or pixel) maps whose data lengths sum to 4 bytes.  For example, a texture map
with two-byte texels might occupy bytes 0 and 1 of each logical 4-byte texel, while a
second texture map with one-byte texels occupies byte 2 of the same texel.

This leads to the following alignment restrictions:

• 4-byte data must be aligned to 4-byte boundaries (two low col. address bits = 0)

• 3-byte data must be aligned to 4-byte boundaries

• 2-byte data must be aligned to 2-byte boundaries

• There is no alignment restriction for 1-byte data

Address Sources.  As mentioned before, textures are normally stored redundantly on
each of the four modules, so pixels in any module can look up any texture coordinates.
Texture memory within each chip is addressed to the individual byte.  A texel is specified
by the row address and by the column address of its least-significant byte.  These texture
addresses are applied to the SDRAMs by the TASICs and can be generated in one of three
ways:

1) The EMCs may calculate the addresses and send them to the TASICs over the local
port (normally done for texture reads).

2) The GNI can send the addresses to the TASICs using the inter-module TASIC ring.

3) The internal address generator on the TASICs can provide the addresses (normally
done for texture writes and video reads/writes). (more details below)

The EMCs must generate addresses when doing random texture lookups (only the PEs
know from what location a texel is to be fetched).  They would be used to generate
addresses for writes as well, except this would exact a performance penalty.  The EMC
local-port bandwidth is matched with the SDRAM bandwidth when doing texture reads.
However, when doing texture writes, addresses and data would have to flow the same
direction.  Furthermore, the local-port output buffer is not big enough to store 8 addresses
and 8 data values. So, instead, it is possible to have the TASICs generate the addresses,
allowing data to flow at full bandwidth.

The GNI can send addresses to the TASIC by means of the inter-module TASIC ring.
This is useful when the GP desires to retrieve data from texture memory.  The TASIC
address generator could be used for this purpose as well.

When addresses are sent to the TASICs, they are stored in the Address Corner Turner
(ACT). An address for each SDRAM is stored for each EMC. This implementation is
transparent in some instructions, but can be used explicitly in others to supply a base
address which is modified by the M register. The M register is essentially an up counter,
and thus can generate sequences of addresses.  More detail is provided below.
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Address Output Modes.  The address supplied to each SDRAM depends on the
TASIC address port mode. The address for each panel is formed by one of the following:

1) The ACT output

2) The M register output

3) The ACT output xored with the M register output

This is shown in Figure 18.

TADDR_LDIM{0:7}
ACode = 0x10–0x17

TADDR_HOLDXORIM{0:7}
ACode = 0x00–0x07

TADDR_LDADDRXORIM{0:7}
ACode = 0x08–0x0f

TADDR_LDVROWINC
ACode = 0x1f

TADDR_LDVROW
ACode = 0x1e

TADDR_LDADDRXORMROW
ACode = 0x1a

TADDR_LDADDRXORMCOL
ACode = 0x18

TADDR_LDADDRXORMCOLINC
ACode = 0x19

Post-increments 
MCnt

xor

xor

TADDR_LDVCOL
ACode = 0x1c

TADDR_LDVCOLINC
ACode = 0x1d

Post-increment 
VXCnt (VYCnt if
VXCnt=VXMax)

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

xor

xor

xor

TADDR_LDADDRXORMROWINC
ACode = 0x1b

a0a1a2a3a4a5a6a7

m0m1m2m3m4m5m6m7

VM im

xor

Post-increments 
MCnt

Post-increment 
VXCnt (VYCnt if
VXCnt=VXMax)

Figure 18:  Address output modes.  a7-a0 refer to the eight ACT outputs.
m7-m0  refer to the eight SDRAM output addresses.  M refers to t h e
output of the MCnt  register and crossbar.  Im refers to the set of e ight
immediate address registers.  V refers to the VYCnt /VXCnt  registers (for
video address generation—will be described later).  

Different modes are used by different data transfer commands.  The particular mode for
each command is described in Section V.3 below.
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Data Replication.  As mentioned above, to read (or write) SDRAMs as rapidly as
possible, the two banks within each SDRAM chip must be accessed alternately.  Since
alternate accesses to the same memory will be from different pixels, the only way to
guarantee that banks can be hit alternately is to replicate the data yet again.  The simplest
way to do this is to store the same data in both banks of the same chip.  A more complex
method, but one that makes texture writing more efficient, is to store identical data in bank
0 of one panel and bank 1 of the other panel1.  We have adopted this approach.  We call
replicated texture maps that are stored in bank 0 of Panel A and bank 1 of Panel B even and
texture maps that are stored in bank 1 of Panel A and bank 0 of Panel B odd.  

Replicated textures are slower to write than non-replicated textures, since the data must be
stored twice.  They also reduce the amount of texture storage by a factor of two, so they
should only be used when needed.

Non-replicated textures do not require the even/odd distinction.

V . 2 Configuration Commands

The following commands set up the various TASIC address and control registers in
preparation for data transfer commands.

Commands to Configure the Address Generator Output

These commands configure the address generator by enabling/disabling the Address Corner
Turn (ACT) and M crossbar register for all combinations of panels.

_____________

1When writing texture memory, it is desirable to keep both panels busy.  If textures are replicated in both
banks of the same chip, writing a given texture will only affect one of the two panels. To keep the other
panel busy, two texture maps would have to be paired  together and both written at the same time. This has
ugly software implications.  With the method we have adopted, the data is replicated across panels, so a
single texture write affects both panels; the redundant data can be written in a single pass without wasting
one panels’ memory cycles.
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Command: Synopsis:

TAS_SetAPortModeAll Configure address generator, enable ACT and M for both panels

TAS_SetAPortModePanA Configure address generator, enable ACT and M for panel A only

TAS_SetAPortModePanB Configure address generator, enable ACT and M for panel B only

TAS_SetAPortModeACT Configure address generator, enable ACT for both panels

TAS_SetAPortModeACTPanA Configure address generator, enable ACT for panel A only

TAS_SetAPortModeACTPanB Configure address generator, enable ACT for panel B only

TAS_SetAPortModeM Configure address generator, enable M  for both panels

TAS_SetAPortModeMPanA Configure address generator, enable M for panel A only

TAS_SetAPortModeMPanB Configure address generator, enable M for panel B only

TAS_SetAPortModeNone Configure address generator, disable ACT and M

Commands to Select the Xfer Mode

The inter-module TASIC links and the configurable datapath on the TASICs allow transfers
to be done in several ways (refer to Figure 11 for a pictorial description of these modes):

• Xfer1to1 mode:  Point-to-point transfers from the EMCs of module src to the
SDRAMs of module dst.

• Xfer1toN mode:  Broadcasts from the EMCs of module src to the SDRAMs of
all modules.

• XferNtoN mode:  Parallel transfers from the EMCs to the SDRAMs of all four
modules.

• XferGto1 mode Point-to-point transfers from GNI to the SDRAMs of module
dst.

• XferGtoN mode:  Broadcast from the GNI to the SDRAMS of all modules.

• Xfer1toG mode:  Point-to-point transfer from EMCs of module src to the GNI.

Commands to select one of these transfer modes are as follows:1  

_____________

1 The 1to1 and Gto1 modes operate differntly in TASIC Rev1.0 and Rev2.0.  In the Rev1.0 TASIC, these
modes perform writes to all four modules, but zero the data going to the ACT/DCT of the non-dst modules.
In Rev2.0, these modes perform writes only to the ACT/DCT of the dst module.  The address pointers of
the ACT/DCT in non-dst modules are not incremented, so the ACT/DCT’s of the four modules are will not
be “in  synch” until four such transfers have been performed (one to each module).  This change was made
to allow more efficient texture paging from the GNI.
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Command: Synopsis:

TAS_SetXferMode1to1 (src,dst) // Select Xfer1to1 mode, specify src and dst modules

TAS_SetXferMode1toN ( src ) // Select Xfer1toN mode, specify src module

TAS_SetXferModeNtoN ( ) // Select XferNtoN mode

TAS_SetXferModeGto1 ( dst ) // Select XferGto1 mode, specify dst module

TAS_SetXferModeGtoN ( ) // Select XferGtoN mode

TAS_SetXferMode1toG ( src ) // Select Xfer1toG mode, specify src module

Commands to Set the MCnt and MSel Registers

The MCnt register is a 32-bit presettable up-counter, which allows an ordered sequence of
addresses to be generated beginning at any desired value.  It is followed by a
programmable 64 to 32 crossbar switch, which allows MCnt bits to be permuted when
forming row and column addresses.  This counter and crossbar are shown in Figure 20.

The crossbar is configured by means of a 192-bit register called MSel.  MSel is divided
into 28 6-bit chunks.  Each chunk corresponds to one row or column address bit and
selects the source of that bit from one of the 64 inputs.  MSel<5:0> selects the source for
column address bit 0, MSel<11:6> selects the source for row address bit 0, and so forth.  

The reason the crossbar has 64 instead of 32 inputs is that the upper 16 inputs are
hardwired to 1 and the next 16 inputs are hardwired to 0.  Selecting these inputs allows
certain address bits to be held constant regardless of the contents of MCnt .

col0row0col1row1

06121824

col15row15

191186 180

MSelHf<191:0>

MCntHf<63:0>

063

0x f f f f 0x0000

48 32

32-bit presettable up-counter

64->32 crossbar

MRAddr<15:0> MCAddr<15:0>

Figure 20:  MCnt  and MSel  Registers.

The following commands set the MCnt and MSel registers:
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Command: Synopsis:

TAS_SetMCnt (val8) // Set the 8 LSBs of the MCnt register, first shifting left 8 bits

TAS_SetMSel (rsel,
csel)

// Set the 12 LSBs of the MSel register, first shifting left 12 bits

TAS_SetMCnt shifts the 32-bit MCnt register left 8 bits and sets the 8 LSBs of the
register to val8 (8 bits).  This command must be repeated four times to set the entire MCnt
register.

The TAS_SetMSel commands shift the 192-bit MSel register left 12 bits and sets the 12
LSBs of the register to (rsel << 6) | csel.  The 6-bit values rsel  and csel  select the source
of one row and one column address bit within the extended MCnt register.  This command
must be repeated 14 times to set the entire MSel register.  If only 12 address bits are needed
(as for 16 Mbit SDRAMs), it need only be executed 12 times.

Command to Preload the ACT

The block read/write and interleaved read/write commands described later may use the ACT
as a source of texture read/write addresses.  The following command loads addresses from
the EMCs into the ACT:

Command: Synopsis:

TAS_LoadACT () // Load addresses from the EMC local port into the ACT

The TAS_LoadACT command transfers octets of row/column addresses from the local-
port output registers of marked pixels in each EMC and loads them into the ACT.  A single
octet from an EMC may come from one or more PEs, depending on the way the local-port
output buffer is configured.  Exactly 32 bytes per EMC is transferred.  If an EMC is
marked to send more than 32 bytes,  the PEs which were not accessed remain marked after
the instruction has finished.  If an EMC is marked to send fewer than 32 bytes, then 0s are
transferred for the remaining addresses.

Commands to Initialize the SDRAMs Memory System

The following commands are used to initialize and configure the SDRAM external memory
system:

Command: Synopsis:

TAS_Init () // Initialize the SDRAMs

TAS_Init configures the TASICs to drive the SDRAM memories at 100 MHz, precharges
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both banks of each SDRAM memory chip and sets the mode register on each SDRAM to its
default setting1.

Command to Refresh Memory

The SDRAMs that compose external memory are dynamic memory devices and must be
refreshed periodically.  Each of the 2048 rows of the two banks on each SDRAM chip
must be accessed every 64 msec.  The following command performs one refresh cycle for
both banks, using the internal refresh counter in the SDRAM chips to keep track of the
current refresh row:

Command: Synopsis:

TAS_MemRefr ( ) // Do one refresh cycle

This command seldom needs to be called explicitly.  Rather, an opportunistic refreshing
scheme is used.  This command is placed at microcode location 0, meaning that it executes
by default when no other command is pending; ie. when the TIGC sequencer is idle,
external memory is refreshed continuously.

The TIGC sequencer may be busy for long periods, however.  To prevent the refresh
interval from being exceeded, every command that is more than one or two cycles long
branches to TAS_MemRefr when it ends.  Routines that are longer than the refresh
interval have internal refresh cycles.  In this manner, refreshing is performed sufficiently
often, no matter what the sequence of TAS commands and/or idle periods.

There is one exception to this:  when the sequencer is in RMODE it is inactive and cannot
perform refresh cycles.  Care must be taken to ensure that the TIGC sequencer is not in
RMODE for longer than ?? nsec., and that a TAS_MemRefr is executed immediately
after leaving RMODE.  This can be done by placing the TAS_RModeOn,
TAS_RModeOff, and intervening instructions in a packet of the following form:

TAS_SetScratch2( s ) ; // Synchronize with GP
TAS_WaitScratch2( s );
TAS_RModeOn( s ); // Enter RMODE
(Microcode read/write commands);
TAS_RModeOff( s ) ; // Exit RMODE
TAS_MemRefr( s ); // Do refresh cycle immediately

The GP ensures that this packet executes without interruption by flushing the IGCStream
buffer after the TAS_MemRefr, waiting for the Scratch2 bit in the rasterizer glue chip to

_____________

1Its default setting is:   CAS_latency = 3, burst_mode = 'sequential', burst_length = 4.  A few TAS
commands change the mode register setting to a burst length less than 4.  These commands restore the
mode register to its default setting before they complete.
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be set, then clearing the Scratch2 bit.  The entire packet of instructions must take less than
?? nsec to execute.  Note that these precautions are only necessary if the contents of texture
memory are to be preserved.  During startup, the contents of the external memories are
undefined, so a lapse in refreshing will do no harm.

V . 3 Commands for Reading and Writing External Memory

This section describes commands for reading and writing external memory.  These
commands are divided into two classes:  block commands and scatter commands.  Block
commands assume that blocks of data can be read from or written to memory locations that
share the same row address, and therefore can take advantage of fast-page mode accesses
to the SDRAMs.  Scatter commands perform a full row/column access for each data item
transferred.  They allow successive data items to be read from/written to arbitrary locations
in texture memory.

Block commands generally use the MCnt/MSel registers to generate addresses (though the
ACT can be used to “tweak” addresses if it has been preloaded using the TAS_LoadACT
command).  Scatter commands use addresses computed by the EMCs and transferred to the
TASICs along with the data.

The number of data items transferred is governed by the number of PEs with their mark
flags enabled (see Section II.3), so their execution time is variable.

Block Read Commands

The following commands transfer blocks of data between SDRAM memory and the EMCs’
local-port input buffers:   

Command: Synopsis:

TAS_MemRdBlock1 () // Block read, 1-byte texels

TAS_MemRdBlock2 () // Block read, 2-byte texels

TAS_MemRdBlock4 () // Block read, 4-byte texels

TAS_MemRdBlock1I leave16 () // Interleaved block read, 1-byte texels

TAS_MemRdBlock2I leave32 () // Interleaved block read, 2-byte texels

TAS_MemRdBlock4Ileave64 () // Interleaved block read, 4-byte texels

(Outlined commands are currently unimplemented)

Each of these commands reads the designated number of bytes from each of the eight
SDRAM memories in the respective module and loads this data into the local-port input
buffer of each marked pixel.  The suffix ‘1’, '2' or '4' specifies the number of bytes read
per memory (i.e. the texel size).

Addresses for the SDRAM reads are generated using the MCnt/MSel address generator
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xor’ed with the ACT.  This behavior can be modified by first issuing the appropriate
TAS_SetAPortMode* command.  MCnt is incremented once for each data item
transferred (from all the SDRAMs in parallel).  The contents of the ACT are not modified
during these commands.

Data read from the SDRAMs is loaded 8 bytes at a time (1 byte per SDRAM) into the
TASICs’ DCTs.  When a “batch” of 32 bytes has been read from each of the eight
SDRAMs, the DCT begins transferring this data to the EMCs, while loading a new “batch”
from the SDRAMs.  (You want to consult the drawings of the ACT/DCT above (or the
more detailed drawings in the PixelFlow TASIC Functional Description) to understand
how these commands move data within the TASIC).

Block read commands (TAS_MemRdBlockn) perform 16 read operations between
precharges of the SDRAM.  Hence, all 16 consecutive data items read from a single
memory must lie in the same memory row.  Also, reads must begin on block boundaries.

Interleaved block read commands (TAS_MemRdBlocknILeave16n) are similar,
except consecutive blocks must lie in alternating SDRAM banks.  The row access for one
block can be overlapped with the data reads from the previous block, making these
commands approximately ?? % faster than block read commands.  To use the interleaved
block read commands, bit 11 of the row address and bit 9 of the column address must
toggle between alternate blocks.

In both types of commands, number of data items transferred is governed by the number of
PEs whose mark register is set.  If some EMCs have more marked PEs than others, data
values will continue to be read until all EMCs are finished.  The data will be discarded on
EMCs with no remaining marked PEs.

Prior to issuing one of these commands, the EMC local-port input and output buffers must
be configured as follows:

For each marked pixel:

• The local-port input buffer must be configured to receive the correct number of
bytes per PE using the EMC_LPortIn  command.  This number k must be a
multiple of the size of the data items transferred.

Figure 21 shows a typical usage of these commands.  We will assume that each marked PE
is to receive eight 2-byte data items, hence a TAS_MemRdBlock2 command is used.
The local-port input buffer is configured to receive 16 bytes.  When the command
completes, the local-port input buffer contains eight 2-byte values, as shown.
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EMC Local Port Buffer

Byte 0Byte 31

Output data 
Output 
Buffer:

Byte 0Byte 31

Input DataInput 
Buffer 
(after):

Arbitrary values

d7 d6 d5 d4 d1 d0d3 d2
Byte 15

Figure 21:  Contents of EMC local-port buffers before and after a block
read command.

The ACT and DCT address pointers at the start of Block commands will be reset to zero.
At the conclusion of a Block command, the contents of theMCnt  register will be
undefined.  The contents of the local-port output buffer are unchanged after any of these
commands, as are the unwritten bytes of the local-port input buffer.

Block Write Commands

The following commands transfer blocks of data between the EMCs’ local-port output
buffers and the SDRAMs of one or all modules:   

Command: Synopsis:

TAS_MemWrBlock1 () // Block write, 1-byte texels

TAS_MemWrBlock2 () // Block write, 2-byte texels

TAS_MemWrBlock4 () // Block write, 4-byte texels

TAS_MemWrBlock1I leave16 () // Interleaved block write, 1-byte texels

TAS_MemWrBlock2I leave32 () // Interleaved block write, 2-byte texels

TAS_MemWrBlock4Ileave64 () // Interleaved block write, 4-byte texels

(Outlined commands are currently unimplemented)

Each of these commands writes the designated number of bytes from the EMC local-port
output buffers of marked pixels to the eight SDRAM memories in the designated module or
modules.  The suffix ‘1’, '2' or '4' specifies the number of bytes written per memory (i.e.
the texel size).

These commands are similar to the corresponding block read commands (except data flows
in the opposite direction).  There are three other considerations specific to writes:

• Writes can be destined to one or all modules.

• All writes occur—even ones resulting from unmarked PEs (if other EMCs still have
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marked PEs).  These “invalid” writes generally are to SDRAM address 0.

• The local-port output buffer is used for outgoing data; the local-port input buffer is
unused.

Unlike reads, in which data from a module’s SDRAMS is always returned to the EMCs of
that module, write commands can send data to other or all modules.  The commands
TAS_SetWriteMode{1to1,1toN,NtoN} can be used to specify the desired source
and destination module(s).

With write commands there is no provision for discarding data for invalid writes (unlike
read commands, in which data destined for an EMC with no marked PEs simply is
ignored).  Write operations are always performed so care must be taken to enable the same
number of PEs in all EMCs.  Otherwise, spurious writes will occur (addresses will
continue to be generated as before, but zeroes will be written, since there is no valid data).

Prior to issuing a block write command, the EMC local-port output buffers must be
configured as follows:

For each marked pixel:

• The local-port output buffer must be configured to transmit the correct number of
bytes per PE using the EMC_LPortOut  command.  This number k must be a
multiple of the size of the data items transferred.

Figure 22 shows a typical usage of one of these commands, in this case
TAS_MemWrBlock4 .    The local-port output buffer is configured to send 32 bytes.
The local-port input buffer is unused.

EMC Local Port Buffer

Byte 0Byte 31

d7

Note: The input buffer is unused

Output 
Buffer 

(before):

Output data 

d6 d5 d4 d3 d2 d1 d0

Figure 22:  Contents of EMC local-port buffers before a block write
command.



§Rasterizer p. 73
________________________________________________________________________

______________________________________________________________________________________

PixelFlow System Documentation Rasterizer
— CONFIDENTIAL — Rev. 7.0  jge/sem

Scatter Read Commands

The following commands transfer data from arbitrary locations in SDRAM memory into
EMCs’ local-port input buffers:   

Command: Synopsis:

TAS_MemRdScat terEven1 ( ) // Scatter read even, 1-byte texels

TAS_MemRdScat terOdd1 ( ) // Scatter read odd, 1-byte texels

TAS_MemRdScat terEven2 ( ) // Scatter read even, 2-byte texels

TAS_MemRdScat terOdd2 ( ) // Scatter read odd, 2-byte texels

TAS_MemRdScatterEven4 ( ) // Scatter read even, 4-byte texels

TAS_MemRdScatterOdd4 ( ) // Scatter read odd, 4-byte texels

(Outlined commands are currently unimplemented)

Each of these commands reads the designated number of bytes from each of the eight
SDRAM memories in the respective module and loads this data into the local-port input
buffer of each marked pixel.  Unlike the block read commands, addresses for these
commands come from the EMCs and can access data in random locations in SDRAM
memory.  Again, the suffix ‘1’, '2' or '4' specifies the number of bytes read per memory
(i.e. the texel size).  

Data flow for these commands is more complicated than for the block read commands.  In
addition to moving data from SDRAMs to EMCs (vias the DCTs), addresses are
simultaneously transferred from the EMCs through the ACTs, and then are applied to the
SDRAMs.

To maximize read bandwidth, these commands read consecutive data items from each
SDRAM from different internal banks.  The ‘Even’ and ‘Odd’ versions of the commands
access bank 0 first and bank 1 first, respectively and correspond to even and odd replicated
texture maps, as described in Section V.1.  The commands toggle address bit 11 (the bank
select bit) automatically, so address bit 11 should not be set in either row or column
addresses).

Prior to issuing one of these commands, the EMCs must compute 16-bit row and column
addresses for each marked pixel and store them into the local-port output buffer as shown
in Figure 23 below.  The local-port input and output buffers for these pixels must then be
configured as follows:

• The local-port output buffer must be configured to transmit 4 bytes of (address)
data for every data item to be received using the EMC_LPortOut  command.

• The local-port input buffer must be configured to receive the correct number of
bytes per PE using the EMC_LPortIn  command.

Figure 23 shows a typical usage of these commands.  We will assume that each marked PE
is to receive eight 2-byte data items, hence TAS_MemRdScatterEven2 or
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TAS_MemRdScatterOdd2  is used.  Eight row and eight column addresses are loaded
into the local-port output buffer (address bit 11 must be zero for each of these).  The local-
port output buffer is configured to send 32 bytes and the local-port input buffer is
configured to receive 16 bytes.  When the command completes, the local-port input buffer
contains eight 2-byte values, as shown.

EMC Local Port Buffer

Byte 0Byte 31

Output data 
Output 
Buffer:

Byte 0Byte 31

Input DataInput 
Buffer 
(after):

d7 d6 d5 d4 d1 d0d3 d2

Byte 15

c3 r3 c2 r2 c0 r0c1 r1c7 r7 c6 r6 c4 r4c5 r5

Figure 23:  Contents of EMC local-port buffers before and after a scatter
read command.

These instructions have the side effect of setting the address port mode as if the instruction
TAS_SetAPortModeACT was issued.

Note that when using scatter read commands for unreplicated textures, half of the data
values returned will be bogus and can simply be discarded.1

_____________

1Note also that when performing mip-map texture reads, the addresses and data for a particular mip-map
resolution level will alternate between Panel A and Panel B in successive pixels.  Thus, a swazzling step
may be needed to align addresses and data before further computations can begin.  
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Scatter Write Commands (currently unimplemented)

The following commands allow data to be written to arbitrary locations in SDRAM
memory:   

Command: Synopsis:

TAS_MemWrScat terEven1A ( ) // Scatter write even, 1-byte texels, panel A

TAS_MemWrScat terEven1B ( ) // Scatter read even, 1-byte texels, panel B

TAS_MemWrScat terOdd1A ( ) // Scatter write odd, 1-byte texels, panel A

TAS_MemWrScat terOdd1B ( ) // Scatter read odd, 1-byte texels, panel B

TAS_MemWrScat terEven2A ( ) // Scatter write even, 2-byte texels, panel A

TAS_MemWrScat terEven2B ( ) // Scatter read even, 2-byte texels, panel B

TAS_MemWrScat terOdd2A ( ) // Scatter write odd, 2-byte texels, panel A

TAS_MemWrScat terOdd2B ( ) // Scatter read odd, 2-byte texels, panel B

TAS_MemWrScatterEven4A ( ) // Scatter write even, 4-byte texels, panel A

TAS_MemWrScatterEven4B ( ) // Scatter read even, 4-byte texels, panel B

TAS_MemWrScatterOdd4A ( ) // Scatter write odd, 4-byte texels, panel A

TAS_MemWrScatterOdd4B ( ) // Scatter read odd, 4-byte texels, panel B

(Outlined commands are currently unimplemented)

These commands correspond to the Scatter Read commands described above, except that
values can only be written to one panel (four SDRAM memories) in each module at a time.1

Each of these commands transfers the designated number of bytes from the EMC local-port
output buffers of marked pixels to the designated panel (four SDRAM memories) in the
designated module or modules.  In these commands, both addresses and data are provided
by the EMCs.  The suffix ‘1’, '2' or '4' specifies the number of bytes read per memory
(i.e. the texel size).

The Even/Odd suffix designates whether an even or odd texture map is to be written.  The
A/B suffix designates whether data is to be written to panel A or B.  These commands
automatically enable the appropriate panel.

As with block writes, these commands have the following properties:

• Writes can be destined to one or all modules by configuring the TASIC datapaths
with the TAS_SetXferMode{1to1,1toN,NtoN} commands (with TASIC
Rev2.0, 1to1 commands need additional thought).

• All writes occur—even ones resulting from unmarked PEs (if other EMCs still have

_____________

1The reason for this is two-fold:  The local-port output buffer of one PE is not large enough to store both
the addresses and data for eight SDRAMS.  More importantly, the EMC to TASIC bandwidth can only
support half-speed writes
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marked PEs) or to the masked panel.  These “invalid” writes are to SDRAM
address zero.

• The local-port output buffer is used for outgoing data; the local-port input buffer is
unused.

Prior to issuing a block write command, the EMC local-port output buffers must be
configured as follows:

For each marked pixel:

• Addresses and data must be stored in the local-port output buffer.  The four 4-byte
addresses must occupy bytes 0–16.  The four data values must occupy the next 4,
8, or 16 bytes (for 1, 2, and 4-byte writes, respectively).

• The local-port output buffer must be configured to transmit the correct number of
address+data bytes per PE using the EMC_LPortOut  command.

Figure 24 shows a typical usage of one of these commands, in this case
TAS_MemWrScatterEven4.    The local-port output buffer is configured to send 32
bytes.  The local-port input buffer is unused.

EMC Local Port Buffer

Byte 0Byte 31

Note: The input buffer is unused

Output 
Buffer 

(before):

Output data 

d3 d2 d1 d0 c3 r3 c2 r2 c0 r0c1 r1

Output addresses

Byte 15

Figure 24:  Contents of EMC local-port buffers before a scatter write
command.

These instructions have the side effect of setting the address port mode as if the instruction
TAS_SetAPortModeACTPanX , (where X is depends on which panel the instruction
writes to) was issued.

Scatter Command Notes.  As mentioned above, the scatter commands perform
SDRAM accesses which implicitly alternate between banks.  Because of the way the corner
turns are filled and accessed, the EMCs are processed in round robin order.  What this
implies is that with an even scatter instruction, the even EMCs always access the even bank
while the odd EMCs always access the odd bank (vice versa for the odd instructions).  The
duration of a texture access is as long as the EMC with the most data.  For example, if all
EMCs except for are finished, the EMCs are still processed in round robin order (accessing
the appropriate even/odd banks), except that the data for the finished EMCs is ignored.
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Setup and synchronization.  All of the commands above require setup by the EMCs
prior to execution and processing of results after they complete.  Figure 25 shows a typical
use of the TAS_MemRdScatterEven4 command.  The other commands (including
write commands, described below) are used similarly.

EMC commands to enable a desired set of pixels;
EMC commands to calculate memory addresses;
EMC commands to copy addresses into  the local port  input buffer;
EMC_LPortIn() ; // Configure the local input port
EMC_LPortOut() ; // Configure the local output port
EMC_VTas() ; // Make sure local port is configured
TAS_PEmc() //             before TAS command begins
TAS_MemRdScatterEven4() ; // Do memory read
(Optional EMC commands);
TAS_VEmc() ; // Prevent EMC commands from executing
EMC_PTas() ; //             until TAS read completes
EMC commands to copy data from the local port output buffer;
EMC commands to operate on the data;

Figure 25:  Typical use of TIGC memory commands.

The EMCs must prepare addresses, copy them into local buffer memory, and configure the
local port prior to beginning the memory read.  The EMC_VTas and TAS_PEmc
commands ensure that all setup calculations complete before the TAS_MemRd command
begins.  Similarly, the TAS_VEmc and EMC_PTas commands ensure that the read
operation completes before EMC commands which require the data can execute.  Since read
operations take many cycles, it is often desirable to perform unrelated EMC operations
while the read commands are executing.  These can be placed between TAS_MemRd and
the first TAS_VEmc.  Section VI.1 gives further details on the use of semaphores to
synchronize the processing of EMC and TAS commands.

TAS_MemWr  commands do not affect the contents of either the local-port output or input
buffers.  Synchronizing with the EMC sequencer is only needed before a TAS_MemWr
command is executed (unlike TAS_MemRd commands, which require synchronizing
before and after the command).

V . 4 Commands to Communicate with the GP

This section describes commands used to transfer data between PixelFlow PA-8000-based
GPs and the texture subsystem, primarily for loading (and paging) textures, and retrieving
frame buffer data.  The current commands assume the presence of a GNI and are a first
implementation of this interface.  Many alternatives are possible.

Commands for synchronization with the GP

The following commands support synchronization between the TIGC sequencer and
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program execution on the GP.  They are useful, for example, to indicate to the GP that a
particular set of commands have been executed by the TIGC sequencer.  Two forms of
synchronization are supported:  interrupts and polling.  The current software convention is
to use Scratch1 bit in the rasterizer glue chip for interrupt-based synchronization, and the
Scratch2 bit for polling-based synchronization.

Command: Synopsis:

TAS_SetScratch1 () // Set glue chip Scratch1 bit, causing a GP interrupt

TAS_SetScratch2 () // Set glue chip Scratch2 bit, by convention polled by the GP

TAS_WaitScratch1 () // Wait for the Scratch1 bit to be cleared

TAS_WaitScratch2 () // Wait for the Scratch2 bit to be cleared

Commands for setting GNI registers

The following TIGC commands set GNI internal registers and are used to provide packet
destination and length information when sending data from the rasterizer to GPs over the
Geometry Network.

Command: Synopsis:

TAS_SetGNIPktHdr ( val ) // Set the 8 MSbits of the GNI packet header register to val,

// right shifting the remaining bits

TAS_SetGNIMsgHdr ( val ) // Set the 8 MSbits of the GNI message header register to val,

// right shifting the remaining bits

TAS_SetGNIPktSize ( bytes ) // Set the packet size to bytes (valid range is 256 to 1024 in

// multiples of 256)

See the GNI documentation for the appropriate use of these registers.

GP read/write commands

The following commands allow GPs to send and receive data to/from texture and EMC
memory via the GNI and TASICs:
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Command: Synopsis:

TAS_XferEtoG (  ) // Transfer 512 bytes from EMCs of selected module to GNI

TAS_XferGtoE ( bytes ) // Transfer bytes bytes of data from the GNIs to the EMCs of

// one or all modules (depending on Xfer mode).  Possible values for

//bytes are: 256, 512, 768, 1024.

TAS_XferTtoG_Block4 () // Transfer 512 bytes of data from SDRAMs of selected module to

// GNI using MCnt register to generate addresses.

TAS_XferGtoT_Block4 ( bytes ) // Transfer bytes bytes of data from the GNIs to the SDRAMs of one

// or all modules (depending on Xfer mode).  Mcnt register is used

// to generate SDRAM addresses.  Possible values for bytes

// are:  256, 512, 768, 1024.

Before executing any of these commands, the TASIC transfer mode must be set
appropriately using one of the TAS_SetXferModeXXX commands.  Possible settings
for each command are as described in the paragraphs below.

TAS_XferEtoG  must be preceded by a TAS_SetXferMode1toG( src ) command to
configure the inter-module TASIC ring and select  source module.  It transfers a packet of
512 bytes from the SDRAMs of module src to the GNI.

TAS_XferGtoE  must be preceded by either TAS_SetXferModeGtoN() or
TAS_SetXferModeGto1( dst ).  It transfers byte bytes from the GNI to the EMCs of
all or a single module.  In the GtoN case, GNI data is written to the EMCs of all four mod-
ules.  In the Gto1 case, GNI data is written to the EMCs of the selected module, while
zeroes are written to the EMCs of non-selected modules.  (For TASIC Rev2.0, this
command will have to be rewritten, since Gto1 transfers will only load the DCTs of one
module).

TAS_XferTtoG_Block4 must be preceded by a TAS_SetXferMode1toG( src )
command.  It transfers a 512-byte packet of data from the SDRAMs of module src to the
GNI.  The SDRAM addresses used by this command are generated by the MCnt register.
Thus, MCnt / MSel must be configured appropriately prior to issuing this command.

TAS_XferGtoT _Block4 must be preceded by either TAS_SetXferModeGtoN() or
TAS_SetXferModeGto1( dst ).  It transfers byte bytes from the GNI to the SDRAMs
of all or a single module.  In the GtoN case, GNI data is written to the SDRAMs of all four
modules.  In the Gto1 case, GNI data is written to the SDRAMs of the selected module,
while zeroes are written to the SDRAMs of non-selected modules. (For TASIC Rev2.0,
this command will have to be rewritten, since Gto1 transfers will only load the DCTs of
one module). The SDRAM addresses used by this command are generated by the MCnt
register.  Thus, MCnt / MSel must be configured appropriately prior to issuing this
command.

Note that all of these commands require careful synchronization with the GP (e.g. sending
data to the GNI at the right time, use of synchronization commands).  Misuse of these
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commands can cause the TIGC or GP to hang.  Consequently, these commands should be
encapsulated within tested system code and not made directly available to application code.
For futher information on the use and operation of these commands, consult the comments
in the microcode source file  TAS.ucode.pre and the library routines that use them in
~pxfl/pbase/src.

V . 5 Video Control Commands

On boards with video input or output circuitry, the TASICs write or read video data to/from
the SDRAM memories at the behest of the video controller.  This means that they must
generate the row and column addresses required for video scan-in (scan-out).  The TASICs
have x and y base address registers for eight independent fields (a field is an array of pixels
that are scanned in or out in order).  The fields can be chained together to accommodate
display or input modes with multiple fields (stereo, interleaving, etc.).  We define a frame
as one or more fields that are displayed or acquired consecutively without requiring
intervention by the GP.

Figure 28 shows the TASIC video field and video address registers.
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Figure 26:  TASIC Video Field and Video Address Registers.

VFld stores the index of the active field (the field currently being scanned in or out).
VNxtFld<n> and VNxtFrmFld<n> store the index of the next field and next frame field for
each possible field value n = 0–7.  The VNxtFld registers are used to chain fields into
frames.  For example, on an NTSC frame-buffer with an even and odd field VNxtFld<0>
might be set to 1 and VNxtFld<1>, so that the two fields to alternate.  The VNxtFrmFld
registers store the first field of the next frame.  Usually they are configured to point to the
first field of the current frame.  However, when a new frame is available (for example,
when it is time to swap buffers in a double-buffered display), the VNxtFrmFld registers for
the current frame’s fields are set to point to the first field of the new frame.
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VXBase<n> and VYBase<n> store starting x and y values for the video address counters,
VXCnt, and VYCnt.  These logical x and y addresses are mapped into physical SDRAM
row/column addresses using a crossbar similar to the MCnt/MSel crossbar described in
Section V.2.  This crossbar is shown in Figure 29.
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64->32 crossbar
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Figure 27:  Video address counters and crossbar.

VXCnt is incremented by the video microcode routine for each pixel on a scanline.  Since
scanlines can contain arbitrary numbers of pixels,  an additional set of registers
VXMax<n>, is provided to specify a maximum VXCnt value for each field.  When VXCnt
reaches VXMax<VFld>, VXCnt is reset to VXBase<VFld> and VYCnt is incremented.
The crossbar following VXCnt and VYCnt allows address bits to be permuted when
generating actual SDRAM row/column addresses.

The TIGC monitors the VidReq input from the video controller.  When a video request is
received, it may be one of three types:

• Request new frame.

• Request new field.

• Request new scanline.

If a new frame request is received, VFld is set to VNxtFrmFld<VFld>.  If a new field
request is received, VFld is set to VNxtFld<VFld>.  In either case, VXCnt/VYCnt are set
to VXBase/VYBase for the new field, and the read/write pointers for the VFIFO are
cleared.  A new scanline request causes the TIGC sequencer to load/unload a new scanline
of pixels to/from the VFIFO, using VXCnt /VYCnt  to generate the addresses for these
reads/writes.  VFld is not affected.

The video controller can assert VidReq at any time.  The TIGC microcode for a particular
video device ensures that this input is polled sufficiently often that new scanline requests
can be serviced before the VFIFO runs dry.  The video controller may request a new field
or new frame at any time, even during the middle of a field.  This allows the TASIC video
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interface to synchronize with the video controller or an external, genlocked video source.

Commands to Set the Video Base and Field Registers

The following commands are used to configure the various video control registers.

Command: Synopsis:

TAS_SetVBasen (val8) // Load 8 LSBs of val8 into VBase<n>, n = 0 to 7

TAS_SetVNxtFldn (fld) // Set VNxtFld<n> to fld

TAS_SetVNxtFrmFldn (fld) // Set VNxtFrmFld<n> to fld

TAS_SetVBasen loads the composite 48-bit video base address register
VXMax<n>;VYBase<n>;VXBase<n>.  It sets the eight LSBs of this composite register to
val8 and shifts the remaining bits of the register eight bits to the left.  These commands
must be called six times to initialize an entire VBase register.

TAS_SetVNxtFldn loads VNxtFld<n> with the argument fld.  It is used to chain a
sequence of one or more fields together into a frame.  

TAS_SetVNxtFrmFldn loads VNxtFFrmld<n> with the argument fld.  It is used to
specify the first field of the next frame.

Commands to Operate the Video Controller

The following commands are used to initialize and operate the TASIC video port, once it
has been configured using the commands above:

Command: Synopsis:

TAS_SetVFld (fld) // SetVFld to fld ; no synchronization with video controller

TAS_SetVFldSynch (fld) // Wait until next-frame request; then Set VFld to fld

TAS_ClearEOF () // Clear the end-of-frame (EOF) sticky bit in the GP status register

TAS_WaitEOF () // Wait until end-of-frame (EOF) sticky bit is set

TAS_SetVFld simply sets the current field register VFld to fld.  This is done regardless
of the current state of the video controller.  It can result in bogus pixel values being scanned
in/out until the next-frame request is received from the video controller.

TAS_SetVFldSynch also sets VFld to fld, but attempts to do so more gracefully.  It
spin-locks until a next-frame request is received, servicing next-field and next-scanline
requests in the meantime, but blocking subsequent TIGC commands.  When a next-frame
request is received, it initializes the VFIFO, sets VFld to fld, and initializes the VXCnt and
VYCnt counters in preparation for the scanning in/out the new frame indicated by fld.  It
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then acknowledges the next-frame request and allows normal TIGC operation to resume.  

TAS_ClearEOF and TAS_WaitEOF are used together to block instructions from
executing until a frame has finished.  TAS_ClearEOF clears the end-of-frame (EOF)
sticky bit in the GP status register1.  TAS_WaitEOF spin-locks until the EOF bit is set,
blocking subsequent TIGC commands, but processing all video controller requests in the
meantime.

V . 6 Video Control Examples

(This section written by Greg Welch and revised by Steve Molnar)

The video configuration and operation commands outlined in the preceding section can be
used in a variety of ways to facilitate the smooth and correct updating, displaying, or
acquiring of various types video frames.  As stated earlier, we define a frame as one or
more fields that are displayed or acquired consecutively without requiring intervention by
the GP.  What follows are descriptions of several possible scenarios surrounding the
display or acquisition of video data, along with some sample code fragments which use the
preceding commands.

Asynchronous Two-Buffer Frame Buffering

We first look at sample command streams for writing and displaying video frames using
two buffers.  In these examples we will consider the use of a double-buffered frame-buffer
where each frame consists of a single field.  Thus, in the following examples field 0 will be
used for frame 0 and field 1 for frame 1.

Initially we consider the asynchronous update & display case, the case where it is known
that frame updates can or will take longer than corresponding frame scan-outs.  In this
situation we say that the frame updates occur asynchronously with respect to frame scan-
outs.

The startup code shown below includes commands to write the first frame of pixel data, to
configure the video port, and to reset the controller.

Commands to write pixel data to frame 0 (field 0)
Commands to configure the video controller for single-field frames
TAS_SetVNxtFrmFld0(0); // Chain frame 0 to itself
TAS_SetVFldSynch(0); // Reset the video controller, making field 0 active

Once these commands have been issued, frames are repeatedly being scanned-out from
field 0, by the video controller.  Frame 1 can then be updated and the commands to make it
_____________

1The EOF bit in the GP status register is set whenever the video controller issues a next-frame request (i.e.
after it has scanned out the last pixel of a frame).  This bit is “sticky”, meaning that once it is set, it
remains set until explicitly cleared by using the TAS_ClearEOF command.
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active can be issued as follows:

Commands to write pixel data to frame 1 (field 1)
TAS_SetVNxtFrmFld1(1); // Chain frame 1 to itself
TAS_SetVNxtFrmFld0(1); // Chain frame 0 to frame 1 (switch active buffers)
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); // Wait for frame 0 to be scanned out at least once

Note that the TAS_ClearEOF and TAS_WaitEOF commands are needed to prevent
subsequent writes to frame 0 from occurring until frame 1 is active.  They also guarantee
that frame 0 has been scanned-out at least once.

In the normal steady state, there is a continuous synchronized series of writes and displays:
when frame i is active, frame i+1 can be written; when frame i+1 has been written, the
video port configuration can be changed so that frame i+1 becomes active at the next frame
start; when the next-frame request associated with frame i+1 occurs frame i+2 can then be
written and the corresponding video port configuration commands can be issued; etc.  

An example of using the commands of the previous section to implement such a steady-
state series of double-buffered updates and displays follows.

// Frame 1 is active here
while (TRUE)
{

Commands to write pixel data to frame 0 (field 0)
TAS_SetVNxtFrmFld0(0); // Chain frame 0 to itself
TAS_SetVNxtFrmFld1(0); // Chain frame 1 to frame 0 (switch active buffers)
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg
Miscellaneous other commands
TAS_WaitEOF(); // Wait for EOF bit (frame 1 to be inactive)

Commands to write pixel data to frame 1 (field 1)
TAS_SetVNxtFrmFld1(1); // Chain frame 1 to itself
TAS_SetVNxtFrmFld0(1); // Chain frame 0 to frame 1 (switch active buffers)
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg
Miscellaneous other commands
TAS_WaitEOF(); // Wait for EOF bit (frame 0 to be inactive)

}

The TAS_ClearEOF and TAS_WaitEOF commands prevent the active frame from
being overwritten.  If other commands are needed that will not corrupt the contents of the
active frame, these can be sandwiched between TAS_ClearEOF and TAS_WaitEOF
commands as shown.

For multi-field frames, the startup code is slightly different.  The following example is
similar to the one above, except that frames are assumed to consist of two fields, as in a
double-buffered NTSC display.  Frame 0 comprises fields 0 and 1.  Frame 1 comprises
fields 2 and 3:
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Commands to write pixel data to frame 0 (fields 0,1)
Commands to configure the video controller for double-field frames
TAS_SetVNxtFld0(1); // Chain field 0 to field 1
TAS_SetVNxtFld1(0); // Chain field 1 to field 0
TAS_SetVNxtFld2(3); // Chain field 2 to field 3
TAS_SetVNxtFld3(2); // Chain field 3 to field 2
TAS_SetVNxtFrmFld0(0); // Chain frame 0 to itself
TAS_SetVFldSynch(0); // Reset the video controller, making field 0 active

The TAS_SetVNxtFld commands do not have to be repeated.  The only difference in the
steady-state loop is that to switch active buffers VNxtFrmFld[1] will be set to 2 and
VNxtFrmFld[3] will be set to 0.

Synchronous Two-Buffer Frame Buffering

Next we consider the synchronous update and display case:  the case where it is known that
each frame update takes less time than the corresponding frame scan-out.  In this situation
we say that frame updates occur sychronously with respect to frame scan-outs.

Because frame updates occur in lock-step with frame scan-out, we can link each of the two
fields directly to each other.  In this situation, the startup code can be modified as shown
below.

Commands to write pixel data to frame 0 (field 0)
Commands to configure the video controller for single-field frames
TAS_SetVNxtFrmFld0(1); // Chain frame 0 to frame 1 (permanently)
TAS_SetVNxtFrmFld1(0); // Chain frame 1 to frame 0 (permanently)
TAS_SetVFldSynch(0); // Reset the video controller, making field 0 active

 As a result of the fast frame-update capability, there is no longer a need to chain and
unchain fields during the steady-state series of double-buffered updates and displays.
Therefore the steady-state update code may now resemble the following simple loop:

// Frame 1 is active here
while (TRUE)
{

Commands to write pixel data to frame 0 (field 0)
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); // Wait for frame 0 to be inactive

Commands to write pixel data to frame 1 (field 1)
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
TAS_WaitEOF(); // Wait for frame 0 to be inactive

}

Again, by issuing a TAS_ClearEOF prior to the TAS_WaitEOF, we guarantee that the
previously active frame becomes inactive before we update it.  Note that this scheme is
dangerous.  It will fail if any frame cannot be updated in time.
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Three-Buffer Frame Buffering

We now consider sample command streams for writing and displaying video frames when
three buffers are available.  Because there is more than one inactive buffer (two in fact)
when any one buffer is active, we can alter the above two-buffer code slightly to gain some
flexibility and potentially some efficiency.

In the following example we will only explore the case where frame updates take longer
than frame scan-outs, i.e. the case where the frame updates occur asynchronously with
respect to external display updates.  If frame updates can be accomplished at a rate faster
than the frame scan-out rate, then the frame updates can (if desired) be completely
synchronized with the external display updates.  This would be accomplished in a manner
similar to that described above for the synchronous two-buffer frame buffering.

Specifically, let’s look at the case where video frames are being generated from a traditional
double-buffered stereo frame buffer.  In this situation, while four physical fields would
typically be used (two left fields and two right fields) one can think of such a system as
actually using three logical buffers as follows.  At any point in time, one each of the two
left and two right physical fields will be chained together, by use of the
TAS_SetVNxtFld commands, to be repeatedly displayed.  These two chained fields can
be thought of as one single logical buffer, the active logical buffer.  Each of the remaining
left and right fields would be considered its own single (inactive) logical buffer.  This
makes sense because either of these remaining inactive left and right fields can be
individually updated and then exchanged (replaced in the chain) for one of the left or right
fields in the active logical buffer.  Thus the total number of logical buffers would be three:
one active logical buffer with two physical fields, and two inactive logical buffers each with
one physical field.  Two such examples are shown in Figure 30 below.
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Figure 28:  Two examples of logical buffer triples.  The arrows denote the
order of chaining of the physical fields.

Unlike the preceding two-buffer example, in this example we will not associate particular
physical fields with particular buffers.  Instead we will continue to refer to buffers as
abstract logical buffers, numbered 0, 1 and 2.  The physical fields associated with each of
the three logical buffers might vary with the use of TAS_VNxtFld  commands, and will
not be described explicitly.  We will assume that the controller is configured for the
appropriate number of fields per frame, e.g. two fields per frame for a stereo buffer.

The initial startup code in this situation would be identical to that shown above for the
asynchronous two-buffer case.  Once these startup commands have been issued, frames are
being generated (by the video controller) from logical buffer 0.  One of the two free logical
buffers, buffer 1 for example, can then be updated and the commands to make it active can
be issued as follows.

TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
Commands to write pixel data to buffer 1 (field 1)
Commands to make buffer 1 active (field chain commands)
TAS_WaitEOF(); // Wait for buffer 0 to have been scanned-out

Again the TAS_ClearEOF and TAS_WaitEOF commands are only necessary if writes
to buffer 0 will immediately follow, as would normally be the case as we begin a steady-
state process of alternating writes and displays.
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Note in particular the repositioning of the TAS_ClearEOF command to     before    the buffer
write and chain commands.  This early placement provides a relatively long opportunity for
the EOF bit to be set prior to the issuance of the TAS_WaitEOF .  This then potentially
decreases the amount of time that the TAS_WaitEOF will block subsequent commands.
When the TAS_WaitEOF  does unblock, we are no longer guaranteed that the currently
active buffer (buffer 0 in our example) has become inactive, but since we have three buffers
available and would typically be writing to the next inactive buffer anyway (buffer 2 in our
example) this situation is acceptable and even desirable.

An example of using the commands of the previous section to implement a steady-state
series of three-buffer updates and displays follows.

// Logical buffer 2 is active here
while (TRUE)
{

TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer 0
Commands to make buffer 0 active (field chain commands)
Miscellaneous other commands
TAS_WaitEOF(); // Wait for buffer 2 to have been scanned out

TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer 1
Commands to make buffer 1 active (field chain commands)
Miscellaneous other commands
TAS_WaitEOF(); // Wait for buffer 0 to have been scanned out

TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status port
Commands to write pixel data to logical buffer 2
Commands to make buffer 2 active (field chain commands)
Miscellaneous other commands
TAS_WaitEOF(); // Wait for buffer 1 to have been scanned out

}

One-Shot Frame Grabbing

The one-shot frame grab is somewhat analogous to displaying a single frame of video from
a particular frame buffer.  We present two examples for grabbing a single frame of video,
both which accomplish the same task but in different fashions.  

Our first example directly manipulates the video controller, stopping and starting the
controller as needed to obtain a single frame of video.  The video will be written to field 0
for this example.
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Commands to stop the video controller
TAS_ClearEOF();
Commands to configure the video controller for single-field frames
Commands to configure the video controller for a one-shot frame grab
TAS_SetVFld(0) ; // Select a destination field for the single frame
Commands to start the video controller
TAS_WaitEOF();
Commands to  read the  grabbed data from field 0

Our second example demonstrates a method that allows the video controller to run
continuously in a free-running mode, but uses field chaining commands to divert a single
frame of video to a particular buffer or field.  For this example, we will assume that the
controller is currently cycling through field 1, (i.e. field 1 is chained to itself, and the
controller is free-running), and that we would like to store our single frame of video in field
0.  We will also assume that the controller is configured for single-field frames.

TAS_VNxtFrmFld0(1); // Make sure we leave  field 0 after grabbing frame
TAS_SetVFldSynch(0); // Make field 0 active
TAS_ClearEOF();
TAS_WaitEOF(); // Wait for scan  in to occur and field 0 to become inactive
Commands to read  the grabbed data from field 0

The one-shot frame-grab is useful for a one-time acquisition of a single video frame, or for
the repeated and ongoing acquisition of video in the situation where the time to process the
grabbed data is longer than the time to acquire the data.  Under the latter circumstances, the
second method (above) may prove to be desirable depending on the amount of time
required to stop and start the video controller.  With the second method, it might at first
seem to be a problem that while the video controller is already (presumably) synchronized
with the external video source, one must wait for the beginning of each such frame before
grabbing.  On the other hand, with the first method one would still have to wait the worst-
case time of a single frame anyway during each start-up of the video controller, to
synchronize with the external video source.

Asynchronous Free-Running Frame Grabbing

This case is analogous to asynchronous two-buffer frame buffering.  This example
demonstrates the use of the TAS video commands to continuously grab frames from a free-
running video controller in the case where the time to read and process each frame is greater
than the time to scan-in each frame.

In this situation the incoming video data can be written to two alternating fields, bouncing
back and forth, but not on consecutive frame scan-outs.  Instead, video port configuration
commands must be used to periodically switch between fields that are otherwise normally
chained to themselves.  In this case since the frame processing is not fast enough, the frame
grabbing cannot stay synchronized with the external video, i.e. not every external frame
can be grabbed.
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Commands to configure the video controller for single-field frames
Commands to configure the video controller for continuous frame grabbing
TAS_SetVNxtFrmFld0(0); // Chain frame 0 to itself for reset
TAS_SetVFldSynch(0); // Reset & synch the controller, making frame 0 active
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

while (TRUE)
{

TAS_SetVNxtFrmFld1(1); // Chain frame 1 to itself (protect frame 0 after scan-in)
TAS_SetVNxtFrmFld0(1); // Specify switch from active field 0 to field 1
TAS_WaitEOF(); // Wait for frame 0 to be grabbed & inactive
Commands to read and process pixel data from frame 0
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

TAS_SetVNxtFrmFld0(0); // Chain frame 0 to itself (protect frame 1 after scan-in)
TAS_SetVNxtFrmFld1(0); // Specify switch from active frame 1 to frame 0
TAS_WaitEOF(); // Wait for frame 1 to be inactive
Commands to read and process pixel data from field 1
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

}

Notice that while incoming video field i is being read from frame 0, incoming video frames
i+1 through  some frame j are being written (over-written) in field 1.  When the reading of
frame i from field 0 completes (during frame j) the appropriate set of field chaining
commands are issued.  Then frames j+1 through some frame k are written to field 0 while
frame j is being read from field 1, etc.

Notice that between the time frame i was read from field 0 and frame j was read from field
1, j-i  frames of incoming video were lost.  It is the need to protect one field from the
incoming video while it is being read that is the main consequence of the asynchronous
grabbing scheme.  However such a scheme may be either necessitated by the long time
required to read and process a single incoming video frame, or desired for other reasons.

Synchronous Free-Running Frame Grabbing

This case is analogous to synchronous two-buffer frame buffering.  The following example
demonstrates the use of the TAS video commands to continuously grab frames from a free-
running video controller in the case where the time to process each frame is less than the
time to scan-in each frame.  In this situation the incoming video data can be written to two
alternating fields, bouncing back and forth on consecutive incoming frames.  If the frame
processing is indeed fast enough, the frame grabbing can then remain synchronized with
the external video, i.e. every incoming frame can be grabbed.
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Commands to configure the video controller for single-field frames
Commands to configure the video controller for continuous frame grabbing
TAS_SetVNxtFrmFld0(1); // Chain frame 0 to frame 1
TAS_SetVNxtFrmFld1(0); // Chain frame 1 to frame 0
TAS_SetVFldSynch(0); // Reset & synch the controller, making field 0 active
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

while (TRUE)
{

TAS_WaitEOF(); // Wait for frame 0 to be scanned-in & inactive
Commands to read and process pixel data from field 0
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

TAS_WaitEOF(); // Wait for frame 1 to be scanned-in & inactive
Commands to read and process pixel data from field 1
TAS_ClearEOF(); // Clear the sticky EOF bit in the GP status reg

}

V . 7 Miscellaneous TIGC Sequencer Commands

Miscellaneous Commands

The following are TIGC Sequencer commands that operate in the same manner as the
miscellaneous EIGC Sequencer commands listed in Section IV.5.

Command: Synopsis:

TAS_NoOp () // No operation

TAS_NoOp2 () // No operation (version with long 64-bit opcode)

TAS_Hang () // Hangs the sequencer in a tight loop (for debugging purposes)

Commands to Initialize the TIGC Sequencer

The TIGC Sequencer is initialized in the same manner as the EMC Sequencer (see Section
IV.5).  The following commands are used to write and read microcode and to cause the
TIGC Sequencer to enter and exit RMode.  The TASICs are initialized by each command
that uses them, so no special commands are required for this purpose.
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Instruction: Synopsis:

TAS_IFSpec (Rlim,Tlim,Endain) // Set interface control register

TAS_RModeOn () // Put the sequencer in RMode

TAS_RModeOff () // Cause the sequencer to exit RMode, and prepare for normal input

TAS_MCWrite (addr, word0, word1) // Load 'word0' and 'word1' into the specified microcode location

TAS_MCRead (addr) // Set the sequencer's program counter to 'addr' (this command is       
// also used to read microcode memory during chip testing, but
// this function is not available during normal operation)

The standard location for TIGC Sequencer microcode is in the file TAS_<type>_ucode.h,
in an the initialized array unsigned TAS_<type>_ucode[], where <type> is the
mnemonic for the video configuration (see Section III).

VI RT CONTROLLER COMMANDS AND SYNCHRONIZATION

On each IGC, the command streams from the RFIFO and TFIFO merge at the RT
Controller, which dispatches commands in a designated order to the Sequencer.  

There are two threads of control for the Rasterizer, one is buffered in the RFIFO, and the
other is buffered in the TFIFO. Each thread can contain both EIGC and TIGC commands.
The two Sequencers can be interlocked within either thread, and the two threads can be
interlocked for either Sequencer.  This interlock is performed using semaphore control and
preference commands, described in Section VI.1 and VI.2. Other RT Controller commands
control operation of the Image Composition Controller; these are described in Section VI.3.
Sections VI.4 and VI.5 show how these commands are typically used, by giving sample
control algorithms for rasterizer and shader boards.

VI.1 Semaphore Commands

The interlock semaphores are summarized in the table:
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Inter lock Semaphore
Counter

Blocks Command to P
(wait and

decrement)

Command to V
(increment

counter)

EMC_ commands wait
for T_EMC commands

EIGC RFIFBLK RFIFO on EIGC EMC_PTfifo T_EMC_VRfifo

T_EMC_ commands wait
for EMC_ commands

EIGC TFIFBLK TFIFO on EIGC T_EMC_PRfifo EMC_VTfifo

TAS_ commands wait for
T_TAS_ commands

TIGC RFIFBLK RFIFO on TIGC TAS_PTfifo T_TAS_VRfifo

T_TAS_ commands wait
for TAS_ commands

TIGC TFIFBLK TFIFO on TIGC T_TAS_PRfifo TAS_VTfifo

EMC_ commands wait
for TAS_ commands

EIGC RSEQBLK RFIFO on EIGC EMC_PTas TAS_VEmc

TAS_ commands wait for
EMC_ commands

TIGC RSEQBLK RFIFO on TIGC TAS_PEmc EMC_VTas

T_EMC_ commands wait
for T_TAS_ commands

EIGC TSEQBLK TFIFO on EIGC T_EMC_PTas T_TAS_VEmc

T_TAS_ commands wait
for T_EMC_ commands

TIGC TSEQBLK TFIFO on TIGC T_TAS_PEmc T_EMC_VTas

The first two semaphores interlock EIGC commands from the RFIFO and TFIFO. For
example, if it is necessary to wait for a certain RFIFO EIGC command (EMC_Foo) to
finish before a TFIFO EIGC command (T_EMC_Foo) can execute, then EMC_Foo is
followed by EMC_VTfifo , and T_EMC_Foo is preceded by T_EMC_PRfifo .

The second two semaphores interlock TIGC commands from the RFIFO and TFIFO.

The third pair of semaphores interlocks EIGC and TIGC commands in the RFIFO stream,
and the fourth pair of semaphores interlocks EIGC and TIGC commands in the TFIFO
stream.

VI.2 FIFO Preference

On each IGC, either FIFO can have "preference". Typically, the TFIFO has preference.
This means that commands are processed from the TFIFO until it is blocked, by either one
of the two semaphore interlocks,  or by a WaitXfer  command (see below); even if the
TFIFO becomes empty, it retains control and no instructions are read from the RFIFO.  If
preference shifts to the RFIFO, then the situation is reversed, and no commands are read
from the TFIFO until the RFIFO becomes blocked, or until the RFIFO "yields" preference
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back to the TFIFO.

After reset, the TFIFO has preference. Either FIFO command stream can "grab" or "yield"
preference.  This is done using the following commands:

Inter lock Action

EMC_Grab RFIFO becomes preferred on EIGC

EMC_Yield TFIFO becomes preferred on EIGC

T_EMC_Grab TFIFO becomes preferred on EIGC

T_EMC_Yield RFIFO becomes preferred on EIGC

TAS_Grab RFIFO becomes preferred on TIGC

TAS_Yield TFIFO becomes preferred on TIGC

T_TAS_Grab TFIFO becomes preferred on TIGC

T_TAS_Yield RFIFO becomes preferred on TIGC

Note that a "grab" command obeys the preference rules like any other command.  For
example, if the next command in the RFIFO on the EIGC is EMC_Grab , but the TFIFO
has preference, the "grab" command will not execute and cause the RFIFO to gain
preference, until the TFIFO has become blocked (or if a T_EMC_Yield  command is
executed from the TFIFO).

VI.3 IC Controller Commands

After reset, a board is "dead".  This means that it mindlessly propagates the ready and go
signals, and the image-compostion data stream, through untouched; thus it is transparent to
the transfer operations and does not participate.  During system initialization, most or all of
the boards are set to be "alive".  An image-composition loop can be formed by specifying
two "end" boards. For example, the left-most alive board is set as a "left-end" board,
meaning that its left-hand output stream is connected to its left-hand input stream, and
similarly a "right-end" board is specified.  More than one (non-overlapping) loop can be
formed by specifying more than one pair of "end" boards. A "dead" board cannot be
specified as an "end" board.

Each IGC contains an Image Composition Controller, but only the one on the EIGC is
used. The Image Composition Controller contains two flip-flops, one or both of which are
set to initiate a transfer operation. If the L2RXfer flip-flop is set, the board will propagate
the "left-to-right" ready signal from the downstream board (to its "right") to the upstream
board (to its "left"); then, when it receives the go signal from the upstream board, it causes
the EMCs to begin compositing and passes the go signal to the downstream board.
Similarly, the R2LXfer flip-flop indicates that the board is ready to participate in a "right-
to-left" transfer operation.

There is a set of commands for controlling the Image Composition Controller. The
following table lists these commands:
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Command: Synopsis:

EMC_Dead () // Set this board to be "dead" (board is always dead after reset)

EMC_Alive (left, right) // Set this board to be "alive",  and specify whether it lies at either
//        end of an image composition loop (must be accompanied by

//         EMC_ICEnds command)

EMC_WaitXfer () // Block  until any pending Image Composition transfer is complete

EMC_InitXfer (nbytes,
l2rarm,l2rfst,l2rlst,

r2larm,r2lfst,r2llst)

// Initiate an Image Composition transfer operation

EMC_Dead and EMC_Alive determine the connectivity of the image-composition
network and are normally issued only at machine initialization time. EMC_Dead
designates a board as transparent to the image composition network; i.e. all data, and the
ready and go signals, pass through unchanged. EMC_Alive   designates a board as alive
or active, allowing it to participate in image-composition network operations; the arguments
specify whether a board is at the left end (left = 1) or right end (right = 1) of a closed loop
of the image composition network, or if it is interior (left = right = 0).  Each EMC_Alive
command must be accompanied by an EMC_ICEnds  command with identical arguments
(see Section IV.3).

The WaitXfer  command acts somewhat like a wait-for-semaphore _P command; it causes
the RT Controller to block the FIFO containing the WaitXfer   command and wait for any
previously initiated Image Composition transfer operation to complete.

The InitXfer command does several things.  It sets one or both of the L2RXfer and
R2LXfer flip-flops, to indicate that this board is ready for a transfer operation; the
operation does not actually begin until all system boards involved in the operation are ready
for the transfer (this interlock is performed by hardware, transparently to the programmer).
Only when all boards are ready does the transfer actually begin, and only when the transfer
is completed are the flip-flop(s) cleared, thereby enabling any WaitXfer   command to
complete.

The nbytes argument to InitXfer specifies the total number of bytes per pixel to be
transferred; like the nbytes argument to EMC_ICPort , it must be in the range 1– 32. After
the transfer actually begins, it takes 128*nbytes cycles for it to complete.

All transfer operations involve a sequence of system boards which is a subset of the total
system.  There can be a separate sequence for the left-to-right ("l2r") and right-to-left
("r2l") directions, or a sequence may wrap-around and involve both directional paths; there
can be several sequences involving disjoint sets of boards.   The l2rarm argument is set to 1
to indicate that this board is participating in the left-to-right transfer, thereby setting the
L2RXfer flip-flop; l2rfst is set to 1 indicates that this is the first board in the sequence of
boards participating in the left-to-right transfer, and l2rlst is set to 1 if this is the last board
in the chain. L2rfst and l2rlst must be zero if l2rarm is zero. The arguments r2larm, r2lfst,
and r2llst specify the sequence of boards for the right-to-left transfer.
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Partial transfers.  If it is desired to transfer less than a full region of pixels, the nbytes
argument to InitXfer can be set to a proportionately smaller value than the nbytes
argument to EMC_ICPort or EMC[L2R,R2L]Init .  For example, if nbytes is set to 16
in an EMC_ICPort  command which configures the EMCs,  but to 8 in the InitXfer
command which initializes the transfer, then only half the pixels in the region will be
composited. The composition occurs in PE-index order, in parallel for all 8 panels, so in
this example, the left half of the region will be composited (?).

Care must be taken to ensure that all boards participating in a composition-network
operation have been configured with an EMC_ICPort  command. ransferan InitXfer
command until all of the boards in s must only be given when a

VI.4 Rasterization Control Algorithm

We now show the basic rasterization control algorithm (the control algorithm on a Renderer
board).  We consider two cases:

a) Rasterization into a scratch buffer.  Primitives are rasterized into a scratch buffer at
a fixed location in pixel memory, then copied into a region buffer, where they
remain until they are copied into the IC Port buffer for compositing.

b) Multiple transfers per region.  Two or more composition cycles are required to
transfer all of the data per pixel.

Figure 31(a) shows case (a) above, the most common of the three cases.  First,
T_EMC_VRfifo  is used to preset the actual number of region buffers (the number is
determined by the number of bits per pixel required for the rendering algorithm).  The
number of buffers can be changed on the fly using T_EMC_VRfifo  and EMC_PTfifo
appropriately.

After initializing the RT Controller, the first region is rasterized into the scratch buffer.
EMC_PTfifo  is then used to ensure that a region buffer is available (it blocks RFIFO
commands on the EIGC, and thus any further rasterization, until a region buffer is
available).  The data is then copied from the scratch buffer into a region buffer and
EMC_VTfifo  is used to indicate that there is a region ready for compositing.    The
TFIFO command sequence contains a T_EMC_PRfifo  command to insure there is a
region ready for compositing, followed by a T_EMC_WaitXfer  command to insure that
the previous transfer operaion has completed. It then saves the pixel-ALU state, copies the
region from the region buffer into one of the IC Port buffers, initializes the IC port using
the EMC_ICPort  command, and launches the transfer with the IGC_InitXfer
command.  It also issues a T_EMC_VRfifo  command to indicate that a region buffer has
been freed up.
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// Initialize board; set # of free buffs
EMC_Alive;
EMC_ICEnds;
for number of pixel buffers nbuffs
    T_EMC_VRfifo;

// Loop for each region
for each region  r  {

    // RFIFO commands
    Rasterize -> scratch buff;
    EMC_PTfifo ;
    Copy scratch -> buff[r%nbuffs];
    EMC_VTfifo ;

    // TFIFO commands
    T_EMC_PRfifo;
    T_EMC_WaiXfer;
    T_EMC_ALUSave;
    Copy buff[r%nbuffs] -> Xfer buff;
    T_EMC_VRfifo;
    T_EMC_ICPort;
    T_EMC_ALURstr;
    T_EMC_InitXfer;
}

// TFIFO commands
T_EMC_PRfifo;
T_EMC_WaitXfer;
T_EMC_ALUSave;
Copy buff[r%nbuffs] (1/2) -> Xfer buff;
T_EMC_ICPort;
T_EMC_ALURstr;
T_EMC_InitXfer;
T_EMC_WaitXfer
T_EMC_ALUSave;
Copy buff[r%nbuffs] (2/2)-> Xfer buff;
T_EMC_VRfifo;
T_EMC_ICPort;
T_EMC_ALURstr;
T_EMC_InitXfer;

a)  Basic algorithm for rasterizing 
     into a scratch buffer.

b)  TFIFO commands to perform two 
     transfers per region.

Figure 29:  Use of control commands for typical rasterization algorithms.

The sequence of TFIFO commands to initiate the transfer operation is critical.  First, the
data to be composited must be copied into the image-composition transfer buffers, and the
compositor circuitry on the EMCs must be initialized using an EMC_ICPort  (or
EMC_[L2R,R2L]Init ) command.   Since the TFIFO command sequences are executed
at unpredictable times relative to the RFIFO command stream, the state of the EMC pixel
processors must be saved and restored at the beginning and end of each TFIFO command
sequence, using the EMC_ALUSave and EMC_ALURstr  commands; these commands
require a 6-byte area of pixel-memory to save the state.

Figure 31(b) shows a modified TFIFO command sequence that performs two image-
composition transfers per screen region.  This sequence is used when a shader requires
more than 256 bits per pixel/sample.

VI.4 Shading Control Algorithm

The control algorithm on Shader boards is similar to the rasterization control algorithm,
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except that regions of pixels are loaded, processed, and unloaded, rather than simply being
unloaded onto the image-composition network.  Figure 32 shows the basic shading control
algorithm.

// Initialize board
EMC_Alive ;
EMC_ICEnds ;
EMC_VTfifo ; 

// Load first region
EMC_PTfifo ; // RFIFO cmds
EMC_VTfifo ; 
T_EMC_PRfi fo; // TFIFO cmds
T_EMC_WaitXfer
T_EMC_ALUSave ;
T_EMC_VRfi fo;
T_EMC_ICPort ;
T_EMC_PipeFlush ;
T_EMC_ALURstr ;
T_EMC_InitXfer ;

// Load second region
EMC_PTfifo ; // RFIFO cmds
EMC_VTfifo ; 
T_EMC_PRfi fo; // TFIFO cmds
T_EMC_WaitXfer;
T_EMC_ALUSave ;
Copy Xfer buffer -> scratch;
T_EMC_VRfi fo;
T_EMC_ICPort ;
T_EMC_PipeFlush ;
T_EMC_ALURstr ;
T_EMC_InitXfer ;

// Loop for remaining regions
for each region r > 2 {

EMC_PTfifo ; // Rfifo cmds
Shade pixels in scratch;
EMC_VTfifo ; 
T_EMC_PRfi fo; // TFIFO cmds
T_EMC_WaitXfer;
T_EMC_ALUSave ;
Copy Xfer buffer -> scratch;
(Copy shaded pixels -> Xfer buffer;)
T_EMC_VRfi fo;
T_EMC_ICPort ;
T_EMC_PipeFlush ;
T_EMC_ALURstr ;
T_EMC_InitXfer ;

Figure 30:  Use of control commands for typical shading algorithm.
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The first two transfers prime the pipeline and load the first region of pixels into the shader.
During each succeeding transfer, a region is loaded, a region is shaded, and (optionally) a
region is unloaded.  The last two transfers empty the pipeline and are not shown here.

Shading commands are loaded into the RFIFO, and copy commands are loaded into the
TFIFO, the same as on Renderer boards.  The semaphores provide the handshaking
necessary to synchronize the operation of the two FIFOs.

APPENDIX A — IGC COMMAND EXECUTION TIMES

The following table provides execution times for the IGC command set. For EIGC and
TIGC Sequencer commands this time refers to execution time within the specified
sequencer.  The formulas given in this column contain arguments from the argument list
given in Sections IV and V.

A . 1 EMC Command Execution Times

In general the execution times are pixel-memory bandwidth bound: the execution time
equals the number of pixel memory accesses plus a few cycles of overhead.  For
instructions which use memory and the LEE, the LEE is "free", except for the fbytes cycles
(see below).  For LEE-only instructions, each byte of LEE result takes one cycle.

For instructions which use the LEE, the formulae also include the argument fbytes.  Fbytes
is 0 for versions which do not include an explicit fbytes argument (constant LEE mode
and/or integer coefficients); for linear mode instructions with floating-point or fixed-point
coefficients (command suffixes _L[fdpq] ), fbytes is an instruction argument.

Note that all instructions require at least two cycles.

Meta instructions take 2 cycles, except for [EMC, TAS]_IFSPec and [EMC, TAS]_Ignore,
which take 0 cycles. For instructions which may block a FIFO, these are minimum cycle
counts.

EMC_  COMMAND Cycle count

ClrEnab 2

SetEnab 2

EnabInv 2

SetEnabPixel 5

EnabPixel 5

MemIntoEnab 3

CryIntoEnab 2

BitTstHi 3
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BitTstLo 3

TreeEqZero len + 1 + fbytes

TreeGEZero len + 1 + fbytes

TreeLTZero len + 1 + fbytes

SNETree 3

Mesh (N%8==0 ? 0 : N%8+2)+ (bits/8) + 3 + fbytes

MemEqByte 3

MemEqZero len + 2

MemEqOnes len + 2

MemNEZero len + 2

MemNEOnes len + 2

MemEqMem 2 * len + 2

MemNEMem 2 * len + 2

MemGEMem 2 * len + 2

MemGTMem 2 * len + 2

Mem2GEMem2 2 * len + 2

Mem2GTMem2 2 * len + 2

MemEqTree len + 2 + fbytes

MemNETree len + 2 + fbytes

MemLETree len + 2 + fbytes

MemLTTree len + 2 + fbytes

MemGETree len + 2 + fbytes

MemGTTree len + 2 + fbytes

EnabOrEqMem 4

EnabXoreqMem 5

EnabIntoCry 2

EnabIntoMem 4

MemOrEqEnab 3

MemAndEqEnab 3

LoadPixel len + 5

Clear len + 1

S e t len + 1

BitClr 3

Bi tSet 3

BitXor 3

ClrCry 2

ByteIntoMem 2

TreeIntoMem len + 1 + fbytes

TreeClmpIntoMem dlen + slen + 2 + fbytes

TreeIntoS 2

MemIntoS 2
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Copy MAX ( 3, 2 * len )

Swap 4 * len

I n c 2 * len + 1

D e c 2 * len + 1

Merge 5

LSL MAX ( 3, 2 * len )

LSL4 6 * len + 1

LSR MAX ( 3, 2 * len )

LSR4 MAX ( 6, 6 * len - 4)

ASR MAX ( 4, 2 * len + 1 )

ASR4 6 * len

ROL MAX ( 3, 2 * len )

ROR MAX ( 3, 2 * len )

Inver t 2 * len + 1

Negate 2 * len + 1

AbsVal 2 * len + 3

MemPlusMem 2 * dlen + MIN(dlen,slen) + 1

MemClmpPlusMem 3 * dlen + MIN(dlen,slen) + 2

MemMinusMem 2 * dlen + MIN(dlen,slen) + 1

MemClmpMinusMem 3 * dlen + MIN(dlen,slen) + 2

MemPlusMem2 2 * dlen + MIN(dlen,slen) + 1 (add 2 if dlen>slen)

Mem2ClmpPlusMem2 3 * dlen + MIN(dlen,slen) +  (dlen > slen ? 7 : 4)

MemMinusMem2 2 * dlen + MIN(dlen,slen) + 1 (add 2 if dlen>slen)

MemAndMem 3 * len + 1

MemOrMem 3 * len + 1

MemXorMem 3 * len + 1

MemPlusTree 2 * len + 1 + fbytes

TreeMinusMem 2 * len + 1 + fbytes

MemAndTree 2 * len + 1 + fbytes

MemOrTree 2 * len + 1 + fbytes

MemXorTree 2 * len + 1 + fbytes

Min MIN (8, 5 * len + 2)

Min2 MIN (8, 5 * len + 2)

M a x MIN (8, 5 * len + 2)

Max2 MIN (8, 5 * len + 2)

OvFix len + 2

CryIntoMem 4

MemIntoCry 2

SLoad 2

WriteS 2

MulUUn 9 * slen + dlen + 1
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MulUSn 9 * slen + dlen + 1 (+1 more if dlen > slen+1)

MulSSn 9 * slen + dlen + 1 (+1 more if dlen > slen+1)

SqRoot 128

RootStep1 2 * len + 1

RootStep2 3 * len + 2

Divide 34 * (len-1) + 2

DivAddSub 3 * dlen + MIN(dlen,slen)

DivShif t MAX ( 4, 2 * len +1)

DivStep1 dlen + slen + 1

DivStep2 3 * len + 2

InvSqStep 2 * dlen + MIN (dlen, slen) + 1

ClampFix len + 3

ByteToShort 7

ResetEnab 2

PushEnab 3

PopEnab 4

RestoreEnab 3

XorEnab 3

BreakEnab 4

GMax 258 * len + 2

Sample 2

FEdge len + fbytes

MEdge len + fbytes

ZCmp len + fbytes  (len + 1 for _S*, _Li, _Ll versions)

FLoad len + fbytes

MLoad len + fbytes

MLoad1 2

LLoad len + 1 + fbytes

TblStep len + 2

TblEntry dlen + slen + 2 + fbytes

PixSwapN 2 * (N+1) * len + 2

PixCopyDnN (N+1) * len + 2

PixCopyUpN (N+1) * len + 2

ALUSave 16

ALURstr 6

Ignore 0

MetaNoOp 2

NoOp 2

NoOp2 2

PipeFlush 32 (may change later)

Hang countably infinite
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EOrWait ??

EOrTest ??

EorMemTst 24 * len + 2

Of fse t 2

RegLoad 3

RegLoads0 3 * n

RegLoads1 3 * n

GRegLoad 3

ICEnds ??

ICPor t ?? (the transfer itself takes much longer, see text)

L2RIni t ?? (the transfer itself takes much longer, see text)

R2LIni t ?? (the transfer itself takes much longer, see text)

RevCopy MAX ( 3, 2 * len )

LPort In 21 (approx)

LPortInLoop 21 (approx)

LPortOut 21 (approx)

LPWeave 8 * len + 1

LPUnWeave 8 * len + 1

IFSpec 0

RModeOn 2

RModeOff 2

MCWrite 2

MCRead 2
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A . 2 TIGC Command Execution Times

The following table gives the execution time in rasterizer cycles for the TIGC commands.
Some of the commands have fixed execution times.  Texture read/write commands have
execution times which depend on the number of pixels that have their local-port select flag
set.  For these commands, execution time is determined by the worst-case EMC, that is, the
EMC which has the most pixels for which the select flag is set (designated npix in the table
below; npix is in the range [0, 256]).

TAS_  Command Cycle count

TAS_SetACTXXX 2

TAS_SetImAddr n 2

TAS_SetImAddr n Short 3

TAS_SetWriteModeXXX 2

TAS_SetMCnt 2

TAS_SetMSel 3

TAS_LoadACT ??

TAS_MemClk50 2 + refr

TAS_MemClk100 2 + refr

TAS_MemPreCharge ??

TAS_MemInitModeReg ??

TAS_MemRefr 7 + refr

TAS_MemRdBlock1

TAS_MemRdBlock2

TAS_MemRdBlock4

TAS_MemRdBlockIleave1

TAS_MemRdBlockIleave2

TAS_MemRdBlockIleave4

TAS_MemWrBlock1

TAS_MemWrBlock2

TAS_MemWrBlock4

TAS_MemWrBlockIleave1

TAS_MemWrBlockIleave2

TAS_MemWrBlockIleave4

TAS_MemRdScatterEven1

TAS_MemRdScatterOdd1

TAS_MemRdScatterEven2

TAS_MemRdScatterOdd2

TAS_MemRdScatterEven4

TAS_MemRdScatterOdd4

npix = 0:  14                       (approx)

npix = 1:  145

npix ≥ 2:  90 + 55npix
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TAS_MemWrScatterEven1L

TAS_MemWrScatterEven1H

TAS_MemWrScatterOdd1L

TAS_MemWrScatterOdd1H

TAS_MemWrScatterEven2L

TAS_MemWrScatterEven2H

TAS_MemWrScatterOdd2L

TAS_MemWrScatterOdd2H

TAS_MemWrScatterEven4L

TAS_MemWrScatterEven4H

TAS_MemWrScatterOdd4L

TAS_MemWrScatterOdd4H

MemRefr 12

MemPreCharge 17

MemInitModeReg 19

GPWai t ??

GPStrobe ??

GPWr ??

GPRd ??

SetVidModeIn 2

SetVidModeOut 2

SetVAddr n 2

SetVNxtFld n 2

SetVFld 2

NoOp 2

NoOp2 2

Hang countably infinite

RModeOn 2

RModeOff 2

MCWrite 2

MCRead 2


