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Abstract

This paper introduces the architecture and initial algorithms for Pixel-planes 5, a heterogeneous multi-computer

designed both for high-speed polygon and sphere rendering (1M Phong-shaded triangles/second) and for supporting

algorithm and application research in interactive 3D graphics.  Techniques are described for volume rendering at

multiple frames per second, font generation directly from conic spline descriptions, and rapid calculation of radiosity

form factors.  The hardware consists of up to 32 math-oriented processors, up to 16 rendering units, and a

conventional 1280x1024-pixel frame buffer, interconnected by a 5 gigabit ring network.  Each rendering unit

consists of a 128x128-pixel array of processors-with-memory with parallel quadratic expression evaluation.

Implemented on fast custom CMOS chips, this array has 208 bits/pixel on-chip and is connected to a video RAM

memory system that provides 4,096 bits of off-chip memory.  Rendering units can be independently reassigned to

any part of the screen or to non-screen-oriented computation.  A message-passing operating system encourages

algorithms to mix and match capabilities of the massively parallel rendering units with those of the math-oriented

processors.  As of January 1989, both hardware and software are still under construction, with initial system

operation scheduled for summer 1989.

1.  Introduction

Many computer applications seek to create an illusion of interaction with a virtual world. Vehicle simulation,

geometric modeling and scientific visualization, for example, all require rapid display of computer-generated imagery

that changes dynamically according to the user's wishes.  Much progress has been made in developing high-speed

rendering hardware over the past several years, but even the current generation of graphics systems can render only

modest scenes at interactive rates.

For many years our research goal has been the pursuit of truly interactive graphics systems.  To achieve the

necessary rendering speeds and to provide a platform for real-time algorithm research,  we have developed the parallel

image generation architecture called Pixel-planes [Fuchs 81, Fuchs 82, Poulton 85].  We briefly describe the basic

ideas in the architecture:
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K-0680.
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Each pixel is provided with a minimal, though general, processor, together with local memory to store pixel color,

z-depth, and other pixel information.  Each processor receives a distinct value of a linear expression in screen-space,

Ax + By + C, where A,B,C are data inputs and x,y is the pixel address in screen-space.  These expressions are

generated in a parallel linear expression evaluator, composed of a binary tree of tiny multiply-accumulator nodes.  A

custom VLSI chip contains pixel memory, together with the relatively compact pixel processors and the linear

expression evaluator, both implemented in bit-serial circuitry.  An array of these chips forms a "smart" frame buffer,

a 2D computing surface that receives descriptions of graphics primitives in the form of coefficients (A,B,C) with

instructions and locally performs all pixel-level rendering computations.  Since instructions, memory addresses, and

A,B,C coefficients are broadcast to all processors, the smart frame buffer forms a Single-Instruction-Multiple-

Datastream computer, and has a very simple connection topology.  Instructions (including memory addresses and

A,B,C's) are generated in a conventional graphics transformation engine, with the relatively minor additional task of

converting screen-space polygon vertices and colors into the form of linear expressions and instructions.  

In 1986 we completed a full-scale prototype Pixel-planes system, Pixel-planes 4 (Pxpl4) [Poulton 87, Eyles 88],

which renders 39,000 Gouraud-shaded, z-buffered polygons per second (13,000 smooth-shaded interpenetrating

spheres/second, 11,000 shadowed polygons/second) on a 512x512 pixel full-color display.  While this system was a

successful research vehicle and is extremely useful in our department's computer graphics laboratory, it is too large

and expensive to be practical outside of a research setting.  Its main limitations are:

• large amount of hardware, often utilized poorly (particularly when rendering small 
primitives)

• hard limit on the memory available at each pixel (72 bits)
• no access to pixel data by the transformation unit or host computer
• insufficient front-end computation power

This paper describes its successor, Pixel-planes 5 (Pxpl5), which we expect to have running by mid-1989.  Pxpl5

uses screen subdivision and multiple small rendering units in a modular, expandable architecture to address the

problem of processor utilization.  A full-size system can render in excess of one million Phong-shaded triangles per

second.  Sufficient "front end" power for this level of performance is provided by a MIMD array of general-purpose

math-oriented processors.  The machine's multiple processors communicate over a high-speed network.  Its

organization is sufficiently general that it can efficiently render curved surfaces, volume-defined data and CSG-defined

objects.  In addition it can rapidly perform various image-processing algorithms.  Pxpl5's rendering units each are

5x faster  than Pxpl4 and contain more memory per pixel, distributed in a memory hierarchy:  208 bits of fast local

storage on its processor-enhanced memory chips, 4K bits of memory per pixel processor in a VRAM "backing

store", and a separate frame buffer that refreshes normal and stereo images on a 1280x1024 72Hz display. 

2.  Perspective

Raster graphics systems generally contain two distinct parts:  a graphics transformation engine that transforms and

lights the geometric description of a scene in accordance with the user's viewpoint and a renderer that paints the

transformed scene onto a screen.
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Designs for fast transformation units have often cast the series of discrete steps in the transformation process onto a

pipeline of processing elements, each of which does one of the steps [Clark 82].  As performance requirements

increase, however, simple pipelines begin to experience communication bottlenecks, so designers have turned to

multiple pipelines [Runyon 87] or have spread the work at some stages of the pipe across multiple processors

[Akeley 88].  Vector organizations offer a simple and effective way to harness the power of multiple processors, and

have been used in the fastest current graphics workstations [Apgar 88, Diede 88].  Wide vector organizations may

have difficulty with data structures of arbitrary size, such as those that implement the PHIGS+ standard, so at least

one commercial offering divides the work across multiple processors operating in MIMD fashion [Torberg 87].

The rendering problem has generally been much more difficult to solve because it requires, in principal,

computations for every pixel of every primitive in a scene.  To achieve interactive speeds on workstation-class

machines, parallel rendering engines have become the rule.  These designs must all deal with the memory bandwidth

bottleneck at a raster system's frame buffer. Three basic strategies for solving this problem are:

Rendering Pipelines.  The rendering problem can also be pipelined over multiple processors.  The Hewlett-

Packard SRX graphics system [Swanson 86], for example, uses a pipeline of processors implemented in custom

VLSI that simultaneously perform 6-axis interpolations for visibility and shading, operating on data in a pixel cache.

The frame buffer bandwidth bottleneck can be ameliorated by writing to the frame buffer only the final colors of the

visible pixels.   This can only be achieved if all the primitives that may affect a pixel are known and considered

before that pixel is written.  Sorting primitives by screen position minimizes the number that have to be considered

for any one pixel.  Sorting first by Y, then by X achieves a scan-line order that has been popular since the late

1960's and is the basis for several types of real-time systems [Watkins 70].  The basic strategy has been updated by

several groups recently.  The SuperBuffer design [Gharachorloo 85] contained a processor for every pixel on a scan-

line.  Data for primitives active on a scan-line pass by this array, and visible pixel colors are emitted at video rates;

no separate frame buffer is required. This work continues at IBM/TJW on a system called SAGE [Gharachorloo 88].

Researchers at Schlumberger [Deering 88] recently proposed a system in which visibility and Phong-shading

processors in a pipeline are assigned to the objects to be rendered on the current scan line.  The latter two projects

promise future commercial offerings that can render of order 1M triangles per second with remarkably little hardware,

though designs for the front ends of these systems have yet to be published.  These machines have each cast one

particular rendering algorithm into hardware, enabling a lower-cost solution but one not intended for internal

programming by users.  New algorithms cannot easily be mapped onto hardware for scan-line ordered pipelines.

Finally, a difficulty with these designs is ensuring graceful performance degradation for scenes with exceptional

numbers of primitives crossing a given scan-line.  

Interlaced Processors.  As first suggested a decade ago [Fuchs 77, Fuchs 79, Clark 80], the frame buffer

memory can be divided into groups of memory chips, each with its own rendering processor, in an interlaced fashion

(each processor-with-memory handles every nth pixel on every mth row).  The rendering task is distributed evenly

across the multiple processors, so the effective bandwidth into the frame buffer increases by a factor of m•n.  This

idea is the basis of several of the most effective current raster graphics systems [Akeley 88, Apgar 88].  Some of

these systems, however, are again becoming limited by the bandwidth of commercial DRAMs [Whitton 84].  With

increasing numbers of processors operating in SIMD fashion, processor utilization begins to suffer because fewer
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processors are able to operate on visible pixels, the "write efficiency" problem discussed in [Deering 88].  Raising

the performance of interlaced processors by an order of magnitude will probably require more complex organizations

or new memory devices.  

Processor-Enhanced Memories.  Much higher memory bandwidth can be obtained by combining some

processing circuitry on the same chip with dense memory circuits.  The most widely used example of a "smart"

memory is the Video RAM (VRAM), introduced by Texas Instruments.  Its only enhancement is a second, serial-

access port into the frame buffer memory; nevertheless these parts have had a great impact on graphics system

design.  The SLAM system, described some years ago in [Demetrescu 85], combines a 2-D frame buffer memory

with an on-chip parallel 1-D span computation unit; it appears to offer excellent performance for some 2D

applications but requires external processing to divide incoming primitives into scan-line slices.  Recently NEC

announced a commercial version of an enhanced VRAM that performs many common functions needed in 2-D

windowing systems.  This approach has been the focus of our work since 1980; in the Pixel-planes architecture we

have attempted to remove the memory bottleneck by performing essentially all pixel-oriented rendering tasks within

the frame buffer memory system itself. 

The architecture we will describe below employs a MIMD array of processors in its transformation unit and seeks to

make more effective use of the processor-enhanced memory approach.

3.  Project Goals

We wanted Pixel-planes 5 to be a platform for research in graphics algorithms, applications and architectures, and a

testbed for refinements that would enhance the cost effectiveness of the approach.  To this end, we adopted the

following goals:

• Fast Polygon Rendering.  Despite all the interest in higher-order primitives and rendering techniques, faster

polygon rendering is the most often expressed need for many applications:  3D medical imaging, scientific

visualization, 'virtual worlds' research.  We therefore set a goal of rendering 1 million Z-buffered Phong-shaded

triangles per second, assuming the average triangle's area is 100 pixels and that it is embedded in a triangle strip.

We wanted to achieve this rate without using any special structures for rendering just triangles — we wanted a

system for much more than triangles.

• Generality.   For the system to be an effective base for algorithm development,  it needed to have a simple,

general structure whose power was readily accessible to the algorithm developer programming in a high-level

language.  We wanted it to have sufficient generality for rendering curved surfaces, volume data, objects

described with Constructive Solid Geometry, for rendering scenes using the radiosity lighting model, and (we

hoped) for a variety of other 3D graphics tasks that we have not yet considered.  It was essential that the system

support a PHIGS+ -like environment for application programmers not interested the system's low-level details.

Further, the hardware platform should be flexible to allow experiments in hardware architectures.

• Packaging.  A high-performance configuration that met our primary performance goals should fit within a

workstation cabinet with no unusual power requirements.  We also wanted a system that could be modularly
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built and flexibly configured to trade cost for performance. The system should drive a 1280x1024 display at

>60Hz, and be able to update full scene images at >20 frames/second.

4.  Parallel Rendering by Screen-space Subdivision

We now describe the scheme we use in Pxpl5 to attain high levels of performance in a compact, modular,

expandable machine.  Our previous work has depended on a single, large computing surface of SIMD parallel

processors operating on the entire screen space.  In the new architecture, we instead have one or more small SIMD

engines, called Renderers, that operate on small, separate 128x128-pixel patches in a virtual pixel space.  Virtual

patches can be assigned on the fly to any actual patch of the display screen.  The system achieves considerable

speedup by simultaneously processing graphics primitives that fall entirely within different patches on the screen.

The principal cost of this screen-space subdivision scheme is that the primitives handled in the transformation engine

must be sorted into "bins" corresponding to each patch-sized region of the screen space.  Primitives that fall into

more than one region are placed into the bins for all such regions.  The simplest (though expensive) way to support

these bins is to provide additional storage in the transformation engine for the entire, sorted list of output primitives.

Once transformed, sorted, and stored, a new scene is rendered by assigning all available Renderers to patches on the

screen and dispatching to these Renderers primitives from their corresponding bins.  When a Renderer completes a

patch, it can discard its Z-buffer and all other pixel values besides colors; pixel color values are transferred from on-

chip pixel memory to the secondary storage system, or "backing store", described below.  The Renderer is then

assigned to the next patch to be processed.  This process is illustrated in Figure 1 for a system configured with four

Renderers. 

The general idea of multiple independent groups of pixel processors operating on disjoint parts of the display screen

was described in several of our earlier publications as "buffered" Pixel-planes.  What is new about this

implementation is the idea of flexibly mapping small virtual pixel spaces onto the screen space.  It allows useful

systems to be built with any number of small rendering units, permits cost/performance to be traded nearly linearly,

and can render into a window of arbitrary size with only linear time penalty.  

1 2 3 4 1 4 2 3 3 2

1 4

Figure 1.  Rendering process for a Pxpl5 system with 4 Renderers.  1280x1024 screen is divided into 80 128x128
patches.  Patches are processed in raster order.  Renderers 1-4 are assigned initially to the first four patches.  Renderer
#1 completes first, and is assigned to the next available patch.  Next Renderer 4 completes its first patch and is
assigned to the next available patch, and so forth.
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The virtual pixel approach is supported in the Pxpl5 implementation by a memory hierarchy, whose elements are:

(1) some 200 bits of fast SRAM associated on-chip with each pixel processor; (2) a "backing store" built from

VRAMs, tightly linked to the custom logic-enhanced memory chips; (3) a conventional VRAM frame buffer.  The

backing store is consists of an array of VRAMs, each connected via its video port to one of our custom memory

chips; 1MB VRAMs provide 4Kbits of storage per pixel.  The backing store memory is available through the

VRAM random I/O port to the rest of the system, which can read and write pixel values in the conventional way.  A

Renderer uses this memory to save and retrieve pixel values, effectively allowing "context switches" when the

Renderer ceases operations on one patch and moves to another.  A typical context switch takes about 0.4 msec, the

time to render a hundred or so primitives, and can be fully overlapped with pixel processing.

In the simple multi-Renderer scheme described above, the backing store is used to store pixel color values for patches

of the screen as the Renderer completes them.  When the entire image has been rendered, each of these regions is

transferred in a block to the (double-buffered) display memory in the Frame Buffer, from which the display is

refreshed.

5.  Architectural Overview

We now describe the architectural features of the Pxpl5 system as well as the motivation for various design

decisions.  The major elements of the design are:

• Graphics Processors (GPs), floating point engines, each with considerable local code and data storage.

• Renderers, each a small SIMD array of pixel processors with its own controller. 

• Frame Buffer, double-buffered, built from conventional Video RAMs, from which the display is refreshed. 

• Host Interface, which supports communications to/from a UNIX workstation.

• Ring Network to interconnect the various processors in a flexible way.

We discuss these elements in more detail below.
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Figure 2.  Pxpl5 block diagram.

5.1  Ring Network

Pxpl5's multi-processor architecture, motivated by the desire to support a variety of graphics tasks, requires a

capable communications network.  Rather than build several specialized communications busses to support different

types of traffic between system elements, we instead provide a single, flexible, very high performance network

connecting all parts of the system.

At rendering rates of 1M primitives per second, moving object descriptions from the GPs to the Renderers requires

up to 40 million 32-bit words/second (40 MW/sec), even for relatively simple rendering algorithms.

Simultaneously, pixel values must be moved from the Renderers to the Frame Buffer at rates up to 40 MW/sec, for

real-time interactive applications.  At the suggestion of J. William Poduska of Stellar Computer, Inc., we explored

technology and protocols for fast ring networks, and eventually settled on a multi-channel token ring.  Ring

networks have many advantages over busses in high-speed digital systems.  They require only point-to-point

communication, thus reducing signal propagation and power consumption problems, while allowing a relatively

simple communication protocol.  

Our network can support eight simultaneous messages, each at 20 MW/sec for a total bandwidth of 160 MW/sec.

To avoid deadlock, each transmitting device gains exclusive access first to its intended receiver, then to a data

channel, before it can transmit its data packet.  Each Ring Node is a circuit composed of commercial MSI bus-

oriented data parts and field-programmable controllers.  (At the expense of an expensive development cycle, the Ring

Network could be reduced to one or a few ASICs).  The controllers operate at 20MHz, while data is moved at 40MHz

(to save wires).  Each client processor in the system has one or more of these Nodes, and each Node provides to the

client a 20 MW/sec bi-direction port onto the Ring network. 

We have developed a low-level message-passing operating system for the ring devices called the Ring Operating

System (ROS). It provides device control routines as well as hardware independent communication. In addition, ROS

controls the loading and initialization of programs and data.
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5.2  Graphics Processors

The performance goals we have set require sustained computation rates in the "front end" of several hundred MFlops,

feasible today only in parallel or vector architectures.  We elected to build a MIMD transformation unit; this

organization handles PHIGS+-like variable data structures better than would a vector unit, and supports the "bins"

needed for our screen subdivision multi-Renderer.  Weitek "XL" processors were used primarily because of the

existence of mature compilers and assemblers.

Much of the system's complexity is hidden by ROS; the programming model is therefore relatively simple.  Load

sharing is accomplished by dividing a databases across the GPs, generally with each GP running the same code.

Since the GPs are programmable in the C language, users have access to the machine's full capability without

needing to write microcode.

5.3  Renderer

Section 4 describes the essentials of the Renderer design, whose block diagram is shown in Figure 3.  It is based on

a logic-enhanced memory chip built using 1.6µ CMOS technology and operating at 40MHz bit-serial instruction

rates.  In addition to 256 pixel processing elements, each with 208 bits of static memory, the chip contains a

quadratic expression evaluator (QEE) that produces the function Ax+By+C+Dx2+Exy+Fy2 simultaneously at each

pixel [Goldfeather 86b].  Quadratic expressions, while not essential for polygon rendering, are very useful for

rendering curved surfaces and for computing a spherical radiosity lighting model (see Section 7.6).

Ring
Node

Backing Store

8 MB Video RAM
(4K Bits/pixel)

Backing Store Controller

Renderer Board

Ring
Node

Image
Generation
Controller

•
•
•

128x128 Array
of Pixel

Processors

Custom Memory Chips

Memory
208 bits

x 128 pixels

P
ix

el
 P

ro
c'

s

QEE

Figure 3.  Block diagram of a Pxpl5 Renderer. Pixel processor array implemented in 64 custom chips, each with
2 columns of 128 pixel processors-with-memory and a quadratic expression evaluator.

A major design issue for the Renderer was choosing the size of the processor array.  The effectiveness of the screen-

space subdivision scheme for parallel rendering is determined in part by the frequency with which primitives must be

processed in more than one region, and this in turn depends on the size of the Renderer's patch.  On one hand,
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economy of use of the fairly expensive custom chips of the processor array and the need to leverage performance by

dividing the rendering work across as many processors as possible argue for smaller Renderer patches.  A large

Renderer patch, on the other hand, reduces the likelihood that primitives will need to be processed more than once.

We elected a 128x128 Renderer size; it is fairly efficient for small primitives, and its hardware conveniently fits on a

reasonable size printed circuit board.

5.4  Frame Buffer and Host Interface

The Frame Buffer is built in a fairly conventional way using Video RAMs.  It supports a 1280x1024-pixel, 72Hz

refresh-rate display, 24-bit true color and a color lookup table.  Display modes include stereo (alternating frames) and

a hardware 2x zoom.  The Frame Buffer is accessed through two Ring Nodes, to provide an aggregate bandwidth of

40 MW/sec into the buffer, allowing up to 24 Hz updates for full-size images.  Pxpl5 is hosted by a Sun 4

workstation.  Host communications is via programmed I/O, providing up to about 4 MBytes/sec of bandwidth.

5.5 Performance

Since the transformation engine in Pxpl5 is based on the same processor used in Pxpl4, we estimate, based on the

earlier machine's performance, that a GP can process of order 30,000 Phong-shaded triangles per second; 32 GPs are

therefore required to meet our performance goal.  A single Renderer has a raw performance of about 150,000 Phong-

shaded triangles per second; actual performance is reduced somewhat by inefficiencies resulting from primitives that

must be processed in more than one patch.  Simulations predict an actual performance of around 100,000

triangles/sec, so a configuration to meet the performance goals will require 8-10 Renderers.

6.  PPHIGS Graphics Library

Pxpl5 may be programmed at various levels.  We anticipate users ranging from application programmers, who

simply desire a fast rendering platform with a PHIGS+ -style interface [van Dam 88], to algorithm prototypers, who

need access to the renderer's low-level pixel operations and may depart from the PHIGS+ paradigm.  To meet these

disparate needs, several layers of support software are required.  Program initialization and message passing between

processors are handled by the Ring Operating System (ROS).  A local version of PHIGS+ (Pixel-planes PHIGS or

PPHIGS) provides a high-level interface for users desiring portable code.  This section describes PPHIGS.

PPHIGS makes the hardware appear to the "high-level" graphics programmer very much like any other graphics

system:  the programmer's code (running on the host) makes calls to the graphics system to build and modify a

hierarchical data structure.  This structure is traversed by the PPHIGS system to create the image on the screen.   

6.1 Database Distribution

Since the applications programming library is based on PHIGS, it allows the programmer to create a display list that

is a directed acyclic graph of structures.  These structures contain elements that are either graphics primitives, state-

changing commands, or calls to execute other structures.  To take advantage of the multiple graphics processors in

Pxpl5, we must distribute the database structure graph across the graphics processors in a way that balances the
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computational load, even in the presence of editing and changes in view.  To achieve this we distribute each

structure's primitives across the GPs instead of placing an entire structure on one GP.

Because PHIGS is a stateful system where child structures inherit information from their parents, the state-changing

primitives as well as structure executions must be replicated on each GP.  This replication should not be a problem,

since we expect the majority of structure elements to be graphics primitives and not state-changing ones.  We have

devised other distribution schemes for applications that violate this assumption.  The display list traversal and

rendering routines are not affected by the distribution scheme.

6.2 The Rendering Process

The rendering process is controlled by a designated graphics processor, the master GP or MGP. By exchanging

messages with other GPs and sending commands to other modules when necessary, the MGP synchronizes

operations throughout the system.  

Before discussing the steps in the rendering process, we first want to emphasize the distinction between pixel

operations that take place on a per primitive basis, such as Z comparison and storage, and those that can be deferred

until the end of all primitive processing or end-of-frame.   Shading calculations from intermediate values stored at

the pixels, for instance, need only be performed once per pixel, rather than once per primitive (assuming there is

sufficient pixel storage to hold the intermediate values until end-of-frame).  At that time, the final pixel colors for

every pixel in the 128 x 128 pixel renderer can be calculated from the stored values.  This savings results in about a

80x speedup for Phong shading over doing the Phong final calculations after every primitive is processed.  For more

expensive lighting and shading models (such as texture) this speedup is critical for making the algorithm practical.

The major steps in the rendering process are:

1. The application program running on the host edits the database using PPHIGS library routines and transmits
these changes to the GPs.

2. Application requests a new frame.  Host sends this request the MGP, which relays it to the other GPs.
3. The GPs interpret the database, generating renderer commands for each graphics primitive. These commands are

placed into the local bins corresponding to the screen regions where the primitive lies.  Each GP has a bin for
every 128x128 pixel region in the window being rendered.

4. The GPs send bins of containing commands to renderers.  The renderers execute commands and compute
intermediate results.

5. The GP sending the final bin to a renderer also sends end-of-frame commands for the region.  The renderers
execute these commands and compute final pixel values from the intermediate results.

6. The renderers send computed pixels to the frame buffer.
7. When all regions have been received, the frame buffer swaps banks and displays the newly-computed frame.

The MGP assigns renderers to screen regions while the frame is being rendered. It communicates a renderer

assignment to the GPs by sending a message to one GP, which sends its associated bin, and then forwards the

message to the next GP, which does the same.  At the end, the message is sent back to the MGP, indicating that all

the bins have been processed.  This method ensures that at most one GP attempts to transmit to a renderer at a given

time.  This prevents blocked transmissions, which would slow throughput.
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The steps of the rendering process can be overlapped in several ways;  at maximum throughput, several frames may

be in progress at once.  The MGP handles synchronization to keep the frames properly separated [Ellsworth 89].

7.  Rendering Algorithms

We now discuss various rendering algorithms in turn.  Some of these have been published before, in which case, we

review their applicability to Pxpl5 and give performance estimates.   We also report new techniques for efficiently

displaying procedural textures and conic spline-defined fonts, for calculating radiosity form-factors, and for displaying

volume-defined images at interactive rates. 

7.1  Phong Shading  

Since Pxpl5 can evaluate quadratic expressions rapidly, we could implement Phong shading using Bishop and

Wiemer's Fast Phong Shading technique [Bishop 86]. Unfortunately, this requires large amounts of computation by

the front-end processors to determine the quadratic coefficients. Since we estimate that the renderers will usually have

more idle capacity than the GPs, we have decided to use a scheme which pushes most of the computation to the

renderers and is closer to the original Phong formulation [Phong 73].

As polygons and other primitives are processed, the x, y, and z components of the surface normal are stored in all the

pixels where the primitive is visible. For polygons this is done by simple linear interpolation of each component.

When all the primitives for a region have been processed, the pixel-parallel end-of-frame operations are performed.

The normal vector is normalized by dividing by the square root of its length, which is computed using a Newton

iteration.  Once this is done the color for each pixel is computed using the standard Phong lighting model. 

Simulation indicates that the end-of-frame computation for the Phong lighting model with a single light source

consumes around 23,000 renderer cycles or .57 milliseconds. With full screen resolution of 1024 by 1280 and a 16

renderer system, the total end-of-frame time is .57msec • (80/16) or 2.85msec per frame. At 24 frames per second

this is 6.8 percent of the rendering time.

7.2  Spheres

Pxpl5 can render spheres using the same algorithm as on Pxpl4 [Fuchs 85], but is both faster (taking advantage of

the QEE), and can generate higher-quality images (Phong shading with 24-bit color).   Phong shading is achieved as

follows.  The expressions for the coordinates of the surface normal for a sphere are:

nx = (1/r) • (x -a)

ny = (1/r) • (y - b)

nz = (
r
2

1
) •  r

2
 - (x - a)

2
- (y - b)

2

The expression for nz approximated by a parabola: 
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nz = (
r
2

1
) • (r

2
 - (x - a)

2
 - (y - b)

2
)

Then the normals are computed at each pixel by broadcasting two linear expressions and one quadratic expression.

Results from simulation indicate that this approximation produces satisfactory shading including the specular

highlights. Assuming one light source and 24 frames per second, we estimate the system performance to be 1.8M

spheres per second for 100 pixel area spheres and 900K spheres per second for 1600 pixel area spheres.

7.3  Shadows

Pxpl4 generates images with shadows very rapidly — nearly half as fast as images without shadows [Fuchs 85].

Unfortunately, this figure does not scale up by the usual 20x for Pxpl5, since the performance increase from the

screen space subdivision does not extend to shadow volumes, which frequently cross many screen regions.  At worst,

every shadow volume edge could be processed in every region, increasing the display list size by as much as 80/1.4 =

57x for a 1280 x 1024 image.    A nominal Pxpl5 configuration has 16 renderers, each running at 40MHz as

opposed to Pxpl4's 8MHz. The shadow algorithm might be expected to run about the same speed on Pxpl5 as on

Pxpl4.  Various optimizations do exist; for example, shadow boundary edges need not be processed in regions lying

between a polygon and the light source.  We have not yet explored these options in depth.  Because of the problems

mentioned above, we anticipate increasing use of the fast radiosity technique described in Section 7.6.

7.4  Texture Mapping

We have previously reported a technique to compute the u,v texture coordinates for polygons in perspective [Fuchs

85]. The speed of this technique is limited by the time to broadcast the individual texture values to the pixels.  While

64 x 64 -image textures run at interactive rates on Pxpl4 (see Figure 4), a more efficient method for Pxpl5 is to

calculate the texture values directly in each pixel.  Broadcasting the texture values will be significantly faster on

Pxpl5 than on Pxpl4, since texture values can be stored in bins and only broadcast when needed for one or more

pixels of a region.

Figure 4.  Mandrill mapped onto a plane and hoop on Pxpl4.  Estimated rendering time on Pxpl5 is 31 msec.
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Procedural Textures.  We have begun to explore procedural textures, as shown by Perlin [Perlin 85] and Gardner

[Gardner 88], for use in Pxpl5.  We have written a program for Pxpl4 that allows one to explore in real-time the

space of textures possible using Gardner's technique.  This program and software written by  Douglass Turner were

used to create the textures shown in Figure 5.

Figure 5.  Procedural earth, water, sky, and fire textures with brick image texture (simulated).  Estimated rendering
time on Pxpl5 is 5.5 milliseconds.

The two-dimensional Gardner spectral functions are calculated using quadratic approximations for the cosine

functions. This requires nine multiplies per term plus one multiply to combine the x and y directions.  Different

textures for different pixels can be computed simultaneously.  The images shown in the figure contains five terms.

On Pxpl5 they would require about 15,000 cycles or 360 microseconds using 10 bits of resolution.  These

procedural methods can be anti-aliased by eliminating high frequency portions of the texture; terms whose

wavelength spans less than one pixel are simply not computed [Norton 82].

Image-based Textures.  We have explored both summed area tables [Crow 84] and mip-maps [Williams 83] for

anti-aliasing image textures. We feel that mip-maps will work best on Pxpl5. During rendering the mip-map

interpolation value can be linearly interpolated across the polygon. At end of frame, the mip-map is broadcast to each

pixel-processor, and each processor loads the pixel at its u,v coordinate along with neighboring values for

interpolation.

7.5  Fonts

Herve Tardif has been developing methods for rapidly rendering fonts.  Conic splines, as advocated by several

researchers [Pavlidis 83, Pratt 85], are particularly well suited for rendering by Pxpl5; with the QEE in the

processor-enhanced memories, Pxpl5 can directly scan convert conic section, from which characters are defined.

Initially, a character is represented by a sequence of straight line segments and  arcs of conics joined together in the

plane.  As suggested by Pratt, each arc of a conic is in turn represented by three points M, N, P and a scalar S which

measures the departure of the conic from a parabola  (Figure 6.a).  Hence, a letter can be represented either by a

simple closed polygon  or, for letters with holes, two or more polygons.  The character is initially converted into the
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difference between its unique convex hull and the discrepancy with that hull.  (Holes are treated the same as other

discrepancies.)  The process is repeated if the discrepancy region(s) are concave.  This process amounts to building a

tree whose leaves are convex regions and nodes are set operators [Tor 84]  (see Figure 6.b).  A character is rendered

by traversing its corresponding tree, scan converting each convex region in turn. 

Figure 6.  Conic font constructed by regions bounded by lines and conic sections.

Consider a convex region obtained through this process.  For edges corresponding to straight line segments the

coefficients  for that line are sent to the QEE.  For two consecutive edges MN and NP representing an arc of conic,

the coefficients of the straight line (MP) are first sent to the QEE.  Then the quadratic coefficients for the conic

section are derived and sent to the QEE in order to scan convert the region enclosed between the line MP and the

conic section.  This process is repeated until all convex regions have been processed.   Figure 6.c shows the regions

that are successively scan converted for the letter P.  It is possible for the two segments MN and NP that describe an

arc to be split into two different convex regions during the decomposition process.  In that case, the edges MN  and

NP are considered as simple segments of the character definition until all convex regions have been processed.  Then,

the region enclosed between the conic and the segments MN and NP is either added or subtracted from the current

construction (see Figure 6.d).   Since conic sections are invariant under projective maps, this technique can also be

applied to the rendering of planar characters embedded in a 3D environment.

Performance estimates have been obtained from a conic representation of  a Times Roman font given to us courtesy

of Michael Shantz of Sun Microsystems.  The average number of convex polygons per character in this set is 8.12,

the average number of straight edges per polygon is 4.13, and the average number of conics per character is 8.4.

This indicates that the average character can be scan-converted with 36 linear coefficients and 8.4 quadratic

coefficients.  This suggests that each renderer can scan-convert over 20,000 letters per second.  Assuming each

character falls into an average of 1.4 rendering regions, 16 renderers can draw over 225,000 letters per second.

Graphics Processors will have difficulty keeping up with this rendering rate.  GPs can cache renderer commands for

2D applications.

7.6  Fast Radiosity 

The radiosity lighting model offers dramatically improved realism for certain types of images [Immel 86, Wallace

87].  The progressive radiosity approach [Cohen 88] would be well-suited for interactive applications if images could

be computed more rapidly.  Pxpl5's renderers allow us to greatly accelerate the progressive radiosity method.  We

have developed an algorithm for computing projections of 3D polygons onto a hemisphere, which speeds the

projection, scan conversion and visibility calculations necessary to distribute light from a light source to the patches
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in the scene.  Instead of storing color values at the pixels, we store the patch id of the nearest visible patch.  Once all

the patches in a scene have been processed, the visible patch matrix is sent over the ring network to a GP, which

scans through the matrix, updating the radiosities of patches indicated by the patch ids.

Projection Plane
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Figure 7.  Hemispherical projection of a triangle.

In the unusual scan conversion process, the edges of a polygon map to ellipses in screen-space. The Pxpl5 QEE

computes these ellipses directly to scan convert the polygons' projections into pixel space.  Figure 7 illustrates the

scan conversion process.  Z-buffering can be performed using approximations or by storing a special constant term

for each pixel [Goldfeather 89].  Figure 8 shows the result of the hemispherical projection and Z-buffered rendering of

a room environment.

This technique can compute these radiosity form-factors in one pass instead of the five passes that would be

necessary in a hemi-cube implementation — and even this one pass could be done at Pxpl5 polygon rendering rates.

Since the resolution within a single renderer appears to be more than adequate for this calculation, multiple renderers

can be used independently.  Each renderer should be able to process about 100,000 quadrilaterals per second.  If the

GPs cannot keep up, we may be calculate the form factors at reduced resolution, reducing the number of patch id's

the GPs need to tally.

Displaying the radiosity image is performed in the conventional manner:  vertex colors are computed from patch

radiosities, and linear-interpolation is used to blend colors smoothly across each patch.



16

Figure 8.  (a) Hemispherical projection of Tebbs and Turk's office, generated on the Pspl5 simulator.  Estimated
rendering time on Pxpl5 is 2.8 milliseconds.  (b) Standard view of the same room as in (a), generated on Pxpl4.
The viewpoint in (a) is from the illuminated light fixture. 

7.7  Volume rendering

One example of Pxpl5's generality is its ability to perform volume rendering.  Marc Levoy plans to implement a

version of the algorithm described in [Levoy 88a, 88b, 89].  To briefly summarize the algorithm:  We begin with a

3D array of scalar-valued voxels.  We first classify and shade the array based on the function value and its gradient to

yield a color and an opacity for each voxel.  Parallel viewing rays are then traced into the array from an observer

position.  Each ray is divided into equally spaced sample intervals, and a color and opacity is computed at the center

of each interval by tri-linearly interpolating from the colors and opacities of the nearest eight voxels.  The resampled

colors and opacities are then composited in front-to-back order to yield a color for the ray.

For Pxpl5, we propose to store the function value and gradient for several voxels in the backing store of each pixel

processor.  The processor then performs classification and shading calculations for all voxels in its backing store.

The time to apply a monochrome Phong shading model at a single voxel using a pixel processor is about 1 msec.

For a 256 x 256 x 256 voxel dataset, each pixel processor would be assigned 64 voxels, so the time required to

classify and shade the entire dataset would be about 64 msec.

GPs perform the ray-tracing to generate the image.  They are each assigned a set of rays and request sets of voxels

from the pixel processors as necessary.  The GPs perform the tri-linear interpolation and compositing operations,

then transmit the resulting pixel colors to the frame buffer for display.

The success of this approach depends on reducing the number of voxels flowing from the pixel processors to the

GPs.  Three strategies are planned:  First, a hierarchical enumeration of the volumetric dataset [Levoy 88b] will be

installed in each graphics processor.  This data structure encodes the coherence present in the dataset, telling the

graphics processor which voxels are interesting (non-transparent) and hence worth requesting from the pixel
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processors.  Second, the adaptive sampling scheme described in [Levoy 89] will be used to reduce the number of rays

required to generate an initial image.  Last, all voxels received by a graphics processor will be retained in a local

cache.  If the observer does not move during generation of the initial image, the cached voxels will be used to drive

successive refinement of the image.  If the observer moves, many of the voxels required to generate the next frame

may already reside in the cache, depending on how far the observer moves between frames.

Figure 9.  Volume-rendered head from CT data, generated on a Sun 4.  Estimated rendering time on Pxpl5 is 1
second.  Photo courtesy of Marc Levoy.

The frame rate we expect from this system depends on which parameters change from frame to frame.  Preliminary

estimates suggest that for changes in observer position alone, we will be able to generate a sequence of slightly

coarse images at 10 frames per second and a sequence of images of the quality of Figure 9 at 1 frame per second.  For

changes in shading or changes in classification that do not invalidate the hierarchical enumeration, we expect to

obtain about 20 coarse or 2 high-quality images per second.  This includes highlighting and interactively moving a

region of interest, which we plan to implement by heightening the opacity of voxels inside the region and

attenuating the opacities of voxels outside the region.  If the user changes the classification mapping so that the set

of interesting voxels is altered, the hierarchical enumeration must be recomputed.  We expect this operation to take

several seconds.

7.8   Rendering CSG-defined Objects

We and others have developed algorithms to directly render Constructive Solid Geometry (CSG) defined objects on

graphics systems with deep frame buffers [Goldfeather 86a, Jansen 86, Rossignac 86].   On Pxpl4 we developed a

CSG modeler that displays small datasets at interactive rates [Goldfeather 88]. 
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Pxpl5 provides several opportunities to increase rendering speed:  the QEE on Pxpl5 renders curved-surfaced

primitives without breaking them into polygonal facets;   having more bits per pixel allows surfaces that are used

multiple times to be stored and re-used, rather than being re-rendered, greatly increasing performance; finally, the

screen-subdivision technique advocated in [Jansen 87] provides a way  to take advantage of Pxpl5's multiple

renderers.   Pxpl4 interactively renders CSG objects with dozens of primitives (Figure 10).  We expect Pxpl5 to

interactively render objects with hundreds of primitives.

Figure 10.  CSG-modeled truck generated on Pxpl4.  Estimated rendering time on Pxpl5 is 40 milliseconds. 

7.9  Transparency

A number of methods for rendering transparent surfaces are possible, given the generality and power of Pxpl5.  The

most promising is to enhance the bin sorting in each GP to generate twice as many bins, one for transparent and

another for opaque primitives for each region.  The transparent primitives are rendered after all the opaque ones.

Since we expect relatively few transparent polygons, each of the "transparent" bins can be sorted from back to front

and rendered by simple composition.  For difficult cases, in which a cluster of transparent polygons cannot be sorted

in Z (as in a basket-weave of transparent strips),  multiple Z values can be stored at each pixel to control the

compositing step.  With this approach, difficult primitives may need to be sent to renderers several times to ensure

correct blending. 

A second method, stochastically sampling the pixels of transparent primitives, is currently being used on Pxpl4.  It

is very simple and efficient, but requires several anti-aliasing passes to produce an acceptable image (without

antialiasing, primitives appear splotchy).  With Pxpl5's increased speed this method may perform so well that more

complicated algorithms are not needed.

8.  Conclusions

It is too early to conclude much about the potential usefulness of Pixel-planes 5.  We hope that with its generality

and simple conceptual structure, it will prove useful for our local colleagues' activities in highly interactive 3D
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graphics.  We are convinced that even experimental machines like this one should be built for a community of users

who can dispassionately evaluate their utility.   The heavy local use of its predecessor, Pxpl4, has contributed

substantially to the ideas in Pxpl5.

With the rapid development of high-performance graphics engines in the past few years, it is difficult to determine

which of the many approaches will continue to be useful in the future.  Among the safest predictions is that scan-

line ordered pipeline processing will continue to be a cost-effective solution to rendering specific sets of primitives

and that parallel screen subdivision will continue to be useful for general purpose image generation.  Within this

latter approach, we speculate that there may be a convergence between current parallel solutions (4x4-pixel footprint

of the Stellar GS-1000, the 4x5 footprint of SGI, the 8x8 footprint of Pixel Machine) and the 128x128-pixel

footprint of Pxpl5.  Once the size of the footprint becomes large enough so most primitives fall into only a single

region, the rendering can be done independently for each region with little penalty for duplication of primitives

among the multiple regions.  With VLSI and ULSI technology, it will be increasingly practical to have such

footprints that are sufficiently large to simplify the processing in this way.

Current status of Pxpl5.  As of January 10, hardware and software are being built.  Of the three custom CMOS

VLSI chips being designed, the processor-enhanced memory and the backing memory interface are both in final

simulations, projected to be sent to fabrication in the next few weeks.  The third chip, the renderer controller, is in

middle of layout.  Detailed simulation of the board-level logic design is well along, and PCBs are being designed.  A

small version of the Ring Network with a pair of Graphics Processors is expected to become operational in March,

with a small complete system running in July.  On the software front, a high-level language porting base is running

simple code.  Renderer simulator is yielding useful images.
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