Chosen Ciphertext Attacks

- Recall that in a chosen ciphertext attack, the adversary is given
 - An encryption oracle E_K
 - A decryption oracle D_K
 - A test oracle T_K
 - If $c \leftarrow T_K(m_0, m_1)$ then adversary is not permitted to invoke $D_K(c)$

- Arguably having otherwise unfettered access to D_K is unrealistic, and so variations on this model have been explored
 - Lunchtime attack: Adversary can query D_K only before querying T_K
 - Side-channel attack: Instead of having access to D_K, adversary is given access to a "side channel" oracle P_K
 - $P_K(c)$ returns $f(D_K(c))$ for a particular function f

- We will explore a frequently practical side channel in this lecture

Recall CBC Mode Encryption

- Let f: Keys $\times \{0,1\}^L \rightarrow \{0,1\}^L$ be a pseudorandom permutation

 Algorithm $E_K(m)$:

 Let $m_0, \ldots, m_n = m, c_0 \in \{0,1\}^L$
 $c_0 \leftarrow f(c_0)$
 for $i = 1 \ldots n$ do $c_i \leftarrow f_i(c_{i-1} \oplus m_i)$
 return $c_0 \oplus c_1 \oplus \ldots \oplus c_n$

 Algorithm $D_K(c)$:

 Let $c_0, \ldots, c_n = c, c_0 \in \{0,1\}^L$
 for $i = 1 \ldots n$ do $m_i \leftarrow f_i^{-1}(c_{i+1}) \oplus c_{i-1}$
 return $m_0 \oplus m_1 \oplus \ldots \oplus m_n$

- Above description assumes that length of m is a multiple of L
 - If not, padding is required
Padding

- A padding function is a function $\text{PAD} : \{0,1\}^* \rightarrow \{0,1\}^+$
- Most applications require PAD to be reversible
- Two types of padding functions
 - Byte-oriented, where $\text{PAD} : \{0,1\}^* \rightarrow \{0,1\}^+$ and $L = 8b$
 - Bit-oriented, where domain of PAD is unrestricted
- Example: CBCPAD is a byte-oriented padding function

Algorithm $\text{CBCPAD}(m)$:

- let $m_1|\ldots|m_n = m : m_i \in \{0,1\}^8$
- $p \leftarrow b - (n \pmod b)$
- return $m | pp \ldots p$ p times

- Padding is ”01”, ”02 02”, ”03 03 03”, ”04 04 04 04” …
- Denote this by ”$p \times p$”

Processing Padding

- What if the padding in a ciphertext is not valid?
 - tear down the session (as in SSL/TLS)?
 - log the error (as in ESP)?
 - return an error message (as in WTLS)?
- Either way, typically will leak whether the padding was valid
- Abstract this as an oracle P_X

Algorithm $P_X(c)$:

- let $c_1|\ldots|c_n = c : c_i \in \{0,1\}^8$
- for $i = 1, \ldots, n$ do $m_i \leftarrow f_K^{-1}(c_i) \oplus c_{i-1}$
- if m_n ends in $p \times p$ for some $p > 0$
 - return 1
- else
 - return 0

Last Byte Decryption

[Vaudenay 2002]

- Consider a two-block ciphertext $c_0 \parallel c_1$
- We know that decryption is performed as follows

- Consider any $c_{0}^* \neq c_0$

- Since $c_0 \oplus m_1 = c_{0}^* \oplus m_1^* = f_K^{-1}(c_1)$, we get $m_1 = (c_0 \oplus c_{0}^*) \oplus m_1^*$
 - We know $(c_0 \oplus c_{0}^*)$ but not m_1^*
However, if we can find \(c_0'\) such that \(PK(c_0' \mid c_1) = 1\), then we know that \(m_1'\) is correctly padded.

Moreover, if \(c_0'\) is chosen randomly from \(\{0,1\}^L\), then
- \(m_1'\) ends in 01 with probability \(1/2^8\)
- \(m_1'\) ends in 02 02 with probability \(1/2^{16}\)
- \(m_1'\) ends in 03 03 03 with probability \(1/2^{24}\)
- ...

So, we could just assume that \(m_1'\) ends in 01, and would usually be right.

If correct, then last byte of \(m_1\) is last byte of \((c_0' \oplus c_0) \oplus 01\).

To get it right in all cases, start from \(c_0'\) where \(PK(c_0' \mid c_1) = 1\) and do the following:

- If \(PK((c_0' \oplus 01(00)^{b-1}) \mid c_1) = 0\) then \(m_1'\) ends in \(b \times b\), else
- If \(PK((c_0' \oplus 01(00)^{b-2}) \mid c_1) = 0\) then \(m_1'\) ends in \((b-1) \times (b-1)\), else
- ...
- If \(PK((c_0' \oplus 01(00)^{k}) \mid c_1) = 0\) then \(m_1'\) ends in 02 02, else
- \(m_1'\) ends in 01 01 01 = \(m_1'\)
Last Byte Decryption (cont.)

To get it right in all cases, start from c'_0 where $P_K(c'_0 | c_1) = 1$
and do the following

- If $P_K(c'_0 @ 01(00)^{b-1}) | c_1) = 0$ then m'_1 ends in $b \times b$, else
- If $P_K(c'_0 @ 01(00)^{b-2}) | c_1) = 0$ then m'_1 ends in $b-1 \times b-1$, else
- If $P_K(c'_0 @ 01(00)^{b-3}) | c_1) = 0$ then m'_1 ends in $b-2$, else
- m'_1 ends in 01

<table>
<thead>
<tr>
<th>$f_{K_{b-1}}(c_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$f_{K_{b-1}}(c_1)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m'_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m_1</td>
</tr>
</tbody>
</table>

Block Decryption

Now we can use this to find all of m_1

<table>
<thead>
<tr>
<th>$f_{K_{b-1}}(c_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$f_{K_{b-1}}(c_1)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m'_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m_1</td>
</tr>
</tbody>
</table>

Block Decryption

Now we can use this to find all of m_1

<table>
<thead>
<tr>
<th>$f_{K_{b-1}}(c_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$f_{K_{b-1}}(c_1)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>c'_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m'_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>$c_0 \oplus c_0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\oplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdots</td>
</tr>
<tr>
<td>m_1</td>
</tr>
</tbody>
</table>

Copyright © 2015 by Michael Reiter
All rights reserved.
Block Decryption

Now we can use this to find all of \(m_i \)

\[
\begin{align*}
& f_{k}^{-1}(c_1) \\
& \oplus \quad \cdots \\
& x \quad 02 \quad 02 \\
& \oplus \quad \cdots \\
& c_i \oplus c'_i \\
& \oplus \quad \cdots \\
& m_1
\end{align*}
\]
Full Decryption

- Once we've implemented block decryption, full decryption of multi-block messages is straightforward
 - Do each block separately
 - Use preceding ciphertext block as its initialization vector
- Block decryption can be sped up using binary search instead of linear search to find padding length

Other Symmetric Encryption Schemes

- CBC is not the only encryption mode where padding is used
- Recall counter mode

Algorithm $E_K(m)$:
- let $m_1|...|m_n = m : m_i \in \{0,1\}^L$
- let $c_0 \leftarrow \{0,1\}^L$
- for $i = 1,...,n$ do $c_i \leftarrow f_K(c_{i-1} + i \mod 2^L) \oplus m_i$
- return $c_0|c_1|...|c_n$

Algorithm $D_K(c)$:
- let $c_0|c_1|...|c_n = c : c_i \in \{0,1\}^L$
- for $i = 1,...,n$ do $m_i \leftarrow f_K(c_{0+i} \mod 2^L) \oplus c_i$
- return $m_1|...|m_n$

- Padding here is similarly tricky

Counter Mode Encryption

- Suppose CBCPAD were used with counter mode
- A ciphertext $c_1|c_2$ is decrypted as follows

- For any $c_1' \neq c_1$

- Since $c_1 \oplus m_1 = c_1' \oplus m_1' = f_k(c_2+1)$, we get $m_1 = (c_1 \oplus c_1') \oplus m_1'$
- Once again, padding oracle enables m_1 to be recovered
Counter Mode Encryption (cont.)

- Note, however, that unlike with CBC, padding is not necessary with counter mode encryption

\[
\begin{align*}
&\text{\textit{c}}_0 \oplus \text{\textit{c}}_1 \oplus \cdots \oplus \text{\textit{c}}_{n-1} = f_K(c_0 + 1) \oplus f_K(c_0 + n) \oplus f_K(c_0 + n - 1) \oplus \cdots \oplus f_K(c_0 + 1).
\end{align*}
\]

- Blue portion can be discarded, rather than padding to utilize it
- Advantage: eliminates any padding oracle
- Disadvantage: exposes exact bit length of plaintext

Aborts

- Some protocols (notably SSL/TLS) abort if they encounter a padding error
 - If ciphertext is not authenticated, this is denial-of-service vulnerability
 - If ciphertext is authenticated, then padding oracle is unavailable

- Aborts limit the attacker to one guess
 - If the receiver does not abort, then attacker learns last byte of plaintext for whatever ciphertext he submitted
 - Succeeds with probability \(\approx 1/2^8\)

Padding Oracles in Public Key Systems

[Bleichenbacher 1998]

- Public key systems are equally vulnerable to attacks using padding oracles
- Recall RSA cryptosystem
 - Public key \(K = \langle e, N \rangle\), where \(N = pq\) for primes \(p, q\)
 - Private key \(K^{-1} = \langle d, N \rangle\), where \(ed \equiv 1 \mod (p-1)(q-1)\)
 - \(E_K(m) = (\text{pad}(m))^e \mod N\)
 - \(D_K(c) = \text{pad}^{-1}(c^d \mod N)\)
PKCS #1 v1.5 Padding for Encryption

- If |N| = k bytes, then 2^{56k-1} < N < 2^{56k}
- PKCS #1 (v1.5) padding for encryption is correct if
 - 1st byte is 00
 - 2nd byte is 02
 - next 8 bytes different from 00
 - at least one more 00 byte

Properties of PKCS #1 v1.5 Padding

- Probability \(Pr(PKCS) \) that a random message is correctly padded is
 \[0.18 \cdot 2^{-16} < Pr(PKCS) < 0.97 \cdot 2^{-8} \]
- \(1/Pr(PKCS) < 360,000 \)
 - PKCS conforming messages can be found by trial and error
- Given a target ciphertext \(c = m^e \mod N \), attacker can submit \(c_i = c \cdot s_i^e \mod N \) to the padding oracle
 - If \(c_i \) is PKCS conforming, then \(2 \cdot 256^{k-2} \leq m_i \mod N < 3 \cdot 256^{k-2} \)
 - This fact can be leveraged to decrypt \(c \)

Cost of Attack

- Number of queries needed
 - \(Pr(PKCS) \) = probability that a random message is PKCS conforming
 \[0.18 \cdot 2^{-16} < Pr(PKCS) < 0.97 \cdot 2^{-8} \]
 - \(Pr(PKCS,0) \) = probability that a message with leading bytes 00 and 02 is PKCS conforming
 \[0.18 < Pr(PKCS,0) < 0.97 \]
 - Number of oracle queries is \(3/Pr(PKCS) + 16/k \cdot Pr(PKCS,0) \)
- For example, if \(N \) is 1024 bits then roughly 1,000,000 queries are needed
Chosen Ciphertext Security

- These various side-channel attacks motivate the need for chosen ciphertext security
- Any adversary that can succeed using a side-channel attack can succeed using a chosen-ciphertext attack
 - simply uses the decryption oracle to implement the side channel
- Conversely, a ciphertext that is invulnerable to chosen ciphertext attacks is also invulnerable to side channel attacks

Recall a Chosen Ciphertext Attack

- The adversary is given three oracles
 - An encryption oracle E_k
 - A test oracle $T(m_0, m_1)$ that can be called only once
 - Oracle $T(m_0, m_1)$:
 - if $|m_0| = |m_1|$, then return 1
 - if $b \leftarrow E_k(m_i)$, return $E_k(m_i)$
 - A decryption oracle D_k
- The adversary must guess whether $b = 0$ or $b = 1$, but if
 - $c \leftarrow T(m_0, m_1)$
 - then adversary cannot query $D_k(c)$

Definition of CCA Security

- An CCA-secure encryption scheme is a triple
 - $\langle \text{Gen}, E, D \rangle$
- such that for every PPT \mathcal{A} there is a negligible ν, where
 - $\Pr[A^{K,E,D,T_k} = 0 : b \leftarrow 0] - \Pr[A^{K,E,D,T_k} = 0 : b \leftarrow 1] \leq \nu(\lambda)$
 - for all sufficiently large λ, where
 - the probabilities are taken over $K \leftarrow \text{Gen}(\lambda)$
 - A^{K, E, D, T_k} is not permitted to query $D_{k}(c)$ if $c \leftarrow T_{k}(m_0, m_1)$