Message Authentication Codes and Hash Functions

Mike Reiter

Message Authentication Codes

- A message authentication code is a triple $\Pi = \langle \mathcal{K}, \text{MAC}, \text{VF} \rangle$ of efficiently computable algorithms
 - \mathcal{K} is a randomized “key generation algorithm” that outputs a “key”

 $K \leftarrow \mathcal{K}()$

 Keys(Π) denotes all keys output by $\mathcal{K}()$ with nonzero probability.
 - MAC is a deterministic, randomized or stateful algorithm that takes a key K and message $M \in \{0,1\}^*$ as input, and outputs \perp or a “tag”

 $Tag \leftarrow \text{MAC}_K(M)$

 Tag is of length τ (the “tag length”).

 The “message space” is all messages such that $\text{MAC}_K(M) \neq \perp$.
 - VF takes a key K, message $M \in \{0,1\}^*$, and a tag Tag as input and returns either 1 (accept) or 0 (reject)

 $d \leftarrow \text{VF}_K(M, Tag)$

 If $Tag \leftarrow \text{MAC}_K(M)$ and $Tag \neq \perp$ then $\text{VF}_K(M, Tag) = 1$.

Unforgeability under CMA

Definition: Let \(\Pi = (\mathcal{K}, \text{MAC}, \text{VF}) \) be a message authentication code, and let \(A \) be an adversary. Define

Experiment \(\text{Expt}^{\text{uf-cma}}_\Pi (A) \)
- \(K \leftarrow \mathcal{K}() \)
- Run \(A^{\text{MAC}_K()}, \text{VF}_K() \)
- If \(A \) queried \(d \leftarrow \text{VF}_K(M, \text{Tag}) \) where
 - \(d = 1 \) and \(\text{MAC}_K(M) \) had not previously been queried
 - then return 1 else return 0

The uf-cma advantage of \(A \) is defined as

\[
\text{Adv}^{\text{uf-cma}}_\Pi (A) = \Pr \left[\text{Expt}^{\text{uf-cma}}_\Pi (A) = 1 \right]
\]

Unforgeability under CMA

- For any \(t, q_s, q_v, \mu_s, \mu_v \) we define the uf-cma advantage of \(\Pi \) as

\[
\text{Adv}^{\text{uf-cma}}_\Pi (t, q_s, \mu_s, q_v, \mu_v) = \max_A \left\{ \text{Adv}^{\text{uf-cma}}_\Pi (A) \right\}
\]

where the maximum is over all \(A \) having time complexity \(t \) and making at most \(q_s \) oracle queries of total length \(\mu_s \) to \(\text{MAC}_K \)
and at most \(q_v \) oracle queries of total length \(\mu_v \) to \(\text{VF}_K \)

- Informally, \(\Pi \) is “uf-cma secure” if the uf-cma advantage of \(\Pi \) is small
MACs from Pseudorandom Functions

- Let F be a function family
- Select $K \leftarrow_{R} \text{Keys}(F)$
- Define $\text{MAC}_K(m) = F_K(m)$ for $m \in \text{Dom}(F)$
- Define

$$VF_K(m, t) = \begin{cases} 1 & \text{if } F_K(m) = t \\ 0 & \text{otherwise} \end{cases}$$

Security for PRF-based MACs

- Proposition: Let $F: \text{Keys}(F) \times \text{Dom}(F) \rightarrow \{0,1\}^L$ be a family of functions and let Π denote the PRF-based MAC previously defined. Then

$$\text{Adv}_{\Pi}^{\text{nf-cma}}(t, q_s, \mu_s, q_v, \mu_v) \leq \text{Adv}^\text{prf}_F(t, q_s + q_v, \mu_s + \mu_v) + \frac{q_v}{2^L}$$

- Proof: Given an attacker A for the MAC scheme that runs with constraints t, q_s, q_v, μ_s, μ_v, we construct a prf-distinguisher B_A for F that works under constraints t, $q_s + q_v$, $\mu_s + \mu_v$ such that

$$\text{Adv}_{\Pi}^{\text{nf-cma}}(A) \leq \text{Adv}^\text{prf}_F(B_A) + \frac{q_v}{2^L}$$
Security for PRF-based MACs

Recall that B_A is given an oracle for $f: \text{Dom}(F) \rightarrow \{0,1\}^L$.

\begin{algorithm}{B_A^{f(1)}}$d \leftarrow 0$
Run A, replying to its oracle queries as follows:
 - When A queries $\text{MAC}_f(M)$, return $f(M)$.
 - When A queries $\text{VF}_f(M, \text{Tag})$,
 if $f(M) = \text{Tag}$
 if $\text{MAC}_f(M)$ was not previously queried
 then $d \leftarrow 1$
 return 1 to A
 else return 0 to A
 Until A stops.
Output d.

Note that since in the prf-1 experiment, the experiment is exactly the same experiment that A runs.

In addition, since in the prf-0 experiment, the probability that A guesses the tag is $1/2^L$ per verification query.
CBC-MAC

- Historically a very popular method of creating MACs
- Uses CBC with zero initialization vector
 - the last ciphertext block is the tag
- But does it work?

Proposition: Let $F: \text{Keys}(F) \times \{0,1\}^l \rightarrow \{0,1\}^l$ be a family of functions, and let $\text{CBC}^m[F]: \{0,1\}^{ml} \rightarrow \{0,1\}^l$ denote the CBC-MAC function instantiated with F. Then,

$$\text{Adv}^\text{prf}_{\text{CBC}^m[F]}(t, q, qml) \leq \text{Adv}^\text{prf}_F(t', q', q'l) + \frac{3q^2 m^2}{2^{l+1}}$$

where $q' = qm$ and $t' = t + O(qml)$.

The proof of this builds from the following two lemmas.

Lemma 1: For any t,

$$\text{Adv}^\text{prf}_{\text{CBC}^m[\text{Func}(l, l)]}(t, q, qml) \leq \frac{3q^2 m^2}{2^{l+1}}.$$

Example: Suppose $l = 128$ bits and we use $\text{CBC}^m[\text{Func}(l, l)]$ to authenticate $q = 2^{30}$ messages of 2^{10} blocks each. Then, no adversary, no matter how much time it invests, has advantage larger than 5.4×10^{-15} of distinguishing these MACs from purely random strings.

Lemma 2: Let A be a distinguisher that makes q oracle queries and has running time t. Then there is a distinguisher B_A such that

$$\text{Adv}^\text{prf}_{\text{CBC}^m[F]}(A) \leq \text{Adv}^\text{prf}_F(B_A) + \text{Adv}^\text{prf}_{\text{CBC}^m[\text{Func}(l, l)]}(A)$$

where B_A makes $q' = mq$ oracle queries and runs in time at most $t' = t + O(qml)$ time.
Let's assume the lemmas (we'll prove Lemma 2 later), and show how this gives us the proposition.

Proof of proposition: Let A be a distinguisher that makes q oracle queries and takes time t. Then,

$$\text{Adv}_{\text{CBC}^n[F]}(A) \leq \frac{3q^2m^2}{2^{t+1}}$$

by Lemma 1.

Now, let B_A be the distinguisher in Lemma 2. Then,

$$\text{Adv}_{\text{CBC}^n[F]}(A) \leq \text{Adv}_{\text{F}}(B_A) + \frac{3q^2m^2}{2^{t+1}}$$

Now, we get

$$\text{Adv}_{\text{CBC}^n[F]}(t, q) = \max_A \left\{ \text{Adv}_{\text{CBC}^n[F]}(A) \right\}$$

$$\leq \max_A \left\{ \text{Adv}_{\text{F}}(B_A) + \frac{3q^2m^2}{2^{t+1}} \right\}$$

$$\leq \max_B \left\{ \text{Adv}_{\text{F}}(B) + \frac{3q^2m^2}{2^{t+1}} \right\}$$

where max is over all B taking time t' and making q' oracle queries.

$$\leq \text{Adv}_{\text{F}}(t', q') + \frac{3q^2m^2}{2^{t+1}}$$
Now let’s prove Lemma 2. We have to build a distinguisher B_f from the distinguisher A.

Algorithm $B_f^{(i)}$

Run A.

For $i = 1 .. q$ do

- When A queries for $g(M_i)$, return $(\text{CBC}^i(f))(M_i)$.
- When A outputs b, return b.

First consider that

$$\text{Adv}_{\text{MAC}}^F(B_f) = \Pr[\text{Expt}_{\text{MAC}}^F(B_f) = 1] - \Pr[\text{Expt}_{\text{MAC}}^F(B_f) = 0]$$

$$= \Pr[B_f = 1 | F] - \Pr[B_f = 1 | F \leftarrow \text{Func}(l,l)]$$

$$= \Pr[A^g = 1 | g \leftarrow \text{CBC}^m[F]] - \Pr[A^g = 1 | g \leftarrow \text{CBC}^m[\text{Func}(l,l)]]$$

In addition,

$$\text{Adv}_{\text{MAC}}^{F_{\text{CBC}^m[\text{Func}(l,l)]}}(A) = \Pr[A^g = 1 | g \leftarrow \text{CBC}^m[\text{Func}(l,l)]] - \Pr[A^g = 1 | g \leftarrow \text{Func}(ml,l)]$$

Adding the two equations gives the result.
CBC-MAC

- Throughout this discussion, we have fixed m, the number of blocks of the input message
- In fact, CBC-MAC is **not secure** with variable-length inputs
 - Work out an example

- Some attempts to “fix” it for variable length inputs
 - Append a block to the message containing the length, and then MAC
 - Doesn’t work
 - Input-length key separation:
 $$\text{CBC}^*\left[f_K\right](x) = \text{CBC}^m\left[f_{K_m}\right](x) \text{ where } K_m \leftarrow f_K(m)$$
 - Map last block:
 $$\text{CBC}^*\left[f_{K_1,K_2}\right](x) = f_{K_2}\left(\text{CBC}^m\left[f_{K_1}\right](x)\right)$$

Cryptographic Hash Functions

- Cryptographic hash functions map strings of different lengths to short, fixed-size outputs
 - Examples are MD5, SHA-1, SHA-2
 - Typically constructed to be “collision resistant”: it’s hard to find two inputs x, x' such that $h(x) = h(x')$
 - Often also constructed to have “randomness-like” properties
 - Unpredictability of output when part of input is unknown
 - “Pseudorandomness” and “independence” of input and output

- Some modern hash functions are built by iterating a “compression” function
Cryptographic Hash Functions

- Example: In MD5, $b = 512$ and $l = 128$
- Modern hash functions iterate this process

Keying Hash Functions

- Hash functions, as defined, have no keys
- We turn a hash function into a (keyed) function family by replacing the IV with a key
 - Let f_K defined by $f_K(x) = f(K, x)$ be the keyed compression function, where $|K| = l$ and $|x| = b$
 - For any iterated hash construction, define a family F as follows:
 For $x = x_1 x_2 \ldots x_n$, define $F_K(x) = K_{n+1}$ where $K_i = f_{K_i-1}(x_i)$ for $i = 1 \ldots n+1$, $K_0 = K$, and $x_{n+1} = |x|$
Weak Collision Resistance

Definition: Let $F: \text{Keys}(F) \times \{0,1\}^* \to \{0,1\}^l$ be a family of keyed hash functions, and let A be an adversary. Consider the following experiment:

Experiment $\text{Expt}^{wcr}_F(A)$

$K \leftarrow_r \text{Keys}(F)$

$M, M' \leftarrow A^{F_K}(K)$

If $M \neq M'$ and $F_K(M) = F_K(M')$ then return 1 else return 0

The wcr-advantage of A is

$$\text{Adv}^{wcr}_F(A) = \Pr[\text{Expt}^{wcr}_F(A) = 1]$$

Weak Collision Resistance

For any t, q, μ, we define the wcr-advantage of F as

$$\text{Adv}^{wcr}_F(t, q, \mu) = \max_A \left\{ \text{Adv}^{wcr}_F(A) \right\}$$

where the maximum is over all A having time complexity t and making at most q oracle queries of total length μ.
NMAC

- Define the following “nested MAC” function where $K = (K_1, K_2)$

$$NMAC_K(x) = F_{K_1}(F_{K_2}(x))$$

- Proposition: Let $f: \{0,1\}^l \times \{0,1\}^b \rightarrow \{0,1\}^l$ be a compression function family on messages of length b bits, and let F be its keyed iterated hash. Then

$$\text{Adv}_{NMAC}^{\text{uf-cma}}(t,q,\mu) \leq \text{Adv}_{f}^{\text{uf-cma}}(t, q, q^b) + \text{Adv}_{F}^{\text{wcr}}(t, q, \mu)$$

NMAC

- Proof: Let A be an NMAC attacker that runs in time t and makes q oracle queries of total length μ. Consider the attacker B_A for f as a MAC defined as follows.

For a string s of length l, let $\langle s \rangle$ denote the result of s padded to a full block of length b as specified by the underlying hashing scheme.

Algorithm $B_A^{f, (\cdot)}$

$K_2 \leftarrow \text{Keys}(F)$
Run A.
For $i = 1 \ldots q$ do
 When A queries for $\langle s \rangle$
 $z \leftarrow F_{K_2}(\langle s \rangle)$
 return $f_{K_1}(\langle z \rangle)$ to A
 When A outputs (M,N), output $(\langle F_{K_2}(M) \rangle, N)$.

NMAC

Now we have that:

\[1 - \text{Adv}_{f}^{\text{uf-cma}}(B_A) = \Pr[\text{Expt}_{f}^{\text{uf-cma}}(B_A) = 0] \]
\[\leq \Pr[\text{Expt}_{\text{NMAC}}^{\text{uf-cma}}(A) = 0] + \Pr\exists i : \langle F_{K_2}(M_i) \rangle = \langle F_{K_2}(M) \rangle \]
\[= \Pr[\text{Expt}_{\text{NMAC}}^{\text{uf-cma}}(A) = 0] + \Pr\exists i : F_{K_2}(M_i) = F_{K_2}(M) \]
\[\leq (1 - \text{Adv}_{\text{NMAC}}^{\text{uf-cma}}(A)) + \text{Adv}_{f}^{\text{wcr}}(t, q, \mu) \]

HMAC

- NMAC is a very simple and efficient construction, but does not use hash function as a “black box”
 - Requires access to its compression function
- HMAC is an alternative that uses hash function completely as a “black box”
- HMAC is now a mandatory algorithm for most Internet security protocols
HMAC

- Let F be a hash function (with normal IV)
- The HMAC construction is

$$\text{HMAC}_K(M) = F(\langle K \rangle \oplus \text{opad} || F(\langle K \rangle \oplus \text{ipad} || M))$$

where (in hexadecimal)
- $\text{opad} = \text{36 36 ... 36}$
- $\text{ipad} = \text{5c 5c ... 5c}$

- What's the justification for this?

HMAC

- Let f be the compression function of F
- If we define
 - $K_1 = f(\text{IV, } \langle K \rangle \oplus \text{opad})$
 - $K_2 = f(\text{IV, } \langle K \rangle \oplus \text{ipad})$
 then

$$\text{HMAC}_K(M) = \text{NMAC}_{(K_1, K_2)}(M)$$

- In other words, HMAC is a particular instance of NMAC, where K_1 and K_2 are “pseudorandomly” derived from f and K
 - Strictly speaking, requires an additional assumption about pseudorandomness of f when provided a key as an input
HMAC

- There might be attacks on HMAC but not NMAC, but this would reveal undesirable structural properties in f.

- opad and ipad were chosen
 - To be simple
 - To provide a high Hamming distance between themselves

Some MACs to Avoid

- “Append only” MACs
 - $MAC_{K}(M) = F(M, K)$ where F is an iterated hash function
 - The problem: $F(M) = F(M')$, then for any K, $MAC_{K}(M) = MAC_{K}(M')$
 - Attack: Use the birthday paradox to find M, M' offline
 - Question: Does F appending $|M|$ help?

- “Prepend only” MACs
 - $MAC_{K}(M) = F(K, M)$ where F is a hash function
 - The problem: If M is an integral number of blocks and $MAC_{K}(M)$ is known, then $MAC_{K}(M||M')$ can be computed
 - Question: Does F appending $|M|$ help?
MD5

- MD5 is an iterated hash function of the type anticipated for use in HMAC
- High-level structure
 - Appends padding bits (a “1” bit followed by as many “0” bits as needed) to input so that total length is 448 mod 512
 - Appends a 64-bit representation of the input length in bits (before padding); total length is now an integer multiple of 512 bits
 - A 128-bit buffer (four 32-bit words, labeled A, B, C, D) are initialized to fixed values
 - Each 512 bit block of the (padded, length-appended) input is passed through the compression function, updating the buffer
 - The buffer value at the end is the output value

Here, H_{MD5} denotes the compression function for MD5
MD5 Compression Function

- The compression function consists of four rounds, referred to as F, G, H and I in the specification.
- Each round makes use of a one-fourth of a 64-element table T.
 - $T[i]$ is the integer part of $2^{32} \cdot \text{abs} (\sin(i))$ where i is in radians, as a means of generating “random” integers.

MD5 Compression Function

- Each round consists of a sequence of 16 steps operating on the buffer ABCD.
- Each step is of the form:
 $$a \leftarrow b + ((a + g(b, c, d) + X[k] + T[i]) \ll s)$$
 where
 - a, b, c, d are four words of the buffer, in an order that varies across steps.
 - g is one of F, G, H or I.
 - $\ll s$ is circular left shift (rotation) of the 32-bit argument by s bits.
 - $X[k]$ is the k-th 32-bit word of the 512-bit input X.
 - $T[i]$ is the i-th 32-bit word in table T.
 - $+$ is addition modulo 2^{32}.
MD5 Compression Function

- This is a picture of a single step, 16 of which constitute a single round

- Function g
 - Round 1: $g = F$
 \[F(b,c,d) = (b \land c) \lor (\neg b \land d) \]
 - Round 2: $g = G$
 \[G(b,c,d) = (b \land d) \lor (c \land \neg d) \]
 - Round 3: $g = H$
 \[H(b,c,d) = b \oplus c \oplus d \]
 - Round 4: $g = I$
 \[I(b,c,d) = c \oplus (b \lor \neg d) \]

MD5 Weaknesses

- Berson 1992: There is an algorithm to find a collision for each of the four rounds individually in reasonable time

- Boer & Bosselaers 1993: There is an algorithm to find a message block on which execution of the MD5 compression function starting from two different values in ABCD will yield the same result
 - This is called a pseudocollision

- Dobbertin 1996: There is an algorithm to produce a collision on the MD5 compression function

- Wang & Yu 2005: Collisions on MD5 in under an hour
 - Attack works for any initial value
SHA-1

- Adopted by the National Institute of Standards and Technology (NIST) in 1995
- Algorithm takes as input a message of length at most 2^{64} bits
- Outputs a 160-bit value, processing inputs in 512-bit blocks
- High-level structure
 - Appends padding bits: Same as MD5
 - Appends a 64-bit representation of the input length: Same as MD5
 - A 160-bit buffer (five 32-bit words, labeled A, B, C, D, E) are initialized to fixed values
 - Each 512 bit block of the (padded, length-appended) input is passed through the compression function, updating the buffer
 - The buffer value at the end is the output value

SHA-1 Compression Function

- The compression function consists of four rounds
 - each uses a different primitive logical function (f_1, f_2, f_3, and f_4)
 - each consists of 20 steps
 - makes use of a constant K, that differs per round
SHA-1 Compression Function

- Each round consists of a sequence of 20 steps operating on the buffer ABCDE
- Each step is of the form
 \[A, B, C, D, E \leftarrow (E + f_t(B, C, D) + S^5(A) + W_t + K_t), A, S^{30}(B), C, D \]
 where
 - \(t \) is the step number (0 ≤ \(t \) ≤ 79)
 - \(f_t(B, C, D) \) is the primitive logical function for step \(t \)
 - \(S^k \) is circular left shift (rotation) of the 32-bit argument by \(k \) bits
 - \(W_t \) is a 32-bit word derived from the current 512-bit input block
 - \(K_t \) is a constant, which is the same for each round
 - + is addition modulo \(2^{32} \)

SHA-1 Compression Function

- This is a single step, 20 of which constitute a round
- Function \(f_t \)
 - Round 1:
 \[f_1(B, C, D) = (B \land C) \lor (\neg B \land D) \]
 - Round 2:
 \[f_2(B, C, D) = (B \oplus C \oplus D) \]
 - Round 3:
 \[f_3(B, C, D) = (B \land C) \lor (B \land D) \lor (C \land D) \]
 - Round 4:
 \[f_4(B, C, D) = (B \oplus C \oplus D) \]
SHA-1 Compression Function

- The 32-bit values W_t are derived from the 512-bit input
- $W_0 \ldots W_{15}$ are taken directly from input block
- Remaining values are defined as follows

 $W_t = S^1(W_{t-16} \oplus W_{t-14} \oplus W_{t-8} \oplus W_{t-3})$

SHA-1 Weaknesses

- Chabaud & Joux 1998: Collisions in full SHA-0 can be found in $\sim 2^{61}$ hash operations
- Biham & Joux 2005: Collisions in full SHA-0 can be found in $\sim 2^{51}$ hash operations
- Wang, Yin & Yu 2005: Collisions in the full SHA-1 can be found in $\sim 2^{69}$ hash operations
- Stevens 2012: Collisions in the full SHA-1 can be found in $\sim 2^{61}$ hash operations
Since SHA-1 …

- There’s SHA-2, which features longer outputs
 - Variants have 256-bit or 512-bit outputs
 - No effective collision algorithms found yet
 - However, they are algorithmically similar to SHA-1, and so may not be secure for much longer

- SHA-3 was adopted in October 2012 after an open competition
 - 64 entries
 - 51 advanced to first round
 - 14 advanced to second round
 - 5 advanced to third round
 - Dissimilar to SHA-1,2

Latest Generation of Hash Functions

[http://en.wikipedia.org/siki/SHA-3]
Combining Encryption and Authentication

- We've now seen secure encryption and security message authentication (via message authentication codes)
- If you want to do both, then you'll need to make two passes over the data, which is expensive
- A popular alternative today is to achieve encryption and authentication with a single primitive
 - and, notably, a single pass over the data
- The most widely used such mechanism is Galois/Counter Mode (GCM)

Inputs and Outputs of GCM Encryption

- Inputs to the GCM encryption algorithm
 - A secret key K for use with an underlying block cipher
 - An initialization vector IV of length between 1 and 2^{64}
 - For a fixed key K, each IV used in encryption must be distinct
 - A plaintext P of length up to $2^{39} - 256$
 - Additional data A to be authenticated (but not encrypted), of length up to 2^{64}
- Outputs from the GCM encryption algorithm
 - A ciphertext C of length the same as P
 - An authentication tag T of length t, $0 \leq t \leq 128$
- Note: If $|P| = 0$, then GCM is just a MAC on A, called “GMAC”
Inputs and Outputs of GCM Decryption

- GCM decryption algorithm takes as inputs
 - Secret key K
 - Initialization vector IV
 - Ciphertext C
 -Authenticated data A
 - Authentication tag T

- GCM decryption algorithm outputs
 - Plaintext P or
 - A failure symbol \bot

- If $(C, T) \leftarrow E_K(IV, P, A)$ then $P \leftarrow D_K(IV, C, A, T)$

GHASH

- Built using a function called $\text{GHASH}(H, A, C)$
- Suppose $H \in \{0, 1\}_{128}$ and $A \in \{0, 1\}_{128m}$ and $C \in \{0, 1\}_{128n}$
 - Let $A = A_1 A_2 \ldots A_m$ and $C = C_1 C_2 \ldots C_n$ with each $A_i, C_i \in \{0, 1\}_{128}$
 - Let \times and \oplus denote multiplication and addition in $GF(2^{128})$
- $\text{GHASH}(H, A, C)$ returns X_{m+n+1} where

\[
X_i = \begin{cases}
0 & \text{for } i = 0 \\
(X_{i-1} \oplus A_i) \times H & \text{for } i = 1 \ldots m \\
(X_{i-1} \oplus C_{i-m}) \times H & \text{for } i = m + 1 \ldots n \\
(X_{m+n} \oplus (\text{len}(A)||\text{len}(C))) \times H & \text{for } i = m + n + 1
\end{cases}
\]
GCM Encryption Algorithm

Algorithm $E_K(IV, P, A)$

1. $H \leftarrow F_K(0^{128})$
2. $Y_0 \leftarrow \text{GHASH}(H, \emptyset, IV)$
3. for $i \leftarrow 1 \ldots n$
 - $C_i \leftarrow P_i \oplus F_K(Y_0 + i)$
4. $C \leftarrow C_1 \parallel C_2 \parallel \ldots \parallel C_n$
5. $T \leftarrow \text{MSB}(\text{GHASH}(H, A, C) \oplus F_K(Y_0))$
6. return (C, T)

GCM Encryption Algorithm

![GCM Encryption Diagram](image-url)
GCM Security

- Both secrecy and authenticity guarantees can be reduced to PRF security of the underlying function family F
- Paper containing proof is posted to the web page