Function Families

- A function family is a map

\[F: \text{Keys}(F) \times \text{Dom}(F) \rightarrow \text{Range}(F) \]

where

- \text{Keys}(F) is the set of keys of \(F \), and is finite
- \text{Dom}(F) is the domain of \(F \)
- \text{Range}(F) is the range of \(F \), and is finite

- For any \(K \in \text{Keys}(F) \), we define \(F_K: \text{Dom}(F) \rightarrow \text{Range}(F) \) by \(F_K(X) = F(K, X) \)

- Usually
 - \text{Keys}(F) = \{0,1\}^k \text{, where } k \in \mathbb{N} \text{ is the key length}
 - \text{Dom}(F) = \{0,1\}^l \text{, where } l \in \mathbb{N} \text{ is the input length}
 - \text{Range}(F) = \{0,1\}^L \text{, where } L \in \mathbb{N} \text{ is the output length}
Function Families

- There is some probability distribution on $\text{Keys}(F)$
 - We denote by $K \leftarrow \text{Keys}(F)$ the selection of a key according to this distribution and its assignment to K
 - We denote by $f \leftarrow F$ the operation: $K \leftarrow \text{Keys}(F) ; f \leftarrow F_K$
 - Usually, this distribution is the uniform distribution

- F is a family of permutations if
 - $\text{Dom}(F) = \text{Range}(F)$
 - Each F_K is a permutation, i.e., F_K is a bijection and for each $X \in \text{Dom}(F)$, $|F_K(X)| = |X|$ where $|…|$ denotes length

Random Functions and Permutations

- Let
 - $\text{Func}(l, L)$ denote the set of all functions from $\{0,1\}^l$ to $\{0,1\}^L$
 - $\text{Perm}(l)$ denote the set of all permutations on $\{0,1\}^l$

- Think of $\text{Func}(l, L)$ and $\text{Perm}(l)$ as function families
 - $\text{Keys}(\text{Func}(l, L)) = \{ (Y_1, \ldots, Y_2) : Y_1, \ldots, Y_{2l} \in \{0,1\}^L \}$ with the uniform distribution, where
 $\text{Func}(l, L)((Y_1, \ldots, Y_2), X) = Y_X$, interpreting X as an integer
 - $\text{Keys}(\text{Perm}(l)) = \{ (Y_1, \ldots, Y_2) : Y_1, \ldots, Y_{2l} \in \{0,1\}^l \text{ and are distinct } \}$ with the uniform distribution, where
 $\text{Perm}(l)((Y_1, \ldots, Y_2), X) = Y_X$, interpreting X as an integer

- A random function is $f \leftarrow R \text{ Func}(l, L)$
- A random permutation is $f \leftarrow R \text{ Perm}(l)$
Pseudorandom Functions

A pseudorandom function family is a function family for which the behavior of a random instance is “computationally indistinguishable” from that of a random function.

To define this notion, consider a family

\[F: \text{Keys}(F) \times D \rightarrow R \]

Now consider a distinguisher who is given “black-box” access (or “oracle access”) to a function \(g \), where \(g \) is either

- Chosen at random from \(F \), i.e., \(g \leftarrow_F F \)
- Chosen at random from \(\text{Func}(D, R) \), i.e., from the set of all functions from \(D \) to \(R \)

By querying \(g \), the distinguisher must determine which of the two possibilities was used to create \(g \).

The distinguisher must guess which world it is in

- It outputs “0” or “1” after interacting with this oracle
PRF Definition

Let F: $\text{Keys}(F) \times D \to R$ be a family of functions, and let A be an algorithm that takes an oracle for a function g: $D \to R$ and returns a bit. We consider two experiments:

Experiment $\text{Expt}_F^{\text{prf}-1}(A)$
\[K \leftarrow \text{Keys}(F); \]
\[b \leftarrow A^FK; \]
\[\text{return } b \]

Experiment $\text{Expt}_F^{\text{prf}-0}(A)$
\[g \leftarrow \text{Func}(D, R); \]
\[b \leftarrow A^g; \]
\[\text{return } b \]

PRF Definition (cont.)

The prf-advantage of A is defined as
\[\text{Adv}_F^{\text{prf}}(A) = \Pr[\text{Expt}_F^{\text{prf}-1}(A) = 1] - \Pr[\text{Expt}_F^{\text{prf}-0}(A) = 1] \]

For any t, q, and μ we define the prf-advantage of F as
\[\text{Adv}_F^{\text{prf}}(t, q, \mu) = \max_A \left\{ \text{Adv}_F^{\text{prf}}(A) \right\} \]

where the maximum is over all A having time complexity t and making at most q oracle queries, the sum of the lengths of these queries being at most μ bits.
Peculiarities of This Definition

- **Where is the key length \(k \)?**
 - \(k \) doesn’t directly matter, but rather only the advantage gained by attackers does
 - In a well-designed \(F \) with key length \(k \), the prf-advantage of \(F \) should be something like \(t/2^k \), but this is just an ideal

- **There is no statement of when \(F \) is “secure”**
 - We will deal with this later
 - Informally, \(F \) is “secure enough” if the prf-advantage of \(F \) is “small enough” for “practical” values of the resource parameters

Pseudorandom Permutations

- **When considering permutations, the treatment is largely the same, but with two differences**

- **We replace \(\text{Func}(D, R) \) with \(\text{Perm}(D) \)**

- **There are two types of attacks we can consider**
 - Chosen plaintext attacks: As before, the adversary is given an oracle for the function \(g \) being tested.
 - Chosen ciphertext attacks: The adversary gets, in addition, an oracle for \(g^{-1} \)
PRPs Under Chosen Plaintext Attack

- Let F: Keys(F) \times D \rightarrow D be a family of functions, and let A be an algorithm that takes an oracle for a function g: D \rightarrow D and returns a bit. We consider two experiments:

 \[
 \begin{align*}
 \text{Experiment } & \text{Expt}^{\text{prp-1}}_F(A) \\
 K \leftarrow & \text{Keys}(F); \\
 b \leftarrow & A^{FK}; \\
 \text{return } b \\
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{Experiment } & \text{Expt}^{\text{prp-0}}_F(A) \\
 g \leftarrow & \text{Perm}(D); \\
 b \leftarrow & A^g; \\
 \text{return } b \\
 \end{align*}
 \]

PRPs Under Chosen Plaintext Attack

- The prp-cpa-advantage of A is defined as

 \[
 \text{Adv}^{\text{prp-cpa}}_F(A) = \Pr[\text{Expt}^{\text{prp-cpa-1}}_F(A) = 1] - \Pr[\text{Expt}^{\text{prp-cpa-0}}_F(A) = 1]
 \]

- For any t, q, and μ we define the prp-cpa-advantage of F as

 \[
 \text{Adv}^{\text{prp-cpa}}_F(t, q, \mu) = \max_A \{\text{Adv}^{\text{prp-cpa}}_F(A)\}
 \]

 where the maximum is over all A having time complexity t and making at most q oracle queries, the sum of the lengths of these queries being at most μ bits.
PRPs Under Chosen Ciphertext Attack

Let $F: \text{Keys}(F) \times D \rightarrow D$ be a family of functions, and let A be an algorithm that takes two oracles for functions $g: D \rightarrow D$ and $h: D \rightarrow D$ and returns a bit. We consider two experiments:

<table>
<thead>
<tr>
<th>Experiment $\text{Expt}_{F}^{\text{prp-cca-1}}(A)$</th>
<th>Experiment $\text{Expt}_{F}^{\text{prp-cca-0}}(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K \leftarrow \text{Keys}(F)$; $b \leftarrow A_{F,K}^{g,F}$; return b</td>
<td>$g \leftarrow \text{Perm}(D)$; $b \leftarrow A_{g}^{g^{-1},1}$; return b</td>
</tr>
</tbody>
</table>

The prp-cca-advantage of A is defined as

$$\text{Adv}_{F}^{\text{prp-cca}}(A) = \Pr[\text{Expt}_{F}^{\text{prp-cca-1}}(A) = 1] - \Pr[\text{Expt}_{F}^{\text{prp-cca-0}}(A) = 1]$$

For any $t, q_e, \mu_e, q_d, \mu_d$ we define the prp-cca-advantage of F as

$$\text{Adv}_{F}^{\text{prp-cca}}(t, q_e, \mu_e, q_d, \mu_d) = \max_{A} \left\{ \text{Adv}_{F}^{\text{prp-cca}}(A) \right\}$$

where the maximum is over all A having time complexity t and making

- At most q_e oracle queries to the g oracle, the sum of the lengths of these queries being at most μ_e bits, and
- At most q_d oracle queries to the g^{-1} oracle, the sum of the lengths of these queries being at most μ_d bits.
The Birthday Problem

Proposition: Let $C(N, q)$ denote the probability of a collision when throwing $q \geq 1$ balls at random into $N \geq q$ buckets. Then,

$$0.3 \cdot \frac{q(q-1)}{N} \leq C(N, q) \leq 0.5 \cdot \frac{q(q-1)}{N} \text{ for } q \leq \sqrt{2N}$$

\begin{align*}
\text{Proof of upper bound:} & \quad \text{Let } C_i \text{ be the event that the } i\text{-th ball collides with one of the previous. Then } Pr[C_i] \leq (i-1)/N. \text{ So,} \\
C(N, q) &= Pr[C_1 \cup C_2 \cup \ldots \cup C_q] \\
&\leq Pr[C_1] + Pr[C_2] + \ldots + Pr[C_q] \\
&\leq \frac{0}{N} + \frac{1}{N} + \ldots + \frac{q-1}{N} \\
&= \frac{q(q-1)}{2N}
\end{align*}

\begin{align*}
\text{Proof of lower bound:} & \quad \text{Fact: If } 0 \leq x \leq 1, \text{ then } \left(1-\frac{1}{e}\right) \cdot x \leq 1 - e^{-x} \leq x. \\
\text{Let } D_i \text{ be the event that there is no collision after throwing } i \text{ balls. Then,} \\
Pr[D_1] &= 1 \\
Pr[D_{i+1} \mid D_i] &= \frac{N-i}{N} = 1 - \frac{i}{N} \\
\text{So, the probability of no collision at the end is} \\
1 - C(N, q) &= Pr[D_q] = \prod_{i=1}^{q-1} Pr[D_{i+1} \mid D_i] \\
&= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right) \\
&\leq \prod_{i=1}^{q-1} e^{-i/N} = e^{-1/N} \cdot e^{-2/N} \cdot \ldots \cdot e^{-((q-1)/N)} = e^{-q(q-1)/2N}
\end{align*}
The Birthday Problem

Since \(q \leq \sqrt{2N} \), we know that \(q(q-1)/2N \leq 1 \).

So,

\[
C(N, q) \geq 1 - e^{-q(q-1)/2N} \\
\geq \left(1 - \frac{1}{e}\right) \frac{q(q-1)}{2N} \\
\geq 0.3 \cdot \frac{q(q-1)}{N}
\]

Applications of Birthday Problem to PRFs

Proposition: Let \(F: \{0,1\}^k \times \{0,1\}^l \rightarrow \{0,1\}^l \) be a family of permutations, and suppose \(2 \leq q \leq 2^{(l+1)/2} \) and \(t \) is the time for \(q \) computations of \(F \) plus \(O(ql) \). Then

\[
\text{Adv}_F^{\text{prf}}(t, q, ql) \geq 0.3 \cdot \frac{q(q-1)}{2^l}
\]

\(\triangleright \) Proof: Consider an adversary \(A \) with oracle \(g \) who simply invokes \(g \) with \(q \) distinct values, and returns 1 iff all the responses are distinct.

\[
\Pr[\text{Expt}_F^{\text{prf}-1}(A) = 1] = 1 \quad \Pr[\text{Expt}_F^{\text{prf}-0}(A) = 1] = 1 - C(2^l, q)
\]

So,

\[
\text{Adv}_F^{\text{prf}}(A) = \Pr[\text{Expt}_F^{\text{prf}-1}(A) = 1] - \Pr[\text{Expt}_F^{\text{prf}-0}(A) = 1] \\
= 1 - \left(1 - C(2^l, q)\right) \geq 0.3 \cdot \frac{q(q-1)}{2^l}
\]
PRFs versus PRPs

- **Proposition:** Suppose $F : \{0,1\}^k \times \{0,1\}^l \rightarrow \{0,1\}^l$ is a family of permutations. Then,

$$\text{Adv}_{F}^{\text{prf}}(t, q, q l) \leq \frac{q(q-1)}{2^{l+1}} + \text{Adv}_{F}^{\text{prp-cpa}}(t, q, q l)$$

for any r and q.

- **Proof:** Let A be an adversary that takes an oracle for a function $g : \{0,1\}^l \rightarrow \{0,1\}^l$. We show that

$$\text{Adv}_{F}^{\text{prf}}(A) \leq \frac{q(q-1)}{2^{l+1}} + \text{Adv}_{F}^{\text{prp-cpa}}(A)$$

where q is the number of oracle queries made by A.

PRFs versus PRPs

Let B denote the adversary that first runs A to obtain an output b and then returns $\neg b$, i.e., the complement of b.

$$\text{Adv}_{F}^{\text{prf}}(A) = \Pr[\text{Exp}_{F}^{\text{prf}}(A) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}}(A) = 1]$$

$$= (1 - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1]) - (1 - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1])$$

$$= \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1]$$

$$= \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1]$$

$$+ \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1]$$

$$= \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}}(B) = 1] + \text{Adv}_{F}^{\text{prp-cpa}}(A)$$
PRFs versus PRPs

So, it suffices to show that

\[\Pr[\text{Exp}_F^{\text{prf-o}}(B) = 1] - \Pr[\text{Exp}_F^{\text{prp-cpa-o}}(B) = 1] \leq \frac{q(g-1)}{2^{l+1}} \]

Let \(g \) denote the oracle in \(\text{Exp}_F^{\text{prf-o}}(B) \), and assuming (wlog) that all queries by \(B \) to the oracle are distinct, let \(D \) denote the event that all the responses are distinct.

\[
\Pr[\text{Exp}_F^{\text{prf-o}}(B) = 1] = \Pr[B^g = 1] = \Pr[B^g = 1 \mid D] \cdot \Pr[D] + \Pr[B^g = 1 \mid \neg D] \cdot \Pr[\neg D] \\
\leq \Pr[B^g = 1 \mid D] + \Pr[\neg D] \\
= \Pr[\text{Exp}_F^{\text{prp-cpa-o}}(B) = 1] + \Pr[\neg D] \\
\leq \Pr[\text{Exp}_F^{\text{prp-cpa-o}}(B) = 1] + \frac{q(g-1)}{2^{l+1}}
\]

Application: Password Hashing

- An approach for a computer to check a password for user \(U \) is:
 - Store \((U, h(K))\) where \(K \) is the user’s password
 - The user claiming to be \(U \) enters password \(K' \), and the system confirms that \(h(K) \) is stored with \(U \)
 - Here, \(h: \{0,1\}^k \rightarrow \{0,1\}^L \) is a “password hashing function”

- A common choice is \(h(K) = F_K(0^L) \) where \(F \) is a PRP, i.e., a block cipher
 - Is this a good idea?
 - For now, let’s assume that passwords are chosen uniformly at random

- What is the security property we’re trying to achieve?
 - Informally, if an attacker gets the file of \((U, h(K))\) pairs, it shouldn’t be able to learn the password \(K \) ...
 - ... or any other \(K' \) where \(h(K') = h(K) \)
One-Way Functions from PRFs

Let \(h: \{0,1\}^k \to \{0,1\}^L \) be a function, and let \(I \) be an algorithm that on input an \(L \)-bit string returns a \(k \)-bit string. Consider

Experiment \(\text{Exp}_{h}(I) \)

\[
K \leftarrow \{0,1\}^k; \\
y \leftarrow h(K); \\
x \leftarrow I(y); \\
\text{if } h(x) = y \text{ return 1 else return 0}
\]

The owf-advantage of \(I \) is

\[
\text{Adv}_{h}^{\text{owf}}(I) = \Pr[\text{Exp}_{h}(I) = 1]
\]

For any \(t \), we define the owf-advantage of \(h \) as

\[
\text{Adv}_{h}^{\text{owf}}(t) = \max_I \{ \text{Adv}_{h}^{\text{owf}}(I) \}
\]

where the maximum is over all \(I \) having time complexity \(t \).

One-Way Functions from PRFs

Intuitively, we’d like to show that if \(h(K) = F_K(0^L) \) where \(F \) is a “secure” PRP, then \(h \) is one-way.

- That is, if \(h \) is not one-way, then \(F \) is not a good PRP.

Theorem: Let \(F: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^L \) be a family of functions, and define \(h(K) = F_K(0^l) \). If \(k < L \), then

\[
\text{Adv}_{h}^{\text{owf}}(t) \leq \frac{1}{1 - 2^{k-L}} \cdot \text{Adv}_{F}^{\text{owf}}(t',1,l)
\]

where \(t' \) is \(t \) plus the time for one computation of \(F \).

- Note: Since \(k < L \),

\[
\frac{1}{1 - 2^{k-L}} \leq 2
\]
One-Way Functions from PRFs

Proof: Let I be any adversary attempting to invert h. Define a PRF adversary D_I as follows.

Adversary D_I

$y \leftarrow g(0^l)$;

$x \leftarrow I(y)$;

if $F_x(0^l) = y$ return 1 else return 0

For convenience, let

$\epsilon = \text{Adv}^\text{out}_h(I)$

First note that

$\Pr[\text{Expt}^{\text{prf-1}}_F(D_I) = 1] = \epsilon$

since $\text{Expt}^{\text{out}}_h(I)$ and $\text{Expt}^{\text{prf-1}}_h(D_I)$ are identical.

One-Way Functions from PRFs

Second, we show that

$\Pr[\text{Expt}^{\text{prf-0}}_F(D_I) = 1] \leq \frac{2^k}{2^L} \cdot \epsilon$

In $\text{Expt}^{\text{prf-0}}_F(D_I)$, y is uniformly distributed over $\{0,1\}^L$. So, we want to upper bound

$\delta = \Pr[y \leftarrow \mathcal{R}, x \leftarrow I(y) : F_x(0^l) = y]$

where the probability is taken over the choice of y and the random choices made by I.

However, here we will prove it only for the case where I is deterministic. (See text for full proof.)
One-Way Functions from PRFs

If I is deterministic, let

$X = \{ x \in \{0,1\}^k : h(I(h(x))) = h(x) \}$

$Y = \{ y \in \{0,1\}^k : h(I(y)) = y \}$

Note that if $y \in Y$ then $I(y) \in X$, and so $|Y| \leq |X|$. So,

$\delta = \frac{|Y|}{2^L}$ by definition of Y

$\leq \frac{|X|}{2^L}$ since $|Y| \leq |X|$

$= 2^k \cdot \epsilon$ since $\epsilon = |X|/2^k$

To summarize,

$\Pr[\text{Expt}_{F}^{prf^{-1}}(D_I) = 1] = \epsilon$

$\Pr[\text{Expt}_{F}^{prf^{-0}}(D_I) = 1] \leq \frac{2^k}{2^L} \cdot \epsilon$

So,

$\text{Adv}_{F}^{prf}(D_I) = \Pr[\text{Expt}_{F}^{prf^{-1}}(D_I) = 1] - \Pr[\text{Expt}_{F}^{prf^{-0}}(D_I) = 1]$

$\geq \epsilon - \frac{2^k}{2^L} \cdot \epsilon$

$= (1 - 2^{k-L}) \cdot \epsilon$

And by dividing we get

$\epsilon \leq \frac{1}{1 - 2^{k-L}} \cdot \text{Adv}_{F}^{prf}(D_I)$
Applications of PRFs and PRPs

- PRFs and PRPs are very useful notions in cryptography

- One of their most common uses is to model block ciphers
 - You’ve probably heard of some, like DES and AES
 - PRP is now the most accepted security criteria for a block cipher

- Unfortunately, we do not know how to prove that a block cipher is, in fact, a PRP
 - We try to design it to be, and then assume it is

Building PRFs and PRPs in Practice

- Practical PRF/PRP design has historically be driven by two principles, proposed originally by Shannon in 1949

- Diffusion
 - In many applications, an attacker has knowledge of the statistical characteristics of the inputs
 - Diffusion strives to dissipate the structure of the plaintext into long range statistics of the ciphertext
 - This is achieved by having each plaintext byte affect the value of many ciphertext bytes, or in other words, by having each ciphertext byte depend on many plaintext bytes

- Confusion
 - Seeks to make the relationship between the ciphertext and the key as complex as possible, so that mapping ciphertext statistics to key statistics is difficult
The AES Competition

- In 1999, the U.S. National Institute of Standards and Technology (NIST) issued a call for proposals for a new Advanced Encryption Standard ("AES")
 - Would replace the aging Data Encryption Standard that had been standardized in the late 1970s
 - Block cipher was required to have a block length of 128 bits and support key lengths of 128, 192, and 256 bits
 - Call for proposals yielded over 20, reduced to 15 in a first round and 5 in a second round

- NIST completed its evaluation process in November 2001
 - Settled on an algorithm called “Rijndael”

Differences Between Rijndael and AES

- As originally proposed, Rijndael permitted the block length and key length to be specified independently
 - Could be 128, 192 or 256 bits
- As initially standardized, AES limited the block length to 128 bits
 - Key length could still be chosen as 128, 192 or 256 bits
- This is the only difference between the two

- Our description here will assume that both block length and key length are 128 bits
High-Level Structure

- Input and output are 128-bit blocks
- Consists of 11 rounds:
 - Round 0 consists only of an “add round key” step
 - Rounds 1-9 consist of four steps each
 - Round 10 consists of three steps
- Each round has a step that is dependent on the key
 - Expanded key is denoted by “\(w\)"
 - \(w[4i, 4i+3]\) denote the 4-word (128-bit) round key for round \(i\)

Input, State, Output and Key

- Input, state, and output is a square matrix of bytes
 - Matrix is column-oriented
- Key is also a square matrix, but is expanded to 44 words
 - 4 words per round
Stages

- Most block ciphers utilize at least the following types of operations
 - Substitution: Portions of state are replaced by other values (in a way that can be inverted)
 - Permutation: State is reordered

- AES stages consist of three substitutions and one permutation
 - Substitute bytes: Performs a byte-by-byte substitution of the block
 - Shift rows: A simple permutation
 - Mix columns: A substitution that makes use of arithmetic over GF(2^8)
 - Add round key: XOR of the current block with a portion of the expanded key

An AES Round
The Substitute Bytes Stage

- This is a simple table lookup
- AES defines a 16x16 table ("S-box") of all 256 8-bit values
- Each byte of the “State” matrix is used to index into the S-box
 - First 4 bits indexes the S-box row, second 4 bits indexes column

S-box Rationale

- S-boxes are designed to withstand known cryptanalytic attacks

- Some goals
 - Low correlation between input bits and output bits
 - Output cannot be described as a simple mathematical function of input
 - S-box has no fixed points (S-box(a) = a) or “opposite” fixed points (S-box(a) = ¬a, where ¬a denotes bitwise complement of a)
 - S-box has no self-inverses (S-box(a) = IS-box(a) where IS-box denotes the inverse of S-box)
S-box Construction

- Initialize $S-box(a) = a$
- Replace $S-box(a)$, $a \neq 0$, with a^{-1} in $GF(2^8)$
 - AES uses irreducible polynomial $f(x) = x^8 + x^4 + x^3 + x + 1$
- Transform each byte $b_7b_6b_5b_4b_3b_2b_1b_0$ as follows, where operations are in $GF(2)$

\[
\begin{array}{cccccccc}
 b_0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & b_0
 \\
b_2 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & b_1
 \\
b_2 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & b_0
 \\
b_3 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & b_3
 \\
b_4 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & b_2
 \\
b_5 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & b_1
 \\
b_6 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & b_0
 \\
b_7 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & b_7
\end{array}
\]

Shift Row Permutation

- A seemingly simple permutation
 - Row i, $i \in \{0, \ldots, 3\}$, undergoes a i-byte circular left shift
- Ensures that each column is spread across all four columns
 - Significant since input is copied into columns, and since (as we will see) round key is applied to State column-by-column
Mix Column Substitution

- Each byte of each column in State is mapped into a new value that is a function of all four bytes in the column

\[
\begin{bmatrix}
 s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
 s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\
 s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\
 s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}
\end{bmatrix}
\begin{bmatrix}
 02 & 03 & 01 & 01 \\
 01 & 02 & 03 & 01 \\
 01 & 01 & 02 & 03 \\
 03 & 01 & 01 & 02
\end{bmatrix}
\begin{bmatrix}
 s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\
 s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\
 s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\
 s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}
\end{bmatrix}
\]

- Operations are done in $GF(2^8)$
 - Coefficients are written in hexadecimal

Rationale for Mix Column

- Coefficients are based on a linear code with maximal distance between code words
 - Ensures good mixing among the bytes of each column
 - Together with shift row permutation, ensures that all output bits depend on all input bits after a few rounds

- Coefficients were influenced by implementation considerations
 - Intended to minimize the number of XORs in multiplications
 - Inverse coefficients for decryption do not share this property, but encryption is more important
 - Some encryption modes (e.g., counter mode) do not require inverting
 - Some applications (e.g., MACs) do not require inverting
Add Round Key Stage

- State is bitwise XOR'd with the 128-bit round key

Rationale
- As simple as possible
- Affects every bit of State

AES Key Expansion

- Input is a 4-word (16 byte) key
- Output is an array of 44 words
- First 4 output words is input key
- Remainder are generated 4 words at a time
- Utilizes a function g as shown for every fourth word
AES Key Expansion

- **Function g utilizes the following**
 - Function RotWord performs a one-byte circular left-shift on a word
 \[[B_0, B_1, B_2, B_3] \rightarrow [B_1, B_2, B_3, B_0] \]
 - Function SubWord performs a byte substitution on each byte of its input word, using the S-box
 - A round constant $Rcon[j]$ of length one word

- **Then, g in round j is defined as follows**

 \[
g(w) = \text{SubWord}(\text{RotWord}(w)) \oplus Rcon[j]
 \]
AES Key Expansion

Rationale
- Designed to be resistant to known cryptanalytic attacks
- Inclusion of round-dependent constant eliminates symmetry in round key generation across rounds
- Designed to be fast on a range of processors
- Diffusion of cipher key differences into round keys
 - Each key bit affects many round key bits
- Enough nonlinearity to prohibit the full determination of round key differences from cipher key differences only

Implementation on 32-bit Processors

- Denote State matrix elements by a_{ij}, and round key matrix elements by k_{ij}

- Recall that stages take the following form

<table>
<thead>
<tr>
<th>SubBytes</th>
<th>$b_{i,j} \leftarrow S[a_{i,j}]$</th>
<th>MixColumns</th>
<th>$d_{0,j}$</th>
<th>$d_{1,j}$</th>
<th>$d_{2,j}$</th>
<th>$d_{3,j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>02</td>
<td>03</td>
<td>01</td>
<td>$c_{0,j}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>$c_{1,j}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>01</td>
<td>02</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03</td>
<td>01</td>
<td>01</td>
<td>02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ShiftRows</th>
<th>$c_{0,j}$</th>
<th>$c_{1,j}$</th>
<th>$c_{2,j}$</th>
<th>$c_{3,j}$</th>
<th>$b_{0,j}$</th>
<th>$b_{1,j}$</th>
<th>$b_{2,j}$</th>
<th>$b_{3,j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{0,j}$</td>
<td>$c_{1,j}$</td>
<td>$c_{2,j}$</td>
<td>$c_{3,j}$</td>
<td>$b_{0,j}$</td>
<td>$b_{1,j}$</td>
<td>$b_{2,j}$</td>
<td>$b_{3,j}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AddRoundKey</th>
<th>$a_{0,j}$</th>
<th>$a_{1,j}$</th>
<th>$a_{2,j}$</th>
<th>$a_{3,j}$</th>
<th>$d_{0,j}$</th>
<th>$d_{1,j}$</th>
<th>$d_{2,j}$</th>
<th>$d_{3,j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{0,j}$</td>
<td>$a_{1,j}$</td>
<td>$a_{2,j}$</td>
<td>$a_{3,j}$</td>
<td>$d_{0,j}$</td>
<td>$d_{1,j}$</td>
<td>$d_{2,j}$</td>
<td>$d_{3,j}$</td>
<td>$k_{0,j}$</td>
</tr>
</tbody>
</table>

Copyright © 2017 by Michael Reiter
All rights reserved.
Implementation on 32-bit Processors

- If we combine these we get

\[
\begin{bmatrix}
 e_{0,j} \\
 e_{1,j} \\
 e_{2,j} \\
 e_{3,j}
\end{bmatrix}
= \begin{bmatrix}
 02 & 03 & 01 & 01 \\
 01 & 02 & 03 & 01 \\
 01 & 01 & 02 & 03 \\
 03 & 01 & 01 & 02
\end{bmatrix}
\begin{bmatrix}
 S[a_{0,j}] \\
 S[a_{1,j-1}] \\
 S[a_{2,j-2}] \\
 S[a_{3,j-3}]
\end{bmatrix}
\oplus
\begin{bmatrix}
 k_{0,j} \\
 k_{1,j} \\
 k_{2,j} \\
 k_{3,j}
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
 e_{0,j} \\
 e_{1,j} \\
 e_{2,j} \\
 e_{3,j}
\end{bmatrix}
\leftarrow \begin{bmatrix}
 02 & 03 & 01 & 01 \\
 01 & 02 & 03 & 01 \\
 01 & 01 & 02 & 03 \\
 03 & 01 & 01 & 02
\end{bmatrix}
\left(\begin{bmatrix}
 S[a_{0,j}] \\
 S[a_{1,j-1}] \\
 S[a_{2,j-2}] \\
 S[a_{3,j-3}]
\end{bmatrix} + \begin{bmatrix}
 k_{0,j} \\
 k_{1,j} \\
 k_{2,j} \\
 k_{3,j}
\end{bmatrix}\right)
\]

Implementation on 32-bit Processors

- Suppose we now compute 4 tables in advance, each mapping a byte to a 32-bit word
 - Each table consumes 1KB

\[
T_0(x) = \begin{bmatrix}
 02 \\
 01 \\
 03
\end{bmatrix} \cdot S[x]
\]

\[
T_1(x) = \begin{bmatrix}
 03 \\
 02 \\
 01
\end{bmatrix} \cdot S[x]
\]

\[
T_2(x) = \begin{bmatrix}
 01 \\
 03 \\
 02
\end{bmatrix} \cdot S[x]
\]

\[
T_3(x) = \begin{bmatrix}
 01 \\
 01 \\
 03
\end{bmatrix} \cdot S[x]
\]

Copyright © 2017 by Michael Reiter
All rights reserved.
Implementation on 32-bit Processors

- Then, we can define a round function operating on a column, as follows

\[
\begin{bmatrix}
 s_{0,j} \\
 s_{1,j} \\
 s_{2,j} \\
 s_{3,j}
\end{bmatrix} \leftarrow T_0[s_{0,j}] \oplus T_1[s_{1,j-1}] \oplus T_2[s_{2,j-2}] \oplus T_3[s_{3,j-3}] \oplus
\begin{bmatrix}
 k_{0,j} \\
 k_{1,j} \\
 k_{2,j} \\
 k_{3,j}
\end{bmatrix}
\]

- This implementation requires only four table lookups and four XORs per column per round
 - Plus 4KB to store tables