Symmetric Encryption

Mike Reiter

Based on Chapter 5 of Bellare and Rogaway, "Introduction to Modern Cryptography".

A symmetric encryption scheme is a triple \(SE = \langle K, E, D \rangle \) of efficiently computable algorithms

- \(K \) is a randomized “key generation algorithm” that outputs a “key”
 \[K \leftarrow K() \]
 We let \(\text{Keys}(SE) \) denote all keys that are output by \(K() \) with nonzero probability.

- \(E \) is a randomized or stateful “encryption algorithm” that takes a key \(K \) and “plaintext” \(M \in \{0,1\}^* \) as input, and outputs \(\perp \) or a “ciphertext”
 \[C \leftarrow E_K(M) \]
 The “plaintext space” is \(\{M : E_K(M) \neq \perp\} \).

- \(D \) takes a ciphertext \(C \) and key \(K \) as input, and outputs \(\perp \) or a plaintext
 \[M \leftarrow D_K(C) \]

If \(C \leftarrow E_K(M) \) and \(C \neq \perp \) then \(M \leftarrow D_K(C) \)
One-Time Pad Encryption

Algorithm $\mathcal{K}(\cdot)$:
\[K \leftarrow \{0,1\}^k \]

Algorithm $\mathcal{E}_K(M)$:
\[\text{static } ctr \leftarrow 0 \]
\[m \leftarrow |M| \]
\[\text{if } (ctr + m > k) \text{ return } \bot \]
\[C \leftarrow M \oplus K[ctr \ldots ctr + m - 1] \]
\[ctr \leftarrow ctr + m \]

Algorithm $\mathcal{D}_K((ctr, C))$:
\[m \leftarrow |M| \]
\[\text{if } (ctr + m > k) \text{ return } \bot \]
\[M \leftarrow C \oplus K[ctr \ldots ctr + m - 1] \]

ECB Encryption

- ECB = “Electronic Code Book”
- Let $f : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a pseudorandom permutation

Algorithm $\mathcal{K}(\cdot)$:
\[K \leftarrow \{0,1\}^k \]

Algorithm $\mathcal{E}_K(M)$:
\[\text{if } (|M| \mod n \neq 0 \text{ or } |M| = 0) \text{ return } \bot \]
\[M_1 | \ldots | M_m \leftarrow M : M_i \in \{0,1\}^n \]
\[\text{for } i = 1 \ldots m \text{ do } C_i \leftarrow f_K(M_i) \]
\[\text{return } C_1 | \ldots | C_m \]

Algorithm $\mathcal{D}_K(C)$:
\[\text{if } (|C| \mod n \neq 0 \text{ or } |C| = 0) \text{ return } \bot \]
\[C_1 | \ldots | C_m \leftarrow C : C_i \in \{0,1\}^n \]
\[\text{for } i = 1 \ldots m \text{ do } M_i \leftarrow f_K^{-1}(C_i) \]
\[\text{return } M_1 | \ldots | M_m \]
Randomized CBC Encryption

- "CBC" = Cipher Block Chaining
- Let \(f: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n \) be a pseudorandom permutation

Algorithm \(E_K(M) \):

1. if (|M| mod \(n \) ≠ 0 or |M| = 0) return ⊥
2. \(M_1|...|M_m \leftarrow M: M_i \in \{0,1\}^n \)
3. \(C_0 \leftarrow \{0,1\}^n \)
4. for \(i = 1...m \) do \(C_i \leftarrow f_K(C_{i-1} \oplus M_i) \)
5. return \(C_0 \mid C_1 \mid ... \mid C_m \)

Algorithm \(D_K(C) \):

1. if (|C| mod \(n \) ≠ 0 or |C| = 0) return ⊥
2. \(C_0 \mid C_1 \mid ... \mid C_m = C: C_i \in \{0,1\}^n \)
3. for \(i = 1...m \) do \(M_i \leftarrow f_K^{-1}(C_i) \oplus C_{i-1} \)
4. return \(M_1 \mid ... \mid M_m \)

Stateful CBC Encryption

- Let \(f: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n \) be a pseudorandom permutation

Algorithm \(E_K(M) \):

1. static ctr ← 0
2. if (|M| mod \(n \) ≠ 0 or |M| = 0) return ⊥
3. \(M_1|...|M_m \leftarrow M: M_i \in \{0,1\}^n \)
4. if (ctr + \(m \) ≥ \(2^n \)) return ⊥
5. \(C_0 \leftarrow ctr \)
6. for \(i = 1...m \) do \(C_i \leftarrow f_K(C_{i-1} \oplus M_i) \)
7. \(ctr \leftarrow ctr + m \)
8. return \(C_0 \mid C_1 \mid ... \mid C_m \)

Algorithm \(D_K(C) \):

1. if (|C| mod \(n \) ≠ 0 or |C| = 0) return ⊥
2. \(C_0 \mid C_1 \mid ... \mid C_m = C: C_i \in \{0,1\}^n \)
3. if (\(C_0 + m \geq 2^n \)) return ⊥
4. for \(i = 1...m \) do \(M_i \leftarrow f_K^{-1}(C_i) \oplus C_{i-1} \)
5. return \(M_1 \mid ... \mid M_m \)
Randomized Counter Mode Encryption

Let \(f : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^l \) be a pseudorandom function

Algorithm \(E_K(M) \):
- if \((|M| \text{ mod } l \neq 0 \text{ or } |M| = 0 \text{ or } |M| > 2^n)\) return \(\perp \)
- \(M_1, \ldots, M_m \leftarrow M : M_i \in \{0,1\}^l \)
- \(R \leftarrow \text{R} \{0,1\}^n \)
- for \(i = 1 \ldots m \) do \(C_i \leftarrow f_K(R+i \text{ mod } 2^n) \oplus M_i \)
- return \(R \mid C_1 \mid \ldots \mid C_m \)

Algorithm \(D_K(C) \):
- if \((|C| - n \text{ mod } l \neq 0 \text{ or } |C| < n \text{ or } |C| > n + l^2)\) return \(\perp \)
- \(R \mid C_1 \mid \ldots \mid C_m \leftarrow C : R \in \{0,1\}^n \text{ and } C_i \in \{0,1\}^l \)
- for \(i = 1 \ldots m \) do \(M_i \leftarrow f_K(R+i \text{ mod } 2^n) \oplus C_i \)
- return \(M_1 \mid \ldots \mid M_m \)

Stateful Counter Mode Encryption

Let \(f : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^l \) be a pseudorandom function

Algorithm \(E_K(M) \):
- static \(ctr \leftarrow 0 \)
- if \((|M| \text{ mod } l \neq 0 \text{ or } |M| = 0)\) return \(\perp \)
- \(M_1, \ldots, M_m \leftarrow M : M_i \in \{0,1\}^l \)
- if \((\text{ctr} + m \geq 2^n)\) return \(\perp \)
- for \(i = 1 \ldots m \) do \(C_i \leftarrow f_K(\text{ctr}+i) \oplus M_i \)
- \(\text{ctr} \leftarrow \text{ctr} + m \)
- return \(\text{ctr} \mid C_1 \mid \ldots \mid C_m \)

Algorithm \(D_K(C) \):
- if \((|C| - n \text{ mod } l \neq 0 \text{ or } |C| < n \text{ or } |C| \geq n + l^2)\) return \(\perp \)
- \(\text{ctr} \mid C_1 \mid \ldots \mid C_m \leftarrow C : \text{ctr} \in \{0,1\}^n \text{ and } C_i \in \{0,1\}^l \)
- for \(i = 1 \ldots m \) do \(M_i \leftarrow f_K(\text{ctr}+i \text{ mod } 2^n) \oplus C_i \)
- \(\text{ctr} + m \)
- return \(M_1 \mid \ldots \mid M_m \)
IND-CPA

- IND-CPA = “Indistinguishability under Chosen Plaintext Attack”
- Let $SE = \langle K, E, D \rangle$ be a symmetric encryption scheme
- Consider an adversary A that is given access to a “left or right encryption oracle” $E_K(\text{LR}(\cdot, \cdot, b))$, $b \in \{0,1\}$ defined as:

 Oracle $E_K(\text{LR}(M_0, M_1, b))$

 $C \leftarrow E_K(M_b)$

 return C

- A can invoke this oracle repeatedly with arguments M_0, M_1 of its choosing
- Intuitively, A’s job is to determine b

Unfortunately, A can easily determine b if it makes certain types of queries:

- $|M_0| \neq |M_1|$
- $E_K(M_0) = \bot$ but $E_K(M_1) \neq \bot$

So, in our definition we rule out “illegitimate” adversaries, defined as those that can ever call $E_K(\text{LR}(M_0, M_1, b))$ where

- $|M_0| \neq |M_1|$
- $E_K(M_0) = \bot$ or $E_K(M_1) = \bot$

“Legitimate” adversaries are those that are not illegitimate.
IND-CPA

- **Definition:** Let \(SE = (K, E, D) \) be a symmetric encryption scheme, and let \(A \) be an algorithm that has access to an oracle that takes as input a pair of strings and returns a string. Define

 \[
 \text{Experiment } \text{Exp}^{\text{ind-cca}}(A) \\
 K \leftarrow \mathcal{K}() \\
 b' \leftarrow A_{E, D}(LR(M_0, M_1, b)) \\
 \text{return } b'
 \]

 The **IND-CPA advantage of** \(A \) is defined as

 \[
 \text{Adv}^{\text{ind-cca}}(A) = \text{Pr}[\text{Exp}^{\text{ind-cca}}(A) = 1] - \text{Pr}[\text{Exp}^{\text{ind-cca}}(A) = 0]
 \]

 if \(A \) is legitimate, and 0 otherwise.

IND-CPA

- For any \(t, q, \mu \) we define the **IND-CPA advantage of** \(SE \) as

 \[
 \text{Adv}^{\text{ind-cca}}(t, q, \mu) = \max_A \left\{ \text{Adv}^{\text{ind-cca}}(A) \right\}
 \]

 where the maximum is over all \(A \) having time complexity \(t \) and making at most \(q \) oracle queries, the sum of the lengths of these queries being at most \(\mu \) bits.

 - Time complexity is the worst-case time for the entire experiment
 - Length of a query \(X(LR(M_0, M_1, b)) \) is \(|M_0| \)

- Informally, \(SE \) is “IND-CPA secure” if the IND-CPA advantage of \(SE \) is small.
IND-CPA Advantage for ECB

Proposition: Let $SE = \langle K, E, D \rangle$ denote ECB encryption using pseudorandom permutation f: $\{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$. Then,

$$\text{Adv}^{\text{ind-CPA}}_{SE}(t,1,2n) = 1$$

where $t = O(n)$ plus the time for two applications of f.

Proof: We describe an adversary A that makes 1 query to its oracle of length $2n$, and having

$$\text{Adv}^{\text{ind-CPA}}_{SE}(A) = 1$$

Now it is easy to see that

$$\Pr\left[\text{Expt}^{\text{ind-CPA}^{-1}}_{SE}(A) = 1\right] = 1$$

$$\Pr\left[\text{Expt}^{\text{ind-CPA}^{-0}}_{SE}(A) = 1\right] = 0$$
Deterministic and Stateless Encryption

Proposition: Let $SE = \langle K, E, D \rangle$ denote a deterministic, stateless symmetric encryption system. Assume there is an integer m such that the plaintext space of SE contains two elements of length m. Then

$$Adv_{SE}^{\text{ind-adv}}(t, 2, 2m) = 1$$

where $t = O(m)$ plus the time for two encryptions.

Proof: Consider the following adversary:

- Adversary $A_{E}(LR(\cdot, \cdot, b))$
- Let X, Y be distinct m-bit plaintexts
- $C_1 \leftarrow E_K(LR(X, Y, b))$
- $C_2 \leftarrow E_K(LR(Y, Y, b))$
- If $(C_1 = C_2)$ return 1 else return 0

IND-CPA Advantage for Stateful CBC

Proposition: Let $SE = \langle K, E, D \rangle$ denote stateful CBC encryption using pseudorandom permutation $f: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$. Then,

$$Adv_{SE}^{\text{ind-adv}}(t, 2, 2n) = 1$$

for $t = O(n)$ plus time for two applications of the block cipher.
IND-CPA Advantage of Stateful CBC

Proof. Consider the following adversary A:

Adversary $A^{E_{K}(LR(\cdot, \cdot, b))}$

- $M_0^1 \leftarrow 1^{n-1}0; \ M_0^1 \leftarrow 0^{n-1}1$
- $M_0^2 \leftarrow 1^{n-1}0; \ M_0^2 \leftarrow 0^n$
- $\langle C_0^1, C_1^1 \rangle \leftarrow E_{K}(LR(M_0^1, M_1^1, b))$
- $\langle C_0^2, C_1^2 \rangle \leftarrow E_{K}(LR(M_0^2, M_1^2, b))$
- if ($C_1^1 = C_1^2$) return 1 else return 0

First note that $C_0^1 = 0^n$ and $C_0^2 = 0^{n-1}1$ because in the stateful CBC, the initialization vector is determined by a counter.

If $b = 1$, then

- $M_1^1 \oplus C_0^1 = 0^{n-1}1 \oplus 0^n = 0^{n-1}1$
- $M_1^2 \oplus C_0^2 = 0^n \oplus 0^{n-1}1 = 0^{n-1}1$

If $b = 0$, then

- $M_1^1 \oplus C_0^1 = 1^{n-1}0 \oplus 0^n = 1^{n-1}0$
- $M_1^2 \oplus C_0^2 = 1^{n-1}0 \oplus 0^{n-1}1 = 1^n$

So, $C_1^1 = C_1^2$ iff $b = 1$.
Plaintext Recovery

- **Definition:** Let $SE = \langle \mathcal{K}, \mathcal{E}, \mathcal{D} \rangle$ denote a stateless symmetric encryption scheme whose plaintext space includes $\{0,1\}^m$, and let B be an algorithm that has access to an oracle. Consider the following experiment:

Experiment $\text{Expt}_{SE}^{pr-adv}(B)$

- $K \leftarrow \mathcal{K}()$
- $M' \leftarrow \mathcal{R}\{0,1\}^m$
- $C \leftarrow \mathcal{E}_K(M')$
- $M \leftarrow B^{\mathcal{E}_K}(C)$
- if $(M = M')$ return 1 else return 0

The pr-advantage of B is defined as

$$\text{Adv}_{SE}^{pr-adv}(B) = \Pr \left[\text{Expt}_{SE}^{pr-adv}(B) = 1 \right]$$

For any t, q, and μ we define the pr-advantage of SE as

$$\text{Adv}_{SE}^{pr-adv}(t, q, \mu) = \max_B \left\{ \text{Adv}_{SE}^{pr-adv}(B) \right\}$$

where the maximum is over all B having time complexity t and making at most q oracle queries, the sum of the lengths of these queries being at most μ bits.
Indistinguishability and Plaintext Recovery

Proposition: Let $\mathcal{SE} = \langle \mathcal{K}, \mathcal{E}, \mathcal{D} \rangle$ denote a stateless symmetric encryption scheme whose plaintext space includes $\{0,1\}^m$. Then,

$$\text{Adv}^{\text{pr-cca}}_{\mathcal{SE}}(t, q, \mu) \leq \text{Adv}^{\text{ind-cca}}_{\mathcal{SE}}(t, q + 1, \mu + m) + \frac{1}{2^m}$$

Proof: Given any adversary B with resources restricted to t, q, μ, we construct an adversary A_B that uses resources t, $q+1$, $\mu+m$, such that

$$\text{Adv}^{\text{pr-cca}}_{\mathcal{SE}}(B) \leq \text{Adv}^{\text{ind-cca}}_{\mathcal{SE}}(A_B) + \frac{1}{2^m}$$

Indistinguishability and Plaintext Recovery

Given B, define A_B as follows:

Algorithm $A_B^{\mathcal{E},\mathcal{D}(\cdot,\cdot)}$

- $M_0 \leftarrow_R \{0,1\}^m$
- $M_1 \leftarrow_R \{0,1\}^m$
- $C \leftarrow \mathcal{E}_K(\text{LR}(M_0, M_1, b))$

Execute $B(C)$, replying to its oracle queries as follows:

- When B makes oracle query X, return $Y \leftarrow \mathcal{D}_K(\text{LR}(X, X, b))$
- Until B stops and outputs a plaintext M
- if ($M = M_1$) return 1 else return 0
Indistinguishability and Plaintext Recovery

First note that

\[\Pr \left[\text{Expt}_{SE}^{\text{ind-cpa}^{-1}}(A_B) = 1 \right] \geq \text{Adv}_{SE}^{\text{pr-cpa}}(B) \]

since when \(B \) succeeds, so does \(A_B \) if \(b = 1 \).

If \(b = 0 \), then since \(B \) is given \(M_0 \) and has no other information about \(M_1 \),

\[\Pr \left[\text{Expt}_{SE}^{\text{ind-cpa}^{-0}}(A_B) = 1 \right] \leq \frac{1}{2^m} \]

So,

\[\text{Adv}_{SE}^{\text{ind-cpa}}(A_B) = \Pr \left[\text{Expt}_{SE}^{\text{ind-cpa}^{-1}}(A_B) = 1 \right] - \Pr \left[\text{Expt}_{SE}^{\text{ind-cpa}^{-0}}(A_B) = 1 \right] \geq \text{Adv}_{SE}^{\text{pr-cpa}}(B) - \frac{1}{2^m} \]

\[\square \]

IND-CPA-CG

- **Definition:** Let \(SE = \langle \mathcal{K}, E, D \rangle \) be a symmetric encryption scheme, and let \(A \) be an algorithm that has access to an oracle that takes as input a pair of strings and returns a string. Define

 \[\text{Experiment} \ \text{Expt}_{SE}^{\text{ind-cpa-cq}}(A) \]
 \[b \leftarrow \{0,1\} \]
 \[K \leftarrow \mathcal{K}() \]
 \[b' \leftarrow A_{SE,E}(b, K) \]
 \[\text{if} \ (b = b') \text{ return } 1 \text{ else return } 0 \]

 Let \(\text{Adv}_{SE}^{\text{ind-cpa-cq}}(A) = 2 \cdot \Pr \left[\text{Expt}_{SE}^{\text{ind-cpa-cq}}(A) = 1 \right] - 1 \)

- **Proposition:** Let \(SE = \langle \mathcal{K}, E, D \rangle \) be a symmetric encryption scheme, and let \(A \) be an adversary. Then

 \[\text{Adv}_{SE}^{\text{ind-cpa-cq}}(A) = \text{Adv}_{SE}^{\text{ind-cpa}}(A) \]
IND-CPA-CG

Proof:

\[\Pr\left[\text{Exp}_{SE}^{\text{ind-CPA-CG}}(A) = 1 \right] \]
\[= \Pr[b = b'] \]
\[= \Pr[b' = 1 \mid b = 1] \cdot \Pr[b = 1] + \Pr[b' = 0 \mid b = 0] \cdot \Pr[b = 0] \]
\[= \Pr[b' = 1 \mid b = 1] \cdot \frac{1}{2} + \Pr[b' = 0 \mid b = 0] \cdot \frac{1}{2} \]
\[= \frac{1}{2} + \frac{1}{2} \cdot (\Pr[b' = 1 \mid b = 1] - \Pr[b' = 1 \mid b = 0]) \cdot \frac{1}{2} \]
\[= \frac{1}{2} + \frac{1}{2} \cdot \text{Adv}_{SE}^{\text{ind-CPA}}(A) \]

Security for Stateful Counter Mode

Proposition: Let \(F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^l \) be a family of functions and let \(SE = (K, E, D) \) denote stateful counter mode encryption. For any \(t, q, \) and \(\mu \) with \(\mu < l \cdot 2^n \),

\[
\text{Adv}_{SE}^{\text{ind-CPA}}(t, q, \mu) \leq 2 \cdot \text{Adv}_{F}^{\text{prf}}(t, q', n q')
\]

where \(q' = \mu / l \).

Proof: Let \(A \) be any IND-CPA adversary attacking \(SE \) that uses resources bounded by \(t, q, \) and \(\mu \).
Security for Stateful Counter Mode

First define a generalized version of stateful counter mode encryption that uses a function \(g : \{0,1\}^n \rightarrow \{0,1\}^l \) as the key.

Algorithm \(E_g(M) \):

\[
\begin{align*}
\text{static } ctr &\leftarrow 0 \\
\text{if } (|M| \mod l \neq 0 \text{ or } |M| = 0) &\text{ return } \\
M_1|\ldots|M_m &\leftarrow M : M_i \in \{0,1\}^l \\
\text{if } (ctr + m \geq 2^n) &\text{ return } \\
\text{for } i = 1 \ldots m &\text{ do } C_i \leftarrow g(ctr+i) \oplus M_i \\
ctr &\leftarrow ctr + m \\
\text{return } (ctr - m) \mid C_1 \mid \ldots \mid C_m
\end{align*}
\]

Let \(S\mathcal{E}[G] \) denote this encryption scheme in which key generation selects a random element of the family \(G \).

Lemma: \(\text{Adv}_{S\mathcal{E}[\text{Func}(n,l)]}^{\text{ind-cca}}(A) = 0 \)

Security for Stateful Counter Mode

We construct a distinguisher \(D_A \) for \(F \) that makes \(q' \) queries to its oracle, as follows:

Algorithm \(D_A^{q'}(b) \):

\[
\begin{align*}
b &\leftarrow_R \{0,1\} \\
\text{Run } A, \text{ replying to its oracle queries as follows:} & \\
\text{When } A \text{ makes oracle query } (M_0, M_f) &\text{ return } C \leftarrow E_g(M_b) \\
\text{Until } A \text{ stops and outputs a bit } b' & \\
\text{if } (b = b') &\text{ return } 1 \text{ else return } 0
\end{align*}
\]

That is, \(D_A \) guesses that \(g \) is a random member of \(F \) if \(A \) guesses correctly, and that \(g \) is a random member of \(\text{Func}(n, l) \) otherwise.
Security for Stateful Counter Mode

Note: \[\Pr[\text{Expt}_F^{\text{prf}}(D_A) = 1] = \Pr[\text{Expt}_E^{\text{ind-cpa-cg}}(A) = 1] \]
\[\Pr[\text{Expt}_F^{\text{prf-o}}(D_A) = 1] = \Pr[\text{Expt}_E^{\text{ind-cpa-cg}}(\text{Func}(n.J)) (A) = 1] \]

So,
\[\Pr[\text{Expt}_F^{\text{prf}}(D_A) = 1] = \frac{1}{2} + \frac{1}{2} \cdot \text{Adv}_{\text{ind-cpa}}^{\text{SE}}(F)(A) \]
\[\Pr[\text{Expt}_F^{\text{prf-o}}(D_A) = 1] = \frac{1}{2} + \frac{1}{2} \cdot \text{Adv}_{\text{ind-cpa}}^{\text{SE}[\text{Func}(n.J)]}(A) \]

And then
\[\text{Adv}_F^{\text{prf}}(D_A) = \Pr[\text{Expt}_F^{\text{prf}}(D_A) = 1] - \Pr[\text{Expt}_F^{\text{prf-o}}(D_A) = 1] \]
\[= \frac{1}{2} \cdot \text{Adv}_{\text{ind-cpa}}^{\text{SE}}(F)(A) - \frac{1}{2} \cdot \text{Adv}_{\text{ind-cpa}}^{\text{SE}[\text{Func}(n.J)]}(A) \]
\[= \frac{1}{2} \cdot \text{Adv}_{\text{ind-cpa}}^{\text{SE}[F]}(A) \]

Security for Randomized Counter Mode

Proposition: Let \(F: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^l \) be a family of functions and let \(\text{SE} = \langle \mathcal{K}, \mathcal{E}, \mathcal{D} \rangle \) denote randomized counter mode encryption. For any \(t, q, \) and \(\mu \) with \(\mu < l \cdot 2^n \),
\[\text{Adv}_{\text{ind-cpa}}^{\text{SE}}(t, q, \mu) \leq 2 \cdot \text{Adv}_F^{\text{prf}}(t, q', nq') + \frac{\mu(q-1)}{l \cdot 2^n} \]
where \(q' = \frac{\mu}{l} \).

Proof: Very similar to previous, given the following lemma:

Lemma: For any \(A \),
\[\text{Adv}_{\text{ind-cpa}}^{\text{SE}[\text{Func}(n.J)]}(A) \leq \frac{\mu(q-1)}{l \cdot 2^n} \]
Practical Implications

- These theorems give us a basis for answering questions that you will probably have to tackle “in the wild”
- Ex: you wish to encrypt $q = 2^{40}$ plaintexts, each 2^{10} bits long
 - That is, a total of $\mu = 2^{50}$ bits of data
- Suppose you estimate any reasonable adversary to invest at most $t = 2^{60}$ compute cycles
- Finally, suppose you encrypt using AES and assume that
 \[
 \text{Adv}_{\text{AES}}^{\text{prf}}(t, q', 128q') = c_1 \cdot \frac{t}{T_{\text{AES}}} + \frac{(q')^2}{2^{128}}
 \]
 - first term captures cost of key search
 - c_1 is a small constant
 - T_{AES} is number of cycles required for one AES computation
 - $q' = \mu / 128 = 2^{43}$

Practical Implications

- If you encrypt using stateful counter mode, then
 \[
 \text{Adv}_{\text{SIV-CPA}}^{\text{ind-cpa}}(t, q, \mu) \leq 2 \cdot \text{Adv}_{\text{AES}}^{\text{prf}}(t, q', 128q')
 \]
 \[
 = 2c_1 \cdot \frac{t}{T_{\text{AES}}} + \frac{2(q')^2}{2^{128}}
 \]
 \[
 = \frac{c_1}{T_{\text{AES}}} \cdot \frac{2^{60+1}}{2^{128}} + \frac{2^{43+2+1}}{2^{128}}
 \]
 \[
 = \frac{c_1}{T_{\text{AES}}} \cdot \frac{1}{2^{57}} + \frac{1}{2^{41}}
 \]
 \[
 \leq \frac{1}{2^{40}} \text{ assuming } \frac{c_1}{T_{\text{AES}}} \leq 2^{26}
 \]