Message Authentication Codes
and Hash Functions

Mike Reiter

A message authentication code is a triple $\Pi = (K, \text{MAC}, \text{VF})$ of efficiently computable algorithms

- K is a randomized “key generation algorithm” that outputs a “key”

 $K \leftarrow K()$

 Keys(Π) denotes all keys output by $K()$ with nonzero probability.

- MAC is a deterministic, randomized or stateful algorithm that takes a key K and message $M \in \{0,1\}^*$ as input, and outputs \bot or a “tag”

 $Tag \leftarrow \text{MAC}_K(M)$

 Tag is of length τ (the “tag length”).

 The “message space” is all messages such that $\text{MAC}_K(M) \neq \bot$.

- VF takes a key K, message $M \in \{0,1\}^*$, and a tag Tag as input and returns either 1 (accept) or 0 (reject)

 $d \leftarrow \text{VF}_K(M, Tag)$

- If $Tag \leftarrow \text{MAC}_K(M)$ and $Tag \neq \bot$, then $\text{VF}_K(M, Tag) = 1$.
Unforgeability under CMA

- **Definition:** Let $\Pi = (\mathcal{K}, MAC, VF)$ be a message authentication code, and let A be an adversary. Define

 Experiment $\text{Expt}_{\Pi}^{\text{uf-cma}}(A)$

 $K \leftarrow \mathcal{K}()$

 Run $A^{MAC_K(), VF_K()}$

 If A queried $d \leftarrow VF_K(M, Tag)$ where $d = 1$ and $MAC_K(M)$ had not previously been queried then return 1 else return 0

 The *uf-cma advantage* of A is defined as

 $$\text{Adv}_{\Pi}^{\text{uf-cma}}(A) = \Pr\left[\text{Expt}_{\Pi}^{\text{uf-cma}}(A) = 1\right]$$

Unforgeability under CMA

- For any $t, q_s, q_v, \mu_s, \mu_v$ we define the *uf-cma advantage* of Π as

 $$\text{Adv}_{\Pi}^{\text{uf-cma}}(t, q_s, \mu_s, q_v, \mu_v) = \max_A \left\{ \text{Adv}_{\Pi}^{\text{uf-cma}}(A) \right\}$$

 where the maximum is over all A having time complexity t and making at most q_s oracle queries of total length μ_s to MAC_K and at most q_v oracle queries of total length μ_v to VF_K

- Informally, Π is “uf-cma secure” if the uf-cma advantage of Π is small
MACs from Pseudorandom Functions

- Let F be a function family
- Select $K \leftarrow_R \text{Keys}(F)$
- Define $\text{MAC}_K(m) = F_K(m)$ for $m \in \text{Dom}(F)$
- Define
 \[
 \text{VF}_K(m, t) = \begin{cases}
 1 & \text{if } F_K(m) = t \\
 0 & \text{otherwise}
 \end{cases}
 \]

Security for PRF-based MACs

- Proposition: Let F: Keys$(F) \times \text{Dom}(F) \rightarrow \{0,1\}^L$ be a family of functions and let Π denote the PRF-based MAC previously defined. Then

 \[
 \text{Adv}_{\Pi}^{\text{nf-cma}}(t, q_s, \mu_s, q_v, \mu_v) \leq \text{Adv}_{F}^{\text{prf}}(t, q_s + q_v, \mu_s + \mu_v) + \frac{q_v}{2^L}
 \]

 - Proof: Given an attacker A for the MAC scheme that runs with constraints t, q_s, q_v, μ_s, μ_v, we construct a prf-distinguisher B_A for F that works under constraints t, $q_s + q_v$, $\mu_s + \mu_v$ such that

 \[
 \text{Adv}_{\Pi}^{\text{nf-cma}}(A) \leq \text{Adv}_{F}^{\text{prf}}(B_A) + \frac{q_v}{2^L}
 \]
Security for PRF-based MACs

Recall that B_A is given an oracle for $f: \text{Dom}(F) \to \{0,1\}^L$.

Algorithm $B_{\mathsf{f}^{(\cdot)}}_A$
\begin{align*}
d & \leftarrow 0 \\
\text{Run } A, \text{ replying to its oracle queries as follows:} \\
\quad \text{When } A \text{ queries MAC} \? (M), \text{ return } f(M). \\
\quad \text{When } A \text{ queries VF} \? (M, \text{Tag}), \\
\qquad \text{if } f(M) = \text{Tag} \\
\qquad \quad \text{if MAC}_A(M) \text{ was not previously queried} \\
\qquad \quad \text{then } d \leftarrow 1 \\
\qquad \quad \text{return 1 to } A \\
\qquad \text{else return 0 to } A \\
\text{Until } A \text{ stops.} \\
\text{Output } d.
\end{align*}

Note that since in the prf-1 experiment, the experiment is exactly the same experiment that A runs.
In addition, since in the prf-0 experiment, the probability that A guesses the tag is $1/2^L$ per verification query.
CBC-MAC

- Historically a very popular method of creating MACs
- Uses CBC with zero initialization vector
 - the last ciphertext block is the tag
- But does it work?

Proposition: $\text{F} : \text{Keys}(\text{F}) \times \{0,1\}^l \to \{0,1\}^l$ be a family of functions, and let $\text{CBC}^m[\text{F}] : \{0,1\}^{ml} \to \{0,1\}^l$ denote the CBC-MAC function instantiated with F. Then,

$$\text{Adv}_{\text{CBC}^m[\text{F}]}^{\text{prf}}(t, q, qm) \leq \text{Adv}_{\text{F}}^{\text{prf}}(t', q', q' \ell) + \frac{3q^2m^2}{2^{l+1}}$$

where $q' = qm$ and $t' = t + O(qml)$.

The proof of this builds from the following two lemmas.

Lemma 1: For any t, $\text{Adv}_{\text{CBC}^m[\text{Func}(l, l)]}^{\text{prf}}(t, q, qm) \leq \frac{3q^2m^2}{2^{l+1}}$.

Example: Suppose $l = 128$ bits and we use $\text{CBC}^m[\text{Func}(l, l)]$ to authenticate $q = 2^{30}$ messages of 2^{10} blocks each. Then, no adversary, no matter how much time it invests, has advantage larger than 5.4×10^{-15} of distinguishing these MACs from purely random strings.

Lemma 2: Let A be a distinguisher that makes q oracle queries and has running time t. Then there is a distinguisher B_A such that

$$\text{Adv}_{\text{CBC}^m[\text{Func}(l, l)]}^{\text{prf}}(A) \leq \text{Adv}_{\text{F}}^{\text{prf}}(B_A) + \text{Adv}_{\text{CBC}^m[\text{Func}(l, l)]}^{\text{prf}}(A)$$

B_A makes $q' = mq$ oracle queries and runs in time at most $t' = t + O(mq l)$ time.
CBC-MAC

Let’s assume the lemmas (we’ll prove Lemma 2 later), and show how this gives us the proposition.

Proof of proposition: Let \(A \) be a distinguisher that makes \(q \) oracle queries and takes time \(t \). Then,

\[
\text{Adv}^{\text{ref}}_{\text{CBC}}(A) \leq \frac{3q^2m^2}{2^{t+1}}
\]

by Lemma 1.

Now, let \(B_A \) be the distinguisher in Lemma 2. Then,

\[
\text{Adv}^{\text{ref}}_{\text{CBC}}(A) \leq \text{Adv}^{\text{ref}}_{F}(B_A) + \frac{3q^2m^2}{2^{t+1}}
\]

Now, we get

\[
\text{Adv}^{\text{ref}}_{\text{CBC}}(t, q) = \max_A \left| \text{Adv}^{\text{ref}}_{\text{CBC}}(A) \right| \leq \max_A \left\{ \text{Adv}^{\text{ref}}_{F}(B_A) + \frac{3q^2m^2}{2^{t+1}} \right\} \leq \max_B \left\{ \text{Adv}^{\text{ref}}_{F}(B) \right\} + \frac{3q^2m^2}{2^{t+1}}
\]

where \(\max \) is over all \(B \) taking time \(t' \) and making \(q' \) oracle queries.

\[
\leq \text{Adv}^{\text{ref}}_{F}(t', q') + \frac{3q^2m^2}{2^{t+1}}
\]
Now let’s prove Lemma 2. We have to build a distinguisher B_A from the distinguisher A.

Algorithm $B_A^{C(-)}$

Run A.

For $i = 1 \ldots q$ do

When A queries for $g(M_i)$, return $(CBC''(f))(M_i)$.

When A outputs b, return b.

First consider that

$$
\text{Adv}_{F}^{\text{prf}}(B_A) = \Pr[\text{Expt}_{F}^{\text{prf},1}(B_A) = 1] - \Pr[\text{Expt}_{F}^{\text{prf},0}(B_A) = 1] \\
= \Pr[B_A^{f} = 1 \mid f \leftarrow_R F] - \Pr[B_A^{f} = 1 \mid f \leftarrow_R \text{Func}(l,l)] \\
= \Pr[A^g = 1 \mid g \leftarrow_R CBC^{m}(F)] - \Pr[A^g = 1 \mid g \leftarrow_R CBC^{m}[\text{Func}(l,l)]]
$$

In addition,

$$
\text{Adv}_{CBC''[\text{Func}(l,l)]}^{\text{prf}}(A) = \Pr[A^g = 1 \mid g \leftarrow_R CBC''[\text{Func}(l,l)]] - \Pr[A^g = 1 \mid g \leftarrow_R \text{Func}(ml,l)]
$$

Adding the two equations gives the result.
CBC-MAC

- Throughout this discussion, we have fixed \(m \), the number of blocks of the input message.
- In fact, CBC-MAC is not secure with variable-length inputs.
 - Work out an example.

Some attempts to “fix” it for variable length inputs:
- Append a block to the message containing the length, and then MAC.
 - Doesn’t work.
- Input-length key separation:
 \[
 \text{CBC}^m[f_K](x) = \text{CBC}^{m-1}[f_{K_{m-1}}](x) \quad \text{where} \quad K_m \leftarrow f_K(m)
 \]
- Map last block:
 \[
 \text{CBC}^m[f_{K_{m-1}}](x) = f_{K_1}(\text{CBC}^{m-1}[f_{K_1}](x))
 \]

Cryptographic Hash Functions

- Cryptographic hash functions map strings of different lengths to short, fixed-size outputs.
 - Examples are MD5, SHA-1, SHA-2.
 - Typically constructed to be “collision resistant”: it’s hard to find two inputs \(x, x' \) such that \(h(x) = h(x') \).
 - Often also constructed to have “randomness-like” properties.
 - Unpredictability of output when part of input is unknown.
 - “Pseudorandomness” and “independence” of input and output.
- Some modern hash functions are built by iterating a “compression” function.
Cryptographic Hash Functions

- Example: In MD5, $b = 512$ and $l = 128$
- Modern hash functions iterate this process

Keying Hash Functions

- Hash functions, as defined, have no keys
- We turn a hash function into a (keyed) function family by replacing the IV with a key
 - Let f_K defined by $f_K(x) = f(K, x)$ be the keyed compression function, where $|K| = l$ and $|x| = b$
 - For any iterated hash construction, define a family F as follows:
 - For $x = x_1 x_2 \ldots x_n$, define $F_K(x) = K_{n+1}$ where $K_i = f_K(x_i)$ for $i = 1 \ldots n+1$, $K_0 = K$, and $x_{n+1} = |x|$
Weak Collision Resistance

Definition: Let $F: \text{Keys}(F) \times \{0,1\}^* \rightarrow \{0,1\}^l$ be a family of keyed hash functions, and let A be an adversary. Consider the following experiment:

Experiment $\text{Expt}_{F}^{wcr}(A)$

1. $K \leftarrow \text{R Keys}(F)$
2. $M, M' \leftarrow A^F_K$ (1)
3. If $M \neq M'$ and $F_K(M) = F_K(M')$
 then return 1 else return 0

The wcr-advantage of A is

$$\text{Adv}_{F}^{wcr}(A) = \Pr \left[\text{Expt}_{F}^{wcr}(A) = 1 \right]$$

Weak Collision Resistance

For any t, q, μ, we define the wcr-advantage of F as

$$\text{Adv}_{F}^{wcr}(t, q, \mu) = \max_{A} \left\{ \text{Adv}_{F}^{wcr}(A) \right\}$$

where the maximum is over all A having time complexity t and making at most q oracle queries of total length μ.
NMAC

- Define the following “nested MAC” function where \(K = (K_1, K_2) \)

\[
\text{NMAC}_K(x) = F_{K_1}(F_{K_2}(x))
\]

- Proposition: Let \(f : \{0,1\}^l \times \{0,1\}^b \rightarrow \{0,1\}^l \) be a compression function family on messages of length \(b \) bits, and let \(F \) be its keyed iterated hash. Then

\[
\text{Adv}_{\text{NMAC}}^{\text{uf-cma}}(t, q, \mu) \leq \text{Adv}_f^{\text{uf-cma}}(t, q, q^b) + \text{Adv}_F^{\text{wcr}}(t, q, \mu)
\]

Proof: Let \(A \) be an NMAC attacker that runs in time \(t \) and makes \(q \) oracle queries of total length \(\mu \). Consider the attacker \(B_A \) for \(f \) as a MAC defined as follows.

- For a string \(s \) of length \(l \), let \(\langle s \rangle \) denote the result of \(s \) padded to a full block of length \(b \) as specified by the underlying hashing scheme.

\[
\begin{align*}
\text{Algorithm } B_A^{f_A}(\cdot) \\
K_2 &\leftarrow \text{Keys}(F) \\
\text{Run } A. \\
\text{For } i = 1 \ldots q \text{ do} \\
\text{When } A \text{ queries for } \text{NMAC}_i(M_i) \\
z &\leftarrow F_{K_2}(M_i) \\
\text{return } f_{K_1}(\langle z \rangle) \text{ to } A \\
\text{When } A \text{ outputs } (M, N), \text{ output } (\langle F_{K_2}(M) \rangle, N).
\end{align*}
\]
NMAC

Now we have that:

\[1 - \text{Adv}_{\text{uf-cma}}^{\text{NM}}(B_A) \]
\[= \Pr[\text{Exp}_{f}^{\text{uf-cma}}(B_A) = 0] \]
\[\leq \Pr[\text{Exp}_{\text{NM}}^{\text{uf-cma}}(A) = 0] + \Pr[\exists i : \langle F_{K_2}(M_i) \rangle = \langle F_{K_2}(M) \rangle] \]
\[= \Pr[\text{Exp}_{\text{NM}}^{\text{uf-cma}}(A) = 0] + \Pr[\exists i : F_{K_2}(M_i) = F_{K_2}(M)] \]
\[\leq (1 - \text{Adv}_{\text{NM}}^{\text{uf-cma}}(A)) + \text{Adv}_{\text{F}}^{\text{very}}(t, q, \mu) \]

HMAC

- NMAC is a very simple and efficient construction, but does not use hash function as a “black box”
 - Requires access to its compression function
- HMAC is an alternative that uses hash function completely as a “black box”
- HMAC is now a mandatory algorithm for most Internet security protocols
HMAC

- Let F be a hash function (with normal IV)
- The HMAC construction is

$$
\text{HMAC}_K(M) = F(\langle K \rangle \oplus \text{opad} \ || \ F(\langle K \rangle \oplus \text{ipad} \ || \ M))
$$

where (in hexadecimal)
- opad = 36 36 ... 36
- ipad = 5c 5c ... 5c

- What’s the justification for this?

HMAC

- Let f be the compression function of F
- If we define
 $$
 \begin{align*}
 K_1 &= f(\text{IV}, \langle K \rangle \oplus \text{opad}) \\
 K_2 &= f(\text{IV}, \langle K \rangle \oplus \text{ipad})
 \end{align*}
 $$
 then

$$
\text{HMAC}_K(M) = \text{NMAC}_{(K_1, K_2)}(M)
$$

- In other words, HMAC is a particular instance of NMAC, where K_1 and K_2 are “pseudorandomly” derived from f and K
 - Strictly speaking, requires an additional assumption about pseudorandomness of f when provided a key as an input
HMAC

- There might be attacks on HMAC but not NMAC, but this would reveal undesirable structural properties in f.

- opad and ipad were chosen
 - To be simple
 - To provide a high Hamming distance between themselves

Some MACs to Avoid

- “Append only” MACs
 - $MAC_K(M) = F(M, K)$ where F is an iterated hash function
 - The problem: $F(M) = F(M')$, then for any K, $MAC_K(M) = MAC_K(M')$
 - Attack: Use the birthday paradox to find M, M' offline
 - Question: Does F appending $|M|$ help?

- “Prepend only” MACs
 - $MAC_K(M) = F(K, M)$ where F is a hash function
 - The problem: If M is an integral number of blocks and $MAC_K(M)$ is known, then $MAC_K(M||M')$ can be computed
 - Question: Does F appending $|M|$ help?
MD5

- MD5 is an iterated hash function of the type anticipated for use in HMAC
- High-level structure
 - Appends padding bits (a “1” bit followed by as many “0” bits as needed) to input so that total length is 448 mod 512
 - Appends a 64-bit representation of the input length in bits (before padding); total length is now an integer multiple of 512 bits
 - A 128-bit buffer (four 32-bit words, labeled A, B, C, D) are initialized to fixed values
 - Each 512 bit block of the (padded, length-appended) input is passed through the compression function, updating the buffer
 - The buffer value at the end is the output value

Here, H_{MD5} denotes the compression function for MD5
MD5 Weaknesses

- Berson 1992: There is an algorithm to find a collision for each of the four rounds individually in reasonable time
- Boer & Bosselaers 1993: There is an algorithm to find a message block on which execution of the MD5 compression function starting from two different values in ABCD will yield the same result
 - This is called a pseudocollision
- Dobbertin 1996: There is an algorithm to produce a collision on the MD5 compression function
- Wang & Yu 2005: Collisions on MD5 in under an hour
 - Attack works for any initial value

SHA-1

- Adopted by the National Institute of Standards and Technology (NIST) in 1995
- Algorithm takes as input a message of length at most 2^{64} bits
- Outputs a 160-bit value, processing inputs in 512-bit blocks
- High-level structure
 - Appends padding bits: Same as MD5
 - Appends a 64-bit representation of the input length: Same as MD5
 - A 160-bit buffer (five 32-bit words, labeled A, B, C, D, E) are initialized to fixed values
 - Each 512 bit block of the (padded, length-appended) input is passed through the compression function, updating the buffer
 - The buffer value at the end is the output value
SHA-1 Weaknesses

- Chabaud & Joux 1998: Collisions in full SHA-0 can be found in $\sim 2^{61}$ hash operations
- Biham & Joux 2005: Collisions in full SHA-0 can be found in $\sim 2^{51}$ hash operations
- Wang, Yin & Yu 2005: Collisions in the full SHA-1 can be found in $\sim 2^{69}$ hash operations
- Stevens 2012: Collisions in the full SHA-1 can be found in $\sim 2^{61}$ hash operations

Since SHA-1 ...

- There’s SHA-2, which features longer outputs
 - Variants have 256-bit or 512-bit outputs
 - No effective collision algorithms found yet
 - However, they are algorithmically similar to SHA-1, and so may not be secure for much longer
- SHA-3 was adopted in October 2012 after an open competition
 - 64 entries
 - 51 advanced to first round
 - 14 advanced to second round
 - 5 advanced to third round
 - Dissimilar to SHA-1,2
Latest Generation of Hash Functions

<table>
<thead>
<tr>
<th>Algorithm and variant</th>
<th>Output size (bits)</th>
<th>Internal state size (bits)</th>
<th>Block size (bits)</th>
<th>Rounds</th>
<th>Operations against collision attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5 (as reference)</td>
<td>128</td>
<td>128 (4 × 32)</td>
<td>512</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(collisions found)</td>
</tr>
<tr>
<td>SHA-0</td>
<td>160</td>
<td>160 (5 × 32)</td>
<td>512</td>
<td>80</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(<34 collisions found))</td>
</tr>
<tr>
<td>SHA-1</td>
<td>160</td>
<td>192 (6 × 32)</td>
<td>512</td>
<td>80</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(<63 collisions found))</td>
</tr>
<tr>
<td>SHA-2</td>
<td>SHA-224</td>
<td>224</td>
<td>256</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td>SHA-256</td>
<td>256</td>
<td>256</td>
<td>64</td>
<td>Or, Rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(112)</td>
</tr>
<tr>
<td></td>
<td>SHA-384</td>
<td>384</td>
<td>512</td>
<td>1024</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td>SHA-512</td>
<td>512</td>
<td>512</td>
<td>1024</td>
<td>Or, Rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(102)</td>
</tr>
<tr>
<td></td>
<td>SHA-512/256</td>
<td>224</td>
<td>256</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or, Rot, Shr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(112)</td>
</tr>
<tr>
<td>SHA-3</td>
<td>SHA-224</td>
<td>224</td>
<td>256</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td>SHA-256</td>
<td>256</td>
<td>256</td>
<td>64</td>
<td>Or, Rot</td>
</tr>
<tr>
<td></td>
<td>SHA-384</td>
<td>384</td>
<td>512</td>
<td>1024</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td>SHA-512</td>
<td>512</td>
<td>512</td>
<td>1024</td>
<td>Or, Rot, Shr</td>
</tr>
<tr>
<td></td>
<td>SHA-512/256</td>
<td>224</td>
<td>256</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or, Rot, Shr</td>
</tr>
<tr>
<td></td>
<td>SHA-512/256</td>
<td>224</td>
<td>256</td>
<td>64</td>
<td>And, Or, Rot, Add (mod 2^9), Or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Or, Rot, Shr</td>
</tr>
</tbody>
</table>

Combining Encryption and Authentication

- We’ve now seen secure encryption and security message authentication (via message authentication codes)
- If you want to do both, then you’ll need to make two passes over the data, which is expensive
- A popular alternative today is to achieve encryption and authentication with a single primitive
 - and, notably, a single pass over the data
- The most widely used such mechanism is Galois/Counter Mode (GCM)
Inputs and Outputs of GCM Encryption

- **Inputs to the GCM encryption algorithm**
 - A secret key K for use with an underlying block cipher
 - An initialization vector IV of length between 1 and 2^{64}
 - For a fixed key K, each IV used in encryption must be distinct
 - A plaintext P of length up to $2^{39} - 256$
 - Additional data A to be authenticated (but not encrypted), of length up to 2^{64}

- **Outputs from the GCM encryption algorithm**
 - A ciphertext C of length the same as P
 - An authentication tag T of length t, $0 \leq t \leq 128$

- **Note:** If $|P| = 0$, then GCM is just a MAC on A, called “GMAC”

Inputs and Outputs of GCM Decryption

- **GCM decryption algorithm takes as inputs**
 - Secret key K
 - Initialization vector IV
 - Ciphertext C
 - Authenticated data A
 - Authentication tag T

- **GCM decryption algorithm outputs**
 - Plaintext P or
 - A failure symbol \perp

- **If** $(C, T) \leftarrow E_K(IV, P, A)$ then $P \leftarrow D_K(IV, C, A, T)$
GHASH

- Built using a function called $\text{GHASH}(H, A, C)$
- Suppose $H \in \{0, 1\}^{128}$ and $A \in \{0, 1\}^{128m}$ and $C \in \{0, 1\}^{128n}$
 - Let $A = A_1 A_2 \ldots A_m$ and $C = C_1 C_2 \ldots C_n$ with each $A_i, C_i \in \{0, 1\}^{128}$
- Let \times and \oplus denote multiplication and addition in $GF(2^{128})$
- $\text{GHASH}(H, A, C)$ returns X_{m+n+1} where

\[
X_i = \begin{cases}
0 & \text{for } i = 0 \\
(X_{i-1} \oplus A_i) \times H & \text{for } i = 1 \ldots m \\
(X_{i-1} \oplus C_{i-m}) \times H & \text{for } i = m + 1 \ldots n \\
(X_{m+n} \oplus (\text{len}(A) || \text{len}(C))) \times H & \text{for } i = m + n + 1
\end{cases}
\]

GCM Encryption Algorithm

Algorithm $E_K(IV, P, A)$

\[
\begin{align*}
H & \leftarrow F_K(0^{128}) \\
Y_0 & \leftarrow \text{GHASH}(H, \emptyset, IV) \\
\text{for } i & \leftarrow 1 \ldots n \\
C_i & \leftarrow P_i \oplus F_K(Y_0 + i) \\
C & \leftarrow C_1 || C_2 || \ldots || C_n \\
T & \leftarrow \text{MSB}_t(\text{GHASH}(H, A, C) \oplus F_K(Y_0)) \\
\text{return } (C, T)
\end{align*}
\]
GCM Encryption Algorithm

GCM Decryption Algorithm
GCM Security

- Both secrecy and authenticity guarantees can be reduced to PRF security of the underlying function family F.
- Paper containing proof is posted to the web page.