Program Obfuscation

Rui Zhang
Nov 14, 2018

Program Obfuscation

- To *intentionally* make a program *unintelligible*, while preserving its functionality.

- **Goal**: Change program so still has same I/O behavior but is impossible to understand.
Example of obfuscated C code.
Applications of Obfuscation

• **For Software Protection**

 Software vendors want to prevent users from reverse-engineering executable code.

 Obfuscation helps to bypass antivirus, delay security research response.

• **For Cryptography**

 Many applications: fully homomorphic encryption, public key encryption, zero knowledge proofs, etc.
Obfuscation Definition

- **Definition (VBB Secure Obfuscation)**: A compiler O is a virtual black box (VBB) secure obfuscator if it satisfies the following conditions:

 - **Functionality**: For every program (Turing Machine/Circuit) P, the string $O(P)$ describes a program that computes the same function as P.

 $$P(x) = (O(P))(x) \text{ for every } x \in \{0,1\}^n$$

 - **Polynomial Slowdown**: There is a polynomial p such that for every program P,

 $$|O(P)| \leq p(|P|)$$

 - **Virtual Black Box Property**: For every efficient adversary A mapping $\{0,1\}^*$ to $\{0,1\}$, there exists an efficient simulator S such that for every program P, the following random variables are computationally indistinguishable.

 $$|\Pr[A(O(P)) = 1] - \Pr[S^{P}(1^{|P|}) = 1]| \leq a(|P|)$$
Virtual Black Box Property: for every efficient adversary A mapping $\{0,1\}^*$ to $\{0, 1\}$, there exists an efficient simulator S such that for every program P, the following random variables are computationally indistinguishable.

$$|\Pr[A(O(P)) = 1] - \Pr[S^P(1^{|P|}) = 1]| \leq a(|P|)$$
The Goal of Adversary

• What is the adversary trying to achieve?
 • A program that produces the same output as P.
 • A program that produces output with some relation to the output of P.
 • A function that computes some function of P.
 • Decide some property of P.

• The last achievement is the weakest, we want to prove that it is impossible.
Impossibility of Obfuscation

• VBB obfuscation is impossible in general.

• **Theorem:** There do not exist VBB obfuscators for Turing Machines.
2-TM Obfuscator

- **Definition (2-TM Obfuscator):** A 2-TM Obfuscator is defined in the same way as a TM obfuscator, except that the “virtual black box” property is strengthened as follows:

 - **Virtual Black Box Property:** For any adversary \(A \), there is an efficient simulator \(S \) such that for all TMs \(M \) and \(N \), the following random variables are computationally indistinguishable.

 \[
 |\Pr[A(O(M), O(N)) = 1] - \Pr[S^{M,N}(1^{\|M\|+\|N\|}) = 1]| \leq a(\min\{|M|,|N|\})
 \]
Obfuscating two TMs

- **Proposition**: 2-TM obfuscators do not exist.

- **Proof Sketch**:

 \[
 C_{\alpha,\beta}(x) = \begin{cases}
 \beta & \text{if } x = \alpha \\
 0 & \text{if } x \neq \alpha
 \end{cases}
 \]

 \[
 D_{\alpha,\beta}(C) = \begin{cases}
 1 & \text{if } C(\alpha) = \beta \\
 0 & \text{if } C(\alpha) \neq \beta
 \end{cases}
 \]

 Consider an adversary A, which, given two (obfuscated) TMs as input, simply run the second TM on the first one. That is
 \[A(C, D) = D(C). \]

 \[\Pr[A(O(C_{\alpha,\beta}), O(D_{\alpha,\beta})) = 1] = 1 \]
Obfuscating two TMs

• Any simulator S given oracle access to $C_{\alpha,\beta}$ and $D_{\alpha,\beta}$, cannot find an accepting input for either $C_{\alpha,\beta}$ or $D_{\alpha,\beta}$.

$$|\Pr[S^{C_{\alpha,\beta},D_{\alpha,\beta}}(1^k) = 1] - \Pr[S^{Z_k,D_{\alpha,\beta}}(1^k) = 1]| \leq 2^{-\Omega(k)}$$

• By Definition of A, we have:

$$\Pr[A(O(Z_k), O(D_{\alpha,\beta})) = 1] = 0$$

• The combination of these 3 equations contradict the fact that O is a 2-TM obfuscator.
Theorem: TM obfuscators do not exist.

Proof Sketch:

$$F_{\alpha,\beta}(b, x) = \begin{cases}
C_{\alpha,\beta}(x) & \text{if } b = 0 \\
D_{\alpha,\beta}(x) & \text{if } b = 1
\end{cases}$$

$$G_{\alpha,\beta}(b, x) = \begin{cases}
Z_k & \text{if } b = 0 \\
D_{\alpha,\beta}(x) & \text{if } b = 1
\end{cases}$$

$$\Pr[A(O(F_{\alpha,\beta})) = 1] = 1$$

$$\Pr[A(O(G_{\alpha,\beta})) = 1] = 0$$

$$|\Pr[S^{F_{\alpha,\beta}}(1^k) = 1] - \Pr[S^{G_{\alpha,\beta}}(1^k) = 1]| \leq 2^{-\Omega(k)}$$
Impossibility for Circuits

- **Theorem**: VBB obfuscation for circuits does not exist.
 - In the case of boolean circuits, the previous proof does not work because the input for circuits is small.
 - The proof makes use of a type of homomorphic encryption scheme based on one-way functions.
 - They show that the one-way functions are implied by VBB obfuscators for circuits.
 - This contradiction proves unconditionally that VBB obfuscators for circuits do not exist.
Summary

• **Obfuscation Definition**
 • Functionality
 • Polynomial Slowdown
 • Virtual Black Box Property

• **Impossibility of Obfuscation**
 • Impossibility of VBB Obfuscation for Turing Machines
 • Impossibility of VBB Obfuscation for Circuits