How to Construct Random Functions

Saujas Nandi

Random Functions

● What do we want in a pseudorandom function generator?
 ○ Indexing: Picking a random function is easy
 ○ Polynomial-time Evaluation: Computation is easy
 ○ Pseudorandomness: Polynomial time algorithms cannot distinguish generated function from truly random function

● Prior Work
 ○ Focus was on random strings
 ■ Kolmogorov complexity: measure of randomness is length of shortest description
 ○ Already found method for generating random strings/sequences
 ■ Assuming one-way functions exist, there exists a polynomial-time algorithm that generates pseudorandom poly(k)-bit strings from k-bit inputs
Poly-Random Collection

- Set of functions that provides indexing, polynomial-time evaluation, and pseudorandomness
- Let I_k denote the set of all k-bit strings
- Why can’t we index into the set of all functions from I_k to I_k?
 - The cardinality of the set is too big:
 - There are 2^k options to map each of the 2^k domain element to
 - Leads to $2^k \times 2^k$ possible functions => Need an exponential number of bits to index
- Pick a 2^k sized subset of all I_k to I_k functions instead
 - Each function has a unique k-bit index
 - We still need to fulfill easy computation and pseudorandomness
Why do we need Pseudo-Random Collections?

- Potential alternatives: one-way functions, cryptographically strong pseudorandom bit (CSB) generators
- One way functions:
 - One-way functions have unpredictable, but not random inverses
 - RSA is believed to be a one-way scheme, yet having its inverses for x and y makes it easy to find its inverse at xy
 - Unwanted behavior from a “random” function
- CSB Generators
 - CSB Generators stretch a k-bit length input seed to a k^t-bit long pseudorandom output string
 - Problem with implementing a random oracle that maps a k^t sized subset of I^k to $\{0, 1\}$:
 - Need to store the result of each mapping so that oracle queries for the same string return the same result - Uses k^{t+1} bits of storage, k-bits for each of the k^t queries
CSB Generators

- **Original definition**
 - A polynomial time program that uses a random seed to generate a random string that passes all next-bit-tests: guessing the next bit in the sequence should be hard even if given prior bits

- **Generalized definition:**
 - For all probabilistic polynomial-time algorithm T that takes in q strings, each μ-bits long, and outputs 0 or 1, we know that for all sufficiently large k and any polynomial $Q(k)$:
 $$\left| p_k^s - p_k^r \right| < \frac{1}{Q(k)}$$

 where p_k^s denotes the probability that T outputs 1 when strings are randomly found using CSB generators

 and p_k^r denotes the probability that T outputs 1 when strings are truly random
Construction

- **Big Picture:**
 - Assume the existence of one-way functions
 - Use any one-way function to construct a CSB generator (result given in a prior work by Levin)
 - Use this CSB generator to create a poly-random collection

- **Intuition:**
 - A CSB generator provides a way to generate good pseudorandom strings, so we can extend them to create pseudorandom functions
 - We will show that if an adversary can detect the usage of our pseudorandom functions, there is also an adversary that can detect the usage of a CSB generator
Construction

- Pick a CSB generator G that stretches a k-bit long seed into a $2k$-bit long sequence
 \[G(x) = b_1 \ldots b_{2k} \]
- Let $G_0(x)$ = first k-bits of $G(x)$
- Let $G_1(x)$ = last k-bits of $G(x)$

For $\alpha = \alpha_1 \ldots \alpha_t$
let $G_\alpha(x) = G_{\alpha_t}(\ldots G_{\alpha_2}(G_{\alpha_1}(x)) \ldots)$
- For a function f_x indexed by x, we define $f_x(y) = G_y(x)$ where y is a k-bit long input
 ○ The poly-random collection is the set of all f_x's

From the figure, we can see that computing $f_x(y)$ will take a polynomial amount of time, since CSB generators run in polynomial time and we have to traverse down to the k-th depth.
Pseudorandomness Proof

- Assume that there is a statistical test for functions T that a poly-random collection does not pass
 - Have $|p_k^F - p_k^R| > \frac{1}{Q(k)}$ for some k and polynomial $Q(k)$
 - Use T to construct a test for strings A_T s.t. the set of CSB sequences produced by G does not pass A_T - which is a contradiction
Pseudorandomness Proof

- Define oracle A_i as:

 \[
 \begin{align*}
 \text{if } y \text{ is the first query with prefix } y_1 \cdots y_i \\
 \text{then } A_i \text{ selects a string } r \in I_k \text{ at random, stores the pair } (y_1 \cdots y_i, r), \text{ and answers } G_{y_1 \cdots y_i}(r) \\
 \text{else } A_i \text{ retrieves the pair } (y_1 \cdots y_i, v) \text{ and answers } G_{y_1 \cdots y_i}(v).
 \end{align*}
 \]

 where y is a k-bit long query string

- Start with a full binary tree of depth k and store random k-bit strings in all level-i nodes, generate further levels using G_0 and G_1

- Note that A_0 corresponds to using our poly-random collection as the oracle while A_k corresponds to using truly random functions as the oracle
Pseudorandomness Proof

- Let p^i be the probability that T outputs 1 when its queries are answered by A_i
 - Have $|p^0 - p^k| > 1/Q(k)$ for some k and polynomial $Q(k)$
- Construct A_T as follows:
 - For each 2k bits long query y, A_T first randomly picks a i uniformly between 0 and $k - 1$
 - Letting U_k denote the set of query strings, A_T answers T's oracle queries as follows:

```plaintext
if $y$ is the first query with prefix $y_1 \cdots y_i$
then $A_T$ picks the next string in $U_k$. Let $u = u_0 u_1$ be such a string ($u_0 u_1$ is the concatenation of $u_0$ and $u_1$, and $|u_0| = |u_1| = k$). Then $A_T$ stores the pairs $(y_1 \cdots y_i 0, u_0)$ and $(y_1 \cdots y_i 1, u_1)$ and answers

$G_{y_{i+2} \cdots y_k}(u_0)$ if $y_{i+1} = 0$ and $G_{y_{i+2} \cdots y_k}(u_1)$ if $y_{i+1} = 1$.

else $A_T$ retrieves the pair $(y_1 \cdots y_{i+1}, v)$ and answers $G_{y_{i+2} \cdots y_k}(v)$.
```
Pseudorandomness Proof

- If U_k is the set of CSB generated strings, A_T simulates the result of T with oracle A_i
- If U_k is the set of truly random strings, A_T simulates the result of T with oracle A_{i+1}
- The expected difference of probability that A_T outputs 1 when using CSB generated strings versus using truly random strings:

$$\sum_{i=0}^{k-1} \frac{1}{k} \cdot p^i - \sum_{i=0}^{k-1} \frac{1}{k} \cdot p^{i+1} = \frac{1}{k}(p^0 - p^k) > \frac{1}{kQ(k)}$$
Generalized Poly-Random Collections

- Sometimes we need to create random functions that map from $I_{p(k)}$ to $I_{q(k)}$ (rather than $I_{p(k)}$ to $I_{p(k)}$)
- Use two CSB generators:
 - G maps k-bit strings to $2k$-bit strings
 - G' maps k-bit strings to $q(k)$-bit strings
- Instead of using $f_x(y) = G_y(x)$, use $f_x(y) = G'(G_y(x))$ where y is $p(k)$-bits long
- Similar proof
Polynomially-Inferable

- Algorithm can make a polynomial number of oracle calls before it must “infer” the result of some non-queried element
 - After $P(x)$ oracle calls, algorithm A is given $f(x)$ and a random bit, it must determine $f(x)$ with at least $1/2 + 1/Q(k)$ probability where P, Q are polynomials and k is some sufficiently large value

- F cannot be polynomially inferred by any algorithm if and only if it passes all polynomial-time statistical tests for functions
 - If F can be polynomially inferred, easy to construct a polynomial-time statistical test that F cannot pass
 - Converse is harder to prove
Applications

● Protocol design:
 ○ Prove correctness assuming the existence of truly random functions
 ○ Replace truly random functions by functions randomly selected from poly-random collection
 ○ Maintains all properties of original protocol with respect to polynomially-bounded adversaries

● Used for message authentication, hashing, friend or foe identification, etc