Side-Channel Attacks
and Chosen Ciphertext Security

Mike Reiter

Chosen Ciphertext Attacks

- Recall that in a chosen ciphertext attack, the adversary is given
 - An encryption oracle E_K
 - A decryption oracle D_K
 - A test oracle T_K
 - If $c \leftarrow T_K(m_0, m_1)$ then adversary is not permitted to invoke $D_K(c)$

- Arguably having otherwise unfettered access to D_K is unrealistic, and so variations on this model have been explored
 - Lunchtime attack: Adversary can query D_K only before querying T_K
 - Side-channel attack: Instead of having access to D_K, adversary is given access to a “side channel” oracle P_K
 - $P_K(c)$ returns $f(D_K(c))$ for a particular function f

- We will explore a frequently practical side channel in this lecture
Recall CBC Mode Encryption

Let f: Keys $\times \{0,1\}^L \rightarrow \{0,1\}^L$ be a pseudorandom permutation

Algorithm $E_K(m)$:
let $m_1|...|m_n = m : m_i \in \{0,1\}^L$
$\ c_0 \leftarrow_R \{0,1\}^L$
for $i = 1...n$ do $c_i \leftarrow f_K(c_{i-1} \oplus m_i)$
return $c_0 | c_1 | ... | c_n$

Algorithm $D_K(c)$:
let $c_0 | c_1 | ... | c_n = c : c_i \in \{0,1\}^L$
for $i = 1...n$ do $m_i \leftarrow f_K^{-1}(c_i) \oplus c_{i-1}$
return $m_1 | ... | m_n$

Above description assumes that length of m is a multiple of L
\n If not, padding is required

Padding

A padding function is a function $PAD: \{0,1\}^* \rightarrow (\{0,1\}^L)^+$
\n Most applications require PAD to be reversible

Two types of padding functions
\n Byte-oriented, where $PAD: (\{0,1\}^8)^+ \rightarrow (\{0,1\}^L)^+$ and $L = 8b$
\n Bit-oriented, where domain of PAD is unrestricted

Example: CBCPAD is a byte-oriented padding function

Algorithm CBCPAD(m):
let $m_1|...|m_n = m : m_i \in \{0,1\}^8$
$p \leftarrow b - (n \mod b)$
return $m \mid p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ ...
$ p times

Padding is “01”, “02 02”, “03 03 03”, “04 04 04 04” …
\n Denote this by “$p \times p$”
Processing Padding

- What if the padding in a ciphertext is not valid?
 - tear down the session (as in SSL/TLS)?
 - log the error (as in ESP)?
 - return an error message (as in WTLS)?
- Either way, typically will leak whether the padding was valid
- Abstract this as an oracle P_K

Algorithm $P_K(c)$:

\[
\text{let } c_0 | c_1 | \ldots | c_n = c : c_i \in \{0,1\}^L \\
\text{for } i = 1 \ldots n \text{ do } m_i \leftarrow f_K^{-1}(c_i) \oplus c_{i-1} \\
\text{if } m_n \text{ ends in } p \times p \text{ for some } p > 0 \text{ then return 1} \\
\text{else return 0}
\]

Last Byte Decryption

[Vaudenay 2002]

- Consider a two-block ciphertext $c_0 | c_1$
- We know that decryption is performed as follows

\[
\begin{array}{c}
\text{m_1} \\
\oplus \\
f_K^{-1} \\
\text{c_0} \\
\end{array}
\begin{array}{c}
\oplus \\
f_K^{-1} \\
\text{c_1}
\end{array}
\]

- Consider any $c_0' \neq c_0$

\[
\begin{array}{c}
\text{m_1'} \\
\oplus \\
f_K^{-1} \\
\text{c_0'} \\
\end{array}
\begin{array}{c}
\oplus \\
f_K^{-1} \\
\text{c_1}
\end{array}
\]

- Since $c_0 \oplus m_1 = c_0' \oplus m_1' = f_K^{-1}(c_1)$, we get $m_1 = (c_0 \oplus c_0') \oplus m_1'$
 - We know $(c_0 \oplus c_0')$ but not m_1'
Last Byte Decryption (cont.)

- However, if we can find c_0' such that $P_K(c_0' \mid c_1) = 1$, then we know that m_1' is correctly padded.

- Moreover, if c_0' is chosen randomly from $\{0,1\}^L$, then
 - m_1' ends in 01 with probability $1/2^8$
 - m_1' ends in 02 02 with probability $1/2^{16}$
 - m_1' ends in 03 03 03 with probability $1/2^{24}$
 - ...

- So, we could just assume that m_1' ends in 01, and would usually be right
 - If correct, then last byte of m_1 is last byte of $(c_0 \oplus c_0') \oplus 01$

Last Byte Decryption (cont.)

- To get it right in all cases, start from c_0' where $P_K(c_0' \mid c_1) = 1$ and do the following
 - If $P_K((c_0' \oplus 01(00)^{b-1}) \mid c_1) = 0$ then m_1' ends in $b \times b$, else
 - If $P_K((c_0' \oplus 01(00)^{b-2}) \mid c_1) = 0$ then m_1' ends in $b-1 \times b-1$, else
 - ...
 - If $P_K((c_0' \oplus 01(00)^1) \mid c_1) = 0$ then m_1' ends in 02 02, else
 - m_1' ends in 01

\[
\begin{array}{cccccc}
\oplus & \ldots & \oplus & \ldots & \oplus & \ldots \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\end{array}
\]

\[
f_K^{-1}(c_1) \oplus \ldots \oplus \ldots \oplus 03 03 03 = m_1'
\]
To get it right in all cases, start from c_0' where $P_K(c_0' | c_1) = 1$ and do the following:

- If $P_K((c_0' \oplus 01(00)b^{-1}) | c_1) = 0$ then m_1' ends in $b \times b$, else
- If $P_K((c_0' \oplus 01(00)b^{-2}) | c_1) = 0$ then m_1' ends in $b^{-1} \times b^{-1}$, else
- ...
- If $P_K((c_0' \oplus 01(00)b^{-3}) | c_1) = 0$ then m_1' ends in $02 \ 02$, else
- m_1' ends in 01

$$
\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
01 & 00 & 00 & 00 \\
03 & 03 & 03 & \times \\
\end{array}
$$
Block Decryption

Now we can use this to find all of m_1

$$f^{-1}_K(c_1) \oplus c_0'$$

$$= \quad \ldots \quad 01 \quad m_1'$$

$$\oplus \quad \ldots \quad c_0 \oplus c_0'$$

$$= \quad \ldots \quad m_1$$
Block Decryption

Now we can use this to find all of m_1

$\oplus \ldots \oplus f_K^{-1}(c_1) \oplus c_0'$

Find $x : P_K = 1$

$\oplus \ldots \oplus m_1' = 02 \oplus 02$

$\oplus \ldots \oplus c_0 \oplus c_0'$

$= \ldots \ldots m_1$

Copyright © 2018 by Michael Reiter
All rights reserved.
Block Decryption

- Now we can use this to find all of \(m_1 \)

\[
\begin{align*}
\oplus \quad & \ldots \quad \ldots \quad \ldots \quad \ldots \\
\ldots & \quad \ldots & \quad f_K^{-1}(c_1) & \quad c'_0 \\
\oplus \quad & \ldots \quad \ldots \quad \ldots \quad \ldots \\
\ldots & \quad \ldots & \quad x & \quad 01 \oplus 02 \\
\oplus \quad & \ldots \quad \ldots \quad \ldots \quad \ldots \\
\ldots & \quad \ldots & \quad 02 \oplus 02 & \quad m'_1 \\
\oplus \quad & \ldots \quad \ldots \quad \ldots \quad \ldots \\
\ldots & \quad \ldots & \quad x & \quad c_0 \oplus c'_0 \\
\oplus \quad & \ldots \quad \ldots \quad \ldots \quad \ldots \\
\ldots & \quad \ldots & \quad & \quad m_1
\end{align*}
\]

Full Decryption

- Once we’ve implemented block decryption, full decryption of multi-block messages is straightforward
 - Do each block separately
 - Use preceding ciphertext block as its initialization vector

- Block decryption can be sped up using binary search instead of linear search to find padding length
Other Symmetric Encryption Schemes

- CBC is not the only encryption mode where padding is used
- Recall counter mode

Algorithm $E_K(m)$:
let $m_1|\ldots|m_n = m : m_i \in \{0,1\}^L$
let $c_0 \leftarrow \{0,1\}^L$
for $i = 1 \ldots n$ do $c_i \leftarrow f_K(c_0+i \mod 2^L) \oplus m_i$
return $c_0 \mid c_1 \mid \ldots \mid c_n$

Algorithm $D_K(c)$:
let $c_0 \mid c_1 \mid \ldots \mid c_n = c : c_i \in \{0,1\}^L$
for $i = 1 \ldots n$ do $m_i \leftarrow f_K(c_0+i \mod 2^L) \oplus c_i$
return $m_1 \mid \ldots \mid m_n$

- Padding here is similarly tricky

Counter Mode Encryption

- Suppose CBCPAD were used with counter mode
- A ciphertext $c_0 \mid c_1$ is decrypted as follows

For any $c_1' \neq c_1$

Since $c_1 \oplus m_1 = c_1' \oplus m_1' = f_K(c_0+1)$, we get $m_1 = (c_1 \oplus c_1') \oplus m_1'$
- Once again, padding oracle enables m_1 to be recovered
Counter Mode Encryption (cont.)

- Note, however, that unlike with CBC, padding is not necessary with counter mode encryption

\[
\begin{array}{cccccc}
 & m_1 & \cdots & m_{n-2} & m_{n-1} & m_n & m \\
\oplus & f_k(c_0+1) & \cdots & f_k(c_0+n-2) & f_k(c_0+n-1) & f_k(c_0+n) & c \\
 c_0 & c_1 & \cdots & c_{n-2} & c_{n-1} & c_n \\
\end{array}
\]

- Blue portion can be discarded, rather than padding to utilize it
 - Advantage: eliminates any padding oracle
 - Disadvantage: exposes exact bit length of plaintext

Other Byte-Oriented Padding Schemes

- IPSec Encapsulated Security Payload (ESP-PAD)
 - To pad with \(p > 0 \) bytes, use 01 02 \ldots 0 \(p \)
 - Also vulnerable in the same way

- Prefix padding
 - Use CBCPAD but at front of message
 - Still vulnerable to same attack, and requires more state to encrypt

- Last byte = padding length
 - Last byte is length of padding; all other padding bytes random
 - Can be used in roughly same way, but to extract only the last byte of each plaintext block
Other Byte-Oriented Padding Schemes (cont.)

- **XY padding**
 - Let X and Y be two distinct public constants
 - Pad with X followed by as many Y's as needed (possibly 0)
 - Also vulnerable in (roughly) the same way

- **Any-pair padding**
 - Like XY padding, but X and Y are chosen randomly per message, and Y must be appended at least once
 - All ciphertexts have valid padding, except those with all plaintext bytes being equal
 - Eliciting a 0 from the oracle requires expected 2^{L-9} queries if plaintexts are random (which they’re not)

Other Byte-Oriented Padding Schemes (cont.)

- **Any-tail padding**
 - Message padded with any random Y (at least once) that is distinct from the last byte X of the plaintext
 - All ciphertexts have valid padding
 - Padding oracle is eliminated
 - Has an obvious bit-oriented analog

- **Padding followed by integrity check**
 - Message is padded, and then hash(message|padding) is appended before encryption
 - Important for hash to be performed after padding, and checked before padding is checked on receiver side
 - Virtually eliminates padding oracle (but has other weaknesses)
Aborts

- Some protocols (notably SSL/TLS) abort if they encounter a padding error
 - If ciphertext is not authenticated, this is denial-of-service vulnerability
 - If ciphertext is authenticated, then padding oracle is unavailable

- Aborts limit the attacker to one guess

- If the receiver does not abort, then attacker learns last byte of plaintext for whatever ciphertext he submitted
 - Succeeds with probability $\approx 1/2^8$

Padding Oracles in Public Key Systems

[Bleichenbacher 1998]

- Public key systems are equally vulnerable to attacks using padding oracles

- Recall RSA cryptosystem
 - Public key $K = <e, N>$, where $N = pq$ for primes p, q
 - Private key $K^{-1} = <d, N>$, where $ed \equiv 1 \mod (p-1)(q-1)$
 - $E_K(m) = (\text{pad}(m))^e \mod N$
 - $D_{K^{-1}}(c) = \text{pad}^{-1}(c^d \mod N)$
PKCS #1 v1.5 Padding for Encryption

- If \(|N| = k\) bytes, then \(256^{k-1} < N < 256^k\)
- PKCS #1 (v1.5) padding for encryption is correct if
 - 1st byte is 00
 - 2nd byte is 02
 - next 8 bytes different from 00
 - at least one more 00 byte

\[
\begin{array}{c|c|c|c}
\text{most significant byte} & \text{padding string} & \text{least significant byte} \\
\hline
00 & 02 & 00 \text{ message} \\
\hline
\end{array}
\]

Properties of PKCS #1 v1.5 Padding

- Probability \(Pr(\text{PKCS})\) that a random message is correctly padded is
 \[
 0.18 \cdot 2^{-16} < Pr(\text{PKCS}) < 0.97 \cdot 2^{-8}
 \]

- \(1/Pr(\text{PKCS}) < 360,000\)
 - PKCS conforming messages can be found by trial and error

- Given a target ciphertext \(c = m^e \mod N\), attacker can submit
 \(c_i = c(s_i)^e \mod N\) to the padding oracle
 - If \(c_i\) is PKCS conforming, then \(2 \cdot 256^{k-2} \leq ms_i \mod N < 3 \cdot 256^{k-2}\)

- This fact can be leveraged to decrypt \(c\)
Cost of Attack

- Number of queries needed
 - $\Pr(\text{PKCS}) = \text{probability that a random message is PKCS conforming}$
 - $0.18 \cdot 2^{-16} < \Pr(\text{PKCS}) < 0.97 \cdot 2^{-8}$
 - $\Pr(\text{PKCS}|\mathcal{A}) = \text{probability that a message with leading bytes 00 and 02 is PKCS conforming}$
 - $0.18 < \Pr(\text{PKCS}|\mathcal{A}) < 0.97$
 - Number of oracle queries is $\approx 3/\Pr(\text{PKCS}) + 16k/\Pr(\text{PKCS}|\mathcal{A})$

- For example, if N is 1024 bits then roughly 1,000,000 queries are needed

Length-Revealing Oracles

- Padding oracles are not the only side channels
- Consider a length-revealing oracle
 - Given ciphertext input, returns the length of the plaintext (with padding stripped)
- May result from link encryption
 - Outgoing link reveals length of incoming plaintext

- This can be used to defeat even the previous “good” padding schemes
 - (Work some examples)
Chosen Ciphertext Security

- These various side-channel attacks motivate the need for chosen ciphertext security

- Any adversary that can succeed using a side-channel attack can succeed using a chosen-ciphertext attack
 - simply uses the decryption oracle to implement the side channel

- Conversely, a ciphertext that is invulnerable to chosen ciphertext attacks is also invulnerable to side channel attacks

Recall a Chosen Ciphertext Attack

- The adversary is given three oracles
 - An encryption oracle E_K
 - A test oracle $T_K(m_0, m_1)$ that can be called only once

 Oracle $T_K(m_0, m_1)$:

 if $|m_1| \neq |m_2|$ then return \perp

 $b \leftarrow \{0,1\}$

 return $E_K(m_b)$

 - A decryption oracle D_K

- The adversary must guess whether $b = 0$ or $b = 1$, but if

 $c \leftarrow T_K(m_0, m_1)$

 then adversary cannot query $D_K(c)$
Definition of CCA Security

- An CCA-secure encryption scheme is a triple
 \(<Gen, E, D>\)

 such that for every PPT \(A\) there is a negligible \(\nu_A\) where

 \[
 \Pr[AE_K,DK,T_K = 0 : b \leftarrow 0] - \Pr[AE_K,DK,T_K = 0 : b \leftarrow 1] \leq \nu_A(\lambda)
 \]

 for all sufficiently large \(\lambda\), where

 - the probabilities are taken over \(K \leftarrow \text{Gen}(1^\lambda)\)
 - \(AE_K,DK,T_K\) is not permitted to query \(D_K(c)\) if \(c \leftarrow T_K(m_0, m_1)\)