Title Goes Here

Firewalls and Related Technologies

Mike Reiter

Basic Definitions

- **Firewall**: A component or set of components that restricts services between two networks
 - often the two networks are the Internet and an “internal” network
- **Bastion host**: A computer system that must be highly secured because it is vulnerable to attack
 - usually is exposed to the Internet and is the main point of contact for remote users of the internal network
- **Dual-homed host**: A general-purpose computer with two or more network interfaces
- **Network address translation (NAT)**: Procedure by which a router alters source or destination addresses in packets
 - not really a security technique, but can augment security and is often performed at a firewall
Basic Definitions (cont.)

- **Packet filtering**: Selectively passing or blocking packets, usually while routing them from one network to another
 - Can occur in a router, bridge, or host
 - Also called “screening”
- **Perimeter network**: A network added between an external network and a protected (internal) network, in order to provide an additional level of security
 - Also called a “demilitarized zone” (DMZ)
- **Proxy**: A program that interacts with external servers on behalf of internal clients
- **Virtual private network**: Packets that are internal to a private network pass across a public network, without this being obvious to hosts on the internal network

Packet Filtering

- **Packet filter** selectively passes packets from one network interface to another
- Usually done within a router between external and internal networks
 - Packet filter is called a “screening router”
- Can be done by a dedicated network element
 - Then called a “packet filtering bridge”
 - Harder to detect and attack than screening routers
Data Available to a Packet Filter

- **Header data**
 - IP source and destination addresses
 - Transport protocol (TCP, UDP, or ICMP)
 - TCP/UDP source and destination ports
 - ICMP message type
 - Packet size

- **Packet filter can look further into the packet**
 - e.g., the URL being requested

- **Whether the packet is well-formed**
 - is packet the size it claims to be?
 - is it formatted properly for its destination port?

Data Available to Packet Filter (cont.)

- **The interface the packet arrived on**

- **The interface the packet would leave on**

- **And if the filter keeps state ...**
 - Whether this packet appears to be a response to another packet it has recently passed
 - How many packets have been seen recently to or from the same host
 - Whether this packet is identical to a recently sent packet
 - If this packet is part of a larger packet that was fragmented
Actions Available to the Packet Filter

- Send the packet toward its intended destination
- Drop the packet, without notifying the sender
- Reject the packet, with notification to the sender
 - e.g., an ICMP “destination unreachable” packet
- Log information about the packet
- Set off an alarm
- Modify the packet (e.g., NAT)
- Send the packet to other than its intended destination
 - e.g., a proxy or to enforce load balancing
- Modify the filtering rules
 - e.g., accept replies to a UDP packet, or stop all traffic from a host that has sent malformed packets

Examples of Packet Filtering

- Block all incoming connections from systems outside the internal network, except for SMTP connections
- Block all connections to or from systems you distrust
- Block or log all connections to specified domains
 - particularly common for pornographic sites
- Allow electronic mail and FTP, but disallow X11, rsh, rcp, ...
Pros and Cons of Packet Filtering

Advantages:
- One screening router can protect an entire network
- Simple packet filtering can be extremely efficient

Disadvantages:
- Hard to configure and test
- Is susceptible to “failing open”
- Can be slow (even if simple)
 - filtering is incompatible with certain optimizations
- Cannot implement many useful policies
 - does not have access to user who initiated a packet
 - packets say what port they’re for, but not what application will receive them

Proxies

- Special servers that accept client requests to servers and perform them on client’s behalf
 - generally transparent to client user and server
- Effective only when direct client-server interactions prevented
 - otherwise, proxy will be bypassed
Types of Proxies

- Usually used to control outbound connections, but can also be used to control inbound connections
 - controlling inbound connections often called “reverse proxying”

- Example proxy: ftp proxy that permits internal users to import files but prohibits them from exporting files

- Example reverse proxy: balancing incoming requests among multiple servers

Advantages of Proxies

- Can be good at logging
 - e.g., log only ftp commands, not all data transferred

- Can cache content
 - decreases response latency for client

- Can filter more intelligently than a packet filter
 - filter viruses, active content (Java, Javascript), etc.

- Can perform user-level authentication
 - take actions based on which user is issuing requests

- Can protect clients from malformed IP packets
 - generates new IP packets to clients
Disadvantages of Proxies

- Proxy availability lags behind introduction of new services
- Typically a new proxy is required for each service
 - though some can be run through generic proxies
- Usually require modifications to client applications

Network Address Translation (NAT)

- Can dynamically allocate external address and port for each connection initiated by an internal host
- Not only (or even primarily) a security technology
 - mainly used to multiplex numerous IP addresses over a few
Security Advantages of NAT

- **Enforces firewall’s control over outbound connections**
 - if a connection bypasses the firewall, it won’t work because its address is not valid on the external network

- **Temporally restricts incoming traffic**
 - dynamic translation allows only packets that are part of a current interaction initiated from the inside
 - once translation goes away, address that the attacker knows is no longer usable

- **Helps to conceal internal network configuration**
 - how many internal hosts there are, for example

Disadvantages of NAT

- **Dynamic allocation requires state information that is not always available**
 - How long should the translator keep a translation for the external address inserted into an outbound UDP packet?

- **Embedded IP addresses are a problem for NAT**
 - NAT systems normally translate the header, but some protocols bury IP addresses elsewhere

- **NAT can break authentication**
 - NAT is incompatible with IPSec transport mode
 - Integrity-protected, embedded IP addresses are hopeless

- **Logging after translation yields confusing logs**
 - “Reconstructing” log requires precise clock synchronization and time correlation
Virtual Private Networks (VPNs)

- Cryptographic techniques applied to traffic between two distant networks or between end host and network
 - IPSec the most widely used cryptographic protection, most commonly in tunnel mode
- Where to end tunnel?

<table>
<thead>
<tr>
<th>In internal network</th>
<th>In external network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall</td>
<td>Firewall</td>
</tr>
<tr>
<td>Internal network</td>
<td>External network</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- firewall can’t do its job
- traffic exposed too soon

Pros and Cons of VPNs

Advantages:
- Provide strong confidentiality and authenticity of traffic
 - channel authenticated only to granularity of tunnel endpoint
- Enables remote use of protocols that would be difficult to secure any other way

Disadvantages:
- VPNs involve dangerous network connections
 - particularly from mobile devices, which may come under attack
 - ideally, client VPN software disables other uses of client network interface while VPN is in use
- VPNs extend the perimeter that must be secured
Single Box Architectures

- Very high performance
 - a favorite of ISPs
- Primarily packet filtering

- Very high degree of control
 - everything is proxied, or users must log into it to access outside
- Challenge: securing the firewall itself and keeping it alive
 - lots ends up running there

Screened Host Architectures

- Bastion host attached only to internal net
 - the only computer that external network can connect to
 - only some types of connections allowed
- Security mainly provided by packet filter
- Packet filter can selectively allow some connections from other internal hosts
- Both bastion host and router are “single points of failure”
Screened Subnet Architectures

- Two screening routers
- Better protection against bastion host compromise
- No single point of failure

Motivation for Perimeter Network

- Many networking technologies permit any machine on the network to see all traffic on the network
 - Ethernet, Token ring, FDDI

- All traffic on the perimeter network should be
 - to/from External network
 - to/from bastion host

- Thus, no entirely internal traffic should be exposed to an attacker who compromises the bastion host
Bastion Host

- **Main point of contact for incoming connections from external network**
 - For incoming email (SMTP) sessions to deliver electronic mail to the site
 - For incoming FTP connections to site’s anonymous FTP server
 - For incoming DNS queries about the site

- **Outbound services handled one of two ways**
 - Routers set up to allow direct internal-to-external connections
 - Proxy runs on bastion host
 - Internal filter permits internal clients to connect to proxy server on bastion host

Interior Router

- **Sometimes called the “choke router”**

- **Performs most of the packet filtering for your firewall**
 - Permits some internal hosts to connect to external servers
 - Possible examples are HTTP and telnet
 - For other services, internal hosts forced connect to proxies on bastion host

- **Should permit connections only to selected internal hosts**
 - And usually only from the bastion host
Exterior Router

- Sometimes called the “access router”
- Filtering rules
 - Duplicate many of the filtering rules on the internal router
 - Permit outbound connections from bastion host proxies

Two main jobs
- Filters incoming packets with forged source addresses
 - Prevents outsiders from forging packets that
 - appear to be from hosts on the perimeter network
 - appear to be from hosts on the internal network
- Filters outgoing packets with forged source addresses
 - An important part of being a good “network citizen”

Split-Screened Subnet Architecture

- Routers protect from
 - address forgeries
 - protection failures of dual homed host
Independent Screened Subnets

- Provides redundancy
 - No single point of failure for Internet connectivity

- Greater privacy, e.g.,
 - External network 1 = Internet
 - External network 2 = Supplier network

- Run inbound services across one, outbound across the other
 - Both are easier to secure if separated
Example ISP Firewall

Variations: Merge Interior & Exterior Routers

- Requires highly capable screening router
 - Must support inbound and outbound filters on each interface
- Creates a single point of failure (screening router)
 - Like screened host architecture
 - But routers are easier to protect than hosts
Variations: Merge Bastion Host & Exterior Router

- May expose bastion host further
- If bastion host is dual-homed, then may perform worse

Dangerous: Multiple Interior Routers

- Risk that internal traffic will be routed over perimeter network
- Compromise of bastion host will permit internal traffic to be snooped
Multiple Interior Routers (cont.)

- Though dangerous, it provides redundancy and increased performance ... but ...

- If redundancy is motivating factor, then independent screened subnets are better

- If performance is motivating factor, then either
 - A lot of traffic going to perimeter network is not then going to external network
 - This probably means a misconfiguration
 - The exterior router is much faster than your interior router
 - Better to upgrade your interior router than buy another

Another argument for multiple interior routers is to support multiple internal networks that should be protected from each other

A better alternative is to give them separate interfaces on one router
Multiple Interior Routers (cont.)

- If there are too many internal networks for one router, set up a backbone

Types of Packet Filtering: By Address

- Simplest form of filtering
- Restricts flow based on source and/or destination addresses
 - Does not consider the protocol involved
- Mainly used to prevent insertion of packets with forged source addresses

<table>
<thead>
<tr>
<th>Rule</th>
<th>Direction</th>
<th>Source address</th>
<th>Destination address</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inbound</td>
<td>Internal</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

- Notation
 - “Inbound” is relative to internal network
 - “Internal” and “Any” are abbreviations for IP address ranges
 - Rules applied in sequential order until match is found
Types of Packet Filtering: By Service

- Filtering by service is more common, but also more complex
- As an example, consider filtering telnet
- Outbound telnet
 - Characteristics of outgoing packets
 - Telnet is a TCP-based service, so the IP packet type is TCP
 - The TCP destination port is 23
 - The TCP source port number is a number $y > 1023$
 - First outgoing packet will not have the ACK bit set; others will
 - Characteristics of incoming packets
 - TCP source port is 23
 - TCP destination port is y
 - Has the ACK bit set

Packet Filtering by Service (cont.)

- Example filtering rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Direction</th>
<th>Source address</th>
<th>Destination address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Destination port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Out</td>
<td>Internal</td>
<td>Any</td>
<td>TCP</td>
<td>>1023</td>
<td>23</td>
<td>Either</td>
<td>Permit</td>
</tr>
<tr>
<td>B</td>
<td>In</td>
<td>Any</td>
<td>Internal</td>
<td>TCP</td>
<td>23</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
<tr>
<td>C</td>
<td>Either</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Either</td>
<td>Deny</td>
<td></td>
</tr>
</tbody>
</table>

- Does not enforce telnet characteristics exactly
- In fact, permits some seemingly dangerous communication
 - Example: Inbound packets with source port 23 to any port > 1023 will be accepted, if the ACK bit is set
 - Only way to fix this is by keeping some state, or using a proxy
Effect of Order on Filtering

■ Consider the following example
 ▼ You’re in a corporation working on a project with a university
 ▼ Corporate network is 172.16 (i.e., 172.16.0.0 to 172.16.255.255)
 ▼ University owns network 10 (i.e., 10.0.0.0 to 10.255.255.255)
 ▼ You’re going to link these networks together using a packet filter
 ▼ You want to disallow all Internet access over this link
 ▼ Project uses the 172.16.6 subnet
 ▼ University’s 10.1.99 subnet has lots of hostile activity

■ Suppose we try the following filtering rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Source address</th>
<th>Destination address</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10...*</td>
<td>172.16.6.*</td>
<td>Permit</td>
</tr>
<tr>
<td>B</td>
<td>10.1.99.*</td>
<td>172.16..</td>
<td>Deny</td>
</tr>
<tr>
<td>C</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

Effect of Order on Filtering (cont.)

■ Consider several example packets, assuming rules are applied in order ABC

<table>
<thead>
<tr>
<th>Packet</th>
<th>Source address</th>
<th>Destination address</th>
<th>Desired action</th>
<th>Actual action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.99.1</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (B)</td>
</tr>
<tr>
<td>2</td>
<td>10.1.99.1</td>
<td>172.16.6.1</td>
<td>Permit</td>
<td>Permit (A)</td>
</tr>
<tr>
<td>3</td>
<td>10.1.1.1</td>
<td>172.16.6.1</td>
<td>Permit</td>
<td>Permit (A)</td>
</tr>
<tr>
<td>4</td>
<td>10.1.1.1</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
<tr>
<td>5</td>
<td>192.168.3.4</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
<tr>
<td>6</td>
<td>192.168.3.4</td>
<td>172.16.6.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
</tbody>
</table>
Effect of Order on Filtering (cont.)

- Now suppose the firewall reorders the rules by the number of significant bits in the source address field, resulting in BAC
 - More specific rules are applied first

<table>
<thead>
<tr>
<th>Packet</th>
<th>Source address</th>
<th>Destination address</th>
<th>Desired action</th>
<th>Actual action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.99.1</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (B)</td>
</tr>
<tr>
<td>2</td>
<td>10.1.99.1</td>
<td>172.16.6.1</td>
<td>Permit</td>
<td>Deny (B)</td>
</tr>
<tr>
<td>3</td>
<td>10.1.1.1</td>
<td>172.16.6.1</td>
<td>Permit</td>
<td>Permit (A)</td>
</tr>
<tr>
<td>4</td>
<td>10.1.1.1</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
<tr>
<td>5</td>
<td>192.168.3.4</td>
<td>172.16.1.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
<tr>
<td>6</td>
<td>192.168.3.4</td>
<td>172.16.6.1</td>
<td>Deny</td>
<td>Deny (C)</td>
</tr>
</tbody>
</table>

- Turns out that B is redundant, anyway

Proxying

- Redirection of client request to proxy server usually happens by one of the following four approaches
 - Proxy-aware client application software
 - Proxy-aware client operating system
 - Proxy-aware user procedures (and so the illusion diminishes)
 - Proxy-aware router redirects client request
How Proxying Works

- **Proxy-aware client application software**
 - Not available for all applications and platforms
 - Generally requires user configuration, and so may not be transparent

- **Proxy-aware client operating system**
 - When the application tries to make a connection, the O/S invokes the proxy server instead
 - Easiest to do this using a dynamically linked library that handles networking calls; otherwise, network drivers need to be modified
 - Is fairly fragile; problems arise with
 - Statically linked software
 - Software that provides its own dynamically linked libraries for networking functions
 - Protocols that use embedded port numbers or IP addresses
 - Software that manipulates connections at a low level

How Proxying Works (cont.)

- **Proxy-aware user procedures**
 - User tells (unmodified) client to connect to proxy server, and then tells proxy server which host to connect to
 - Example: To retrieve a file from anonymous ftp server ftp.foo.com:
 - User, using any ftp client, connects to proxy server, instead of ftp.foo.com
 - At username prompt, user specifies both account name and real server she wants to connect to: anonymous@ftp.foo.com
 - Of course, this is no longer transparent to user

- **Proxy-aware router**
 - Also called “hybrid proxying” or “transparent proxying”
 - Most transparent of the options: client is unchanged
 - Also difficult to administer, since it inherits disadvantages of both packet filtering and proxying
Types of Proxy Servers

- "Dedicated" or "Application-level"
 - Understands and interprets the commands in the protocol it proxies
 - Can do intelligent processing
 - Selectively filter or log application-specific commands
 - Caching, e.g., in an HTTP proxy

- "Generic" or "Circuit-level"
 - Roughly equivalent to a packet filter; does not interpret protocol-specific commands or data
 - Does not work for protocols that embed ports or IP addresses in application payload (e.g., FTP)
 - Automatically protect against malformed packet headers and packet fragmentation problems

An Example Firewall

Assumptions

- Screened subnet architecture
- There are hosts on the internal network that fulfill roles of
 - Mail server
 - Usenet news server
 - DNS server
 - Clients for various Internet services
- Internal users are assumed trustworthy
 - a simplifying assumption for this example, but not a good idea
- All hosts use properly assigned and routed IP addresses
- Separate network numbers for perimeter and internal nets
An Example Firewall: HTTP and HTTPS

- **Incoming HTTP(S): Web server on bastion host**
- **Outgoing HTTP(S): Two options**
 - Packet filtering
 - Allow internal hosts to create connections to external hosts’ port 80, port 443, and any port above 1023
 - Internal hosts can access any port above 1023 with no help from the firewall
 - Proxy server
 - Standard web browsers have built-in support for proxy access
 - Supports HTTP(S) access to any port
 - Can provide caching
 - Let’s assume a proxy server here

An Example Firewall: SMTP

- **Underlying thinking**
 - Connection from bastion host to arbitrary internal host is dangerous
 - Connection from arbitrary external hosts to internal host is dangerous

- **Incoming SMTP**
 - All incoming mail goes to SMTP server on bastion host
 - Achieved using DNS MX records
 - Bastion host passes all incoming mail to single secured internal SMTP server

- **Outgoing SMTP**
 - All internal hosts direct mail to internal SMTP server
An Example Firewall: Telnet

- **Incoming telnet: Disallow**

- **Outgoing telnet: Two options**
 - Proxy server
 - Would be needed if users were untrusted
 - proxy authenticates and monitors them
 - not the case here
 - Proxy server imposes modified clients or user procedures
 - Packet filtering
 - Easier alternative; let’s choose this

An Example Firewall: SSH

- **Permit remote access via SSH (safer than telnet)**

- **Inbound SSH: Two options**
 - SSH to bastion host, and then login to internal target
 - Bastion host can verify that SSH is coming in
 - Bastion host SSH server can be carefully configured
 - Requires user accounts on bastion host
 - SSH to internal hosts
 - Possibility of SSH servers that do port forwarding, or other servers altogether on SSH port
 - Hopefully this risk will be small, since internal users are trusted
 - We’ll assume SSH to internal hosts

- **Outbound SSH: permit, but warn users of port forwarding**
 - Outgoing SSH can enable incoming attacks if port forwarding is on
An Example Firewall: FTP

- Outbound normal-mode FTP requires *incoming* connection to an arbitrary port over 1023
 - Allowing this without doing anything else is too permissive

- Outbound FTP: Two (realistic) choices
 - Passive mode via packet filtering, or normal mode via proxies
 - Here, let’s do both
 - Permit passive mode where we can impose clients that support it
 - Note: internal hosts must be able to access any port over 1023, since that may be the data channel 😊
 - Proxy ftp where we can’t, imposing new user procedures
 - Recall that if we wanted to monitor ftp usage, we’d have to proxy exclusively (but we don’t)

- Inbound FTP: Disallow except for anonymous on bastion host

An Example Firewall: NNTP

- Need to have a news server on internal network
 - To support internal newsgroups
 - To support older Unix-based (non-NNTP) news clients, which read news from local files

- News server an administrative pain for bastion host
 - Fail often
 - If anything, put it on a different bastion host, but that’s expensive 😊

- Here, let’s assume we permit direct NNTP transfers from selected external news feeds to our internal news server
 - A somewhat dangerous posture 😊
 - Should use NNTP authentication in this case
An Example Firewall: DNS

- DNS network activities include lookups and zone transfers
 - Zone transfer copies zone from a primary server to a secondary one
 - Zone transfers happen among servers who serve queries for the same zone

- Here, let’s assume we put
 - a secondary server on the bastion host, to serve external queries
 - a primary server on an internal host, to serve internal ones

- Note: no information hiding in secondary server

An Example Firewall: Interior Router

- Blocks packets with forged IP source addresses

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoof-1</td>
<td>In</td>
<td>Internal</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>Spoof-2</td>
<td>Out</td>
<td>External</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
</tr>
</tbody>
</table>

- Permit internal client to connect to HTTP server on proxy

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP-1</td>
<td>Out</td>
<td>Internal</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>80</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>HTTP-2</td>
<td>In</td>
<td>Bastion</td>
<td>Internal</td>
<td>TCP</td>
<td>80</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>
An Example Firewall: Internal Router (cont.)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telnet-1</td>
<td>Out</td>
<td>Internal</td>
<td>Any</td>
<td>TCP</td>
<td>>1023</td>
<td>23</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>Telnet-2</td>
<td>In</td>
<td>Any</td>
<td>Internal</td>
<td>TCP</td>
<td>23</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Permits outbound telnet connections**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-1</td>
<td>Out</td>
<td>Internal</td>
<td>Any</td>
<td>TCP</td>
<td>Any</td>
<td>22</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>SSH-2</td>
<td>In</td>
<td>Any</td>
<td>Internal</td>
<td>TCP</td>
<td>22</td>
<td>Any</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Permits outbound ssh connections**

 - “Any” instead of “>1023” since some forms of authentication require SSH clients to use ports at or below 1023

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-1</td>
<td>Out</td>
<td>Internal</td>
<td>Any</td>
<td>TCP</td>
<td>>1023</td>
<td>21</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>FTP-2</td>
<td>In</td>
<td>Any</td>
<td>Internal</td>
<td>TCP</td>
<td>21</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Allow outgoing command-channel connections to FTP servers, for use by passive-mode internal clients**

![Rule](image_url)
An Example Firewall: Internal Router (cont.)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-3</td>
<td>Out</td>
<td>Internal</td>
<td>Any</td>
<td>TCP</td>
<td>>1023</td>
<td>>1023</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>FTP-4</td>
<td>In</td>
<td>Any</td>
<td>Internal</td>
<td>TCP</td>
<td>>1023</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Allow outgoing data-channel connections to FTP servers, for use by passive-mode internal clients**
 - A very permissive rule, but required to support passive-mode FTP

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-5</td>
<td>Out</td>
<td>Internal</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>21</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>FTP-6</td>
<td>In</td>
<td>Bastion</td>
<td>Internal</td>
<td>TCP</td>
<td>21</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Allow internal, normal-mode FTP clients to make command-channel connection to FTP proxy on bastion host**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-7</td>
<td>In</td>
<td>Bastion</td>
<td>Internal</td>
<td>TCP</td>
<td>Any</td>
<td>6000–6020</td>
<td>Any</td>
<td>Deny</td>
</tr>
<tr>
<td>FTP-8</td>
<td>In</td>
<td>Bastion</td>
<td>Internal</td>
<td>TCP</td>
<td>20</td>
<td>>1023</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>FTP-9</td>
<td>Out</td>
<td>Internal</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>20</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Permits FTP data connections from proxy server on bastion host to normal-mode internal FTP clients**
- **FTP-7 prevents attacker on bastion host from attacking internal X11 servers via hole created by FTP-8 and FTP-9**
 - If other servers are listening on internal ports above 1023, similar rules should be added for them
 - Trying to list things to deny (ala FTP-7) is a losing battle, but the best that can be done in this case
An Example Firewall: Internal Router (cont.)

Permit outgoing mail from internal mail server to bastion host

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP-1</td>
<td>Out</td>
<td>Internal SMTP server</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>25</td>
<td></td>
<td>Permit</td>
</tr>
<tr>
<td>SMTP-2</td>
<td>In</td>
<td>Bastion</td>
<td>Internal SMTP server</td>
<td>TCP</td>
<td>25</td>
<td>>1023</td>
<td></td>
<td>Yes Permit</td>
</tr>
</tbody>
</table>

Permit incoming mail from bastion host to internal mail server

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP-3</td>
<td>In</td>
<td>Bastion</td>
<td>Internal SMTP server</td>
<td>TCP</td>
<td>>1023</td>
<td>25</td>
<td></td>
<td>Permit</td>
</tr>
<tr>
<td>SMTP-4</td>
<td>Out</td>
<td>Internal SMTP server</td>
<td>Bastion</td>
<td>TCP</td>
<td>25</td>
<td>>1023</td>
<td></td>
<td>Yes Permit</td>
</tr>
</tbody>
</table>

An Example Firewall: Internal Router (cont.)

Allow outgoing news from internal server to service provider

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNTP-1</td>
<td>Out</td>
<td>Internal NNTP server</td>
<td>NNTP feed server</td>
<td>TCP</td>
<td>>1023</td>
<td>119</td>
<td></td>
<td>Permit</td>
</tr>
<tr>
<td>NNTP-2</td>
<td>In</td>
<td>NNTP feed server</td>
<td>Internal NNTP server</td>
<td>TCP</td>
<td>119</td>
<td>>1023</td>
<td></td>
<td>Yes Permit</td>
</tr>
</tbody>
</table>

Allow incoming news from service provider to internal server

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNTP-3</td>
<td>In</td>
<td>NNTP feed server</td>
<td>Internal NNTP server</td>
<td>TCP</td>
<td>>1023</td>
<td>119</td>
<td></td>
<td>Permit</td>
</tr>
<tr>
<td>NNTP-4</td>
<td>Out</td>
<td>Internal NNTP server</td>
<td>NNTP feed server</td>
<td>TCP</td>
<td>119</td>
<td>>1023</td>
<td></td>
<td>Yes Permit</td>
</tr>
</tbody>
</table>
An Example Firewall: Internal Router (cont.)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-1</td>
<td>Out</td>
<td>Internal DNS server</td>
<td>Bastion</td>
<td>UDP</td>
<td>53</td>
<td>53</td>
<td>Permit</td>
<td></td>
</tr>
<tr>
<td>DNS-2</td>
<td>In</td>
<td>Bastion</td>
<td>Internal DNS server</td>
<td>UDP</td>
<td>53</td>
<td>53</td>
<td>Permit</td>
<td></td>
</tr>
</tbody>
</table>

- **Allow UDP-based queries & answers between internal DNS server & bastion DNS server**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-3</td>
<td>Out</td>
<td>Internal DNS server</td>
<td>Bastion</td>
<td>TCP</td>
<td>>1023</td>
<td>53</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>DNS-4</td>
<td>In</td>
<td>Bastion</td>
<td>Internal DNS server</td>
<td>TCP</td>
<td>53</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Allow TCP-based queries from internal DNS server to bastion DNS server, and their responses**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-5</td>
<td>In</td>
<td>Bastion</td>
<td>Internal DNS server</td>
<td>TCP</td>
<td>>1023</td>
<td>53</td>
<td>Any</td>
<td>Permit</td>
</tr>
<tr>
<td>DNS-6</td>
<td>Out</td>
<td>Internal DNS server</td>
<td>Bastion</td>
<td>TCP</td>
<td>53</td>
<td>>1023</td>
<td>Yes</td>
<td>Permit</td>
</tr>
</tbody>
</table>

- **Allow TCP-based queries from bastion DNS server to internal DNS server, and their responses**

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dir</th>
<th>Source address</th>
<th>Dest. Address</th>
<th>Protocol</th>
<th>Source port</th>
<th>Dest. port</th>
<th>ACK set</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default-1</td>
<td>Out</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td></td>
</tr>
<tr>
<td>Default-2</td>
<td>In</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Deny</td>
<td></td>
</tr>
</tbody>
</table>

- **Deny anything not explicitly allowed by the preceding rules**