Lecture 2: Introduction to Computer Graphics

Representing geometry, cameras, reflectance, lighting, and rendering images
Feel free to share your questions...
Few reminders

• 590: Assignment 1 is out, due date next Thursday Aug 25!

• 790: Starting planning your project proposal and forming your group. If you want to work on your own project, send an email, explain why, and have my written approval.

• 590/790: Please indicate your paper presentation preference by filling out the google form (See course website, under presentation).

• Change in grading plans:
 • Paper presentation: only 790
 • Paper review: only 590
 • 590: 5 assignments instead of 4, but significantly easier, 4 assignment can be done on google colab.
How does Computer Vision & Graphics work together?

3D Intrinsic Components

Vision → 3D → Edit Components → Graphics

Current Image → New Image under different conditions

Change:
- Viewpoint
- Lighting
- Reflectance
- Background
- Attributes
- Many others...

Explicit: Reconstruct 3D
(Introduction to Graphics Lectures)

Implicit: Neural Representation
(Generative Models Lectures)
Agenda

• How do we define geometry/shape of an object?
• How do we define a camera model? – 3D object to 2D image
• How do we define material property? – glossy, metallic
Slide Credits

• UC Berkeley CS 184/284a – Spring 2021 (Ren Ng, Angjoo Kanazawa)
• CMU 16-385 Computer Vision – Spring 2017 (Kris Kitani)
• Many amazing research papers!
Agenda

• How do we define geometry/shape of an object?
• How do we define a camera model? – 3D object to 2D image
• How do we define material property? – glossy, metallic
Digital Geometry Processing

3D Scanning

3D Printing
Geometry Processing Pipeline

Scan → Process → Print

How do we represent geometry?
Geometry: How do we represent shape of an object?

2.5D representation:
 1) Depth & Normal map

Explicit representation:
 2) Mesh
 3) Voxels
 4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF)
Geometry: How do we represent shape of an object?

2.5D representation:
 1) Depth & Normal map

Explicit representation:
 2) Mesh
 3) Voxels
 4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF)
Depth Map $D(u,v)$: Distance of any pixel (u,v) from the camera (usually image plane)

Red -> nearer; blue -> further

For an image $HxWx3$, a depth map is $HxWx1$ (scalar value for every pixel)
Surface Normal (in blue) of a point P is a vector perpendicular to the tangent plane at P.

Surface normal (in blue) of a surface indicate orientation of the surface.
Normal Map

Normal Map \(N(u,v) : [Nx,Ny,Nz] \) is a unit vector indicating the orientation of the surface.

Pink-> towards left; blue-> towards right

For an image \(H \times W \times 3 \), a normal map is \(H \times W \times 3 \).

What is a unit vector?
- L2 norm (magnitude) of the vector is 1.
- \(Nx^2 + Ny^2 + Nz^2 = 1 \)
Relationship between Depth & Normal Map

\[\tilde{N} = \left[\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, -1 \right] \]

\[N = \frac{\tilde{N}}{\| \tilde{N} \|_2} \]

- Differentiation of depth map leads to normal map
- Integration of normal map leads to depth map

Further reading: Normal Integration: A Survey
Geometry: How do we represent shape of an object?

2.5D representation:
1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
5) Surface Representation (SDF)
A Small Triangle Mesh

8 vertices, 12 triangles
Mesh

vertices edges faces polygons surfaces
How do you represent a mesh file?

Wavefront .obj file

A list of vertices defined by their 3D x, y, z coordinates

v -0.23876920554499864 1.3103797270601687 0.13001260700009193
v -0.27582915374543276 1.2582563331865875 0.12364597630502337
v -0.2674888336016338 1.3474373225751202 0.15912747459742976
v -0.3128662756980407 1.222713216834852 0.14623565543301947

A list of faces that defines which vertices will combine to produce a triangle on the mesh

f 1 2 3
f 4 5 3
f 4 3 2
f 9 10 7
f 10 8 7
f 11 12 9

Note: This is the most naïve way of defining a mesh. You can add vertex normal, vertex texture, separate material model, and many other things with the .obj format.

MeshLab: a great software to load and visualize a mesh in 3D!
Show demo of using MeshLab to view an object in 3D
Texture Mapping: How do you add color/texture on a mesh?

• Texture map is a 2D image

• Texture mapping takes the RGB color of each pixel (u,v) from the texture map and colors a vertex V (x,y,z) of the mesh.

• Color of each faces (triangles of the mesh) are often interpolated between the 3 vertex colors

• Note: Many variation of the above algorithm exist.
Few important/cool research works on meshes
A Large Triangle Mesh

David
Digital Michelangelo Project
28,184,526 vertices
56,230,343 triangles

Marc Levoy at Stanford (https://accademia.stanford.edu/mich/)
A Brick Lamp

Colorful Crochet Candle
SMPL model, MPI
Geometry: How do we represent shape of an object?

2.5D representation:
 1) Depth & Normal map

Explicit representation:
 2) Mesh
 3) Voxels
 4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF) – implicit
Voxel Representation

It’s like playing with Lego!
Voxel Representation

Voxel with octree
Few important/cool research works on voxels.
We will learn a lot about voxels in 2nd half of the class when we discuss NeRF.
Geometry: How do we represent shape of an object?

2.5D representation:
1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
5) Surface Representation (SDF) – implicit
LiDAR and many other range sensors produces point cloud.
Sparse model of central Rome using 21K photos produced by COLMAP’s SfM pipeline.

Dense models of several landmarks produced by COLMAP’s MVS pipeline.
3D Representations (Explicit)

<table>
<thead>
<tr>
<th></th>
<th>Voxel</th>
<th>Point cloud</th>
<th>Polygon mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory efficiency</td>
<td>Poor</td>
<td>Not good</td>
<td>Good</td>
</tr>
<tr>
<td>Textures</td>
<td>Not good</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>For neural networks</td>
<td>Easy</td>
<td>Not easy</td>
<td>Not easy</td>
</tr>
</tbody>
</table>

We adopt **polygon mesh** for its high potential.

Images are from:
- http://cse.iitkgp.ac.in/~pb/research/3dpoly/3dpoly.html
- http://waldyrious.net/learning-holography/pb-cgh-formulas.xhtm
Geometry: How do we represent the shape of an object?

2.5D representation:
1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
5) Surface Representation (SDF)
Surface Representation: Signed Distance Function (SDF) - implicit representation via level set

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface
SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation!
Suitable for neural networks but hard to import inside existing graphics software.

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.
Feel free to share your questions...

Text RONISEN to 22333 once to join, then text your message

Respond at PollEv.com/ronisen
Agenda

• How do we define geometry/shape of an object?
• How do we define a camera model? – 3D object to 2D image
• How do we define material property? – glossy, metallic

Further reading: Understanding Color and the In-Camera Image Processing Pipeline for Computer Vision
Modern photography pipeline

Starting point: reality (in radiance)

Pre-Camera:
- Lens
- Filter
- Shutter
- Aperture

In-Camera:
- CMOS response (raw-RGB)
- raw-RGB processing
 + “Photo-finishing Processing”

Camera Output: sRGB

Ending point: better than reality (in sRGB)

Post-Processing:
- Touch-up
- Hist equalization
- Spatial warping
 Etc ...

Even if we stopped here, the original CMOS response potentially has had many levels of processing.
A typical color imaging pipeline

1. Sensor with color filter array (CFA) (CCD/CMOS)
2. ISO gain and raw-image processing
3. RGB Demoasiscing
4. White-Balance & Color Space Transform (CIE XYZ)
5. Noise Reduction
6. Mapping to sRGB output
7. Color Manipulation (Photo-finishing)
8. JPEG Compression
9. Save to file
Pinholes & Lenses Form Image on Sensor
Pinholes & Lenses Form Image on Sensor

Photograph made with lens
Shutter Exposes Sensor For Precise Duration

The Slow Mo Guys, https://youtu.be/CmjeCchGRQo
Sensor Accumulates Irradiance During Exposure
Image Processing: From Sensor Values to Image
Optics of Image Formation:
Field of View
Effect of Focal Length on FOV

For a fixed sensor size, decreasing the focal length increases the field of view.

\[\text{FOV} = 2 \arctan \frac{h}{2f} \]
To maintain FOV, decrease focal length of lens in proportion to width/height of sensor.
Larger Focal length = Smaller FOV
Selfies

Best for portrait

Larger Focal length = Smaller FOV

24mm

Best for portrait

85mm

35mm

105mm

50mm

135mm

70mm

200mm
A camera is a mapping between the 3D world and a 2D image.
3D object

3D to 2D Transform

2D to 2D Transform
A camera is a mapping between the 3D world and a 2D image

\[x = P X \]

2D image point camera matrix 3D world point
\[x = PX \]

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} =
\begin{bmatrix}
p_1 & p_2 & p_3 & p_4 \\
p_5 & p_6 & p_7 & p_8 \\
p_9 & p_{10} & p_{11} & p_{12}
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]

- **homogeneous image**: \(3 \times 1\)
- **Camera matrix**: \(3 \times 4\)
- **homogeneous world point**: \(4 \times 1\)
The pinhole camera

What is the equation for image coordinate x (in terms of X)?
What is the equation for image coordinate x (in terms of X)?
\(\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top \)
What is the camera matrix P for a pinhole camera model?

$$x = PX$$
Relationship from similar triangles...

\[
\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top
\]

generic camera model

\[
\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
\]

What does the pinhole camera model look like?

\[
\]
Relationship from similar triangles...

\[
\begin{bmatrix}
X \\ Y \\ Z
\end{bmatrix}^T \mapsto \begin{bmatrix} fX/Z \\ fY/Z \end{bmatrix}^T
\]

generic camera model

\[
\begin{bmatrix}
X \\ Y \\ Z
\end{bmatrix} = \begin{bmatrix}
p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12}
\end{bmatrix} \begin{bmatrix}
X \\ Y \\ Z \\ 1
\end{bmatrix}
\]

What does the pinhole camera model look like?

\[
P = \begin{bmatrix}
f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0
\end{bmatrix}
\]
\[P = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

Camera origin and image origin might be different.
CCD array

image coordinate system

camera coordinate system

\[\mathbf{P} = \begin{bmatrix} f & 0 & p_x & 0 \\ 0 & f & p_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

Accounts for different origins
In general, the camera and image sensor have different coordinate systems.

- \(\mathbf{O}_{\text{image}} \) (image point)
- \(\mathbf{O}_{\text{camera}} \) (image point)
- \(\mathbf{X} \) (world point)
In general, there are **three different** coordinate systems...

so you need to know the transformations between them
Can be decomposed into two matrices

\[
P = K[I|0]
\]

- Relationship between image & camera coord. Systems.
- Camera Calibration matrix
- Camera Extrinsic
- Can be obtained from image meta data.

\[
P = \begin{bmatrix}
f & 0 & p_x \\
0 & f & p_y \\
0 & 0 & 1
\end{bmatrix}
\]

- Relationship between world & camera coord. Systems.
- Camera Intrinsic
- Often known as ‘Camera Pose Estimation/ Camera Localization problem’.

\[
K = \begin{bmatrix}
f & 0 & p_x \\
0 & f & p_y \\
0 & 0 & 1
\end{bmatrix}
\]

calibration matrix
Assumes that the **camera** and **world** share the same coordinate system

\[
P = \begin{bmatrix}
f & 0 & px \\
0 & f & py \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

What if they are different?

How do we align them?
Assumes that the camera and world share the same coordinate system

\[P = \begin{bmatrix}
 f & 0 & p_x \\
 0 & f & p_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix} \]

What if they are different?
How do we align them?

3R rotation and translation to align axis
Coordinate of the camera center in the world coordinate frame
Why aren't the points aligned?

\[(X_w - C)\]

Translate
What happens to points after alignment?

\[\mathbf{R}(\mathbf{X}_w - \mathbf{C}) \]

Rotate Translate
In inhomogeneous coordinates:

\[X_c = R(X_w - C) \]

Optionally in homogeneous coordinates:

\[
\begin{bmatrix}
X_c \\
Y_c \\
Z_c \\
1
\end{bmatrix} = \begin{bmatrix}
R & -RC \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
X_w \\
Y_w \\
Z_w \\
1
\end{bmatrix}
\]

General mapping of a pinhole camera

\[P = KR[I | - C] \]
General mapping of a pinhole camera

\[P = KR[I|T - C] \]

(translate first then rotate)

Another way to write the mapping

\[P = K[R|t] \]

where

\[t = -RC \]

(rotate first then translate)
Feel free to share your questions...
Agenda

• How do we define geometry/shape of an object?
• How do we define a camera model? – 3D object to 2D image
• How do we define material property? – glossy, metallic
What is Material in Computer Graphics?

3D coffee mug model Rendered Rendered

[From TurboSquid, created by artist 3dror]
Material == BRDF

Further reading: https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
Diffuse / Lambertian Material (BRDF)

Uniform colored diffuse BRDF

Textured diffuse BRDF

CS184/284A

[Mitsuba renderer, Wenzel Jakob, 2010]

Kanazawa & Ng
Glossy material (BRDF)

Copper

Aluminum

Glossy
Refraction

In addition to reflecting off surface, light may be transmitted through surface.

Light refracts when it enters a new medium.
Ideal reflective / refractive material (BSDF*)

Air <-> plastic interface

Air <-> glass interface (with absorption)

[Mitsuba renderer, Wenzel Jakob, 2010]
Bi-directional Radiance Distribution Function (BRDF)

Light is reciprocative

E = Irradiance. energy per unit area received on the surface in the incoming lighting direction.

L = Radiance energy per unit area exiting the surface in the outgoing lighting direction.
BRDF

Definition: The bidirectional reflectance distribution function (BRDF) represents how much light is reflected into each outgoing direction ω_r from each incoming direction ω_i.

\[
\frac{dL_r(x,\omega_r)}{dE_i(\omega_i)} = \frac{dL_r(x,\omega_r)}{L_i(\omega_i) \cos \theta_i \, d\omega_i}
\]

L_i is intensity of the light source.

Energy received by the surface is:

\[
E_i = L_i \cos \theta_i
\]
The Reflection Equation

BRDF at a point p on the surface is a 4D function of 4 angles related to incoming and outgoing lighting direction.

$$L_r(p, \omega_r) = \int_{H_+} f_r(p, \omega_i \rightarrow \omega_r) L_i(p, \omega_i) \cos \theta_i \, d\omega_i$$
Diffuse/ Lambertian

Given a point light source L_i, image intensity at pixel p can be then written as:

$$I(p) = a(p)\langle L_i, N(p)\rangle = a(p)L_i\cos\theta_i$$

Note: θ is the angle between surface normal $N(p)$ and incident lighting direction L_i.

$f(p, w_i \rightarrow w_r) = a(p)$

$a(p)$ is termed as Albedo.

Albedo for a HxWx3 RGB image is HxWx3
Glossy/Specular (Phong Reflectance Model)

\[f(p, w_i \rightarrow w_r) = \frac{a(p)}{\pi} + k_s \frac{\alpha + 2}{2\pi} \cos^\alpha \theta_i \]

- \(a(p) \) = albedo at pixel \(p \).
- \(K_s \) = specular reflectivity, controls how specular the object is.
- \(\alpha \) = specular exponent, higher value indicates sharper reflections.

Usually specular reflectivity and exponent are pixel invariant, i.e. we assume that the BRDF is spatially in-varient!
Ambient + Diffuse + Specular = Phong Reflection
$K_s = \text{specular reflectivity}, \text{ controls how specular the object is.}$

$\alpha \ (\text{written as } n \text{ in the picture}) = \text{specular exponent, higher value indicates sharper reflections.}$
Microfacet Material Model
Microfacet Theory

Rough surface
- Macroscale: flat & rough
- Microscale: bumpy & specular

Individual elements of surface act like mirrors
- Known as “microfacets”
- Each microfacet has its own normal vector (photometric normal)
Microfacet BRDF

• Key: the distribution of microfacets’ normals
 • Concentrated \iff glossy
 • Spread out \iff diffuse
In practice we only have to define albedo per pixel $A(p)$ and roughness $R(p)$, a total $H \times W \times 4$.
Microfacet BRDF: Examples

[Autodesk Fusion 360]

CS184/284A Kanazawa & Ng
Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images, Bi et. al.
Isotropic vs Anisotropic Reflection

• So far, Point light + Metal = Round / Elliptical highlight
• What can we see inside many metal elevators?
Isotropic vs Anisotropic Reflection

Isotropic

Anisotropic

CS184/284A

Kanazawa & Ng
Isotropic / Anisotropic Materials (BRDFs)

• **Key:** *directionality* of underlying surface

Isotropic

![Isotropic Surface (normals)](image1)

![BRDF (fix wi, vary wo)](image2)

Anisotropic

![Anisotropic Surface (normals)](image3)

![BRDF (fix wi, vary wo)](image4)
Subsurface Scattering

Visual characteristics of many surfaces caused by light exiting at different points than it enters

• Violates a fundamental assumption of the BRDF

• Different from transparent

[Jensen et al 2001]

[Donner et al 2008]
BRDF vs BSSRDF (models sub-surface scattering)

[Jensen et al. 2001]

CS184/284A

Kanazawa & Ng
BSSRDF: Application

[Artist: Teruyuki and Yuka] [Artist: Hyun Kyung] [Artist: Dan Roarty]

https://cgelves.com/10-most-realistic-human-3d-models-that-will-wow-you/
Feel free to share your questions...

- Respond at PollEv.com/ronisen

Text RONISEN to 22333 once to join, then text your message
To be continued ...
Anti Racist Computer Graphics
- by Theodore Kim, Yale Univ.

Computer Graphics has a race problem!

Listen to this 1hour presentation by Prof. Kim: https://www.youtube.com/watch?v=ROuE8xYLpX8
“Skin” = Subsurface Scattering

Figure 11: A face rendered using the BRDF model (top) and the BSSRDF model (bottom). We used our measured values for skin (skin1) and the same lighting conditions in both images (the BRDF

“Skin” = White Skin

Whiter skin has more subsurface scattering, leading to more smoothing effect.

Darker skin has more specular reflection and less subsurface scattering.

Other racial bias in Computer Graphics?

- Hair = ‘Straight hair’
Camera color tone bias
So what do we do now?

• Incentivize creating good dataset and benchmarks that is diverse and inclusive of all race, ethnicity, genders, disability status etc.

• Discourage working on research problems that are going to potentially cause harm to marginalized community, e.g. detecting sexual orientation from images.

• If working on specific subpopulation, make sure to clarify that in the paper, e.g. write ‘whiter skin tone’ instead of ‘human skin tone’.