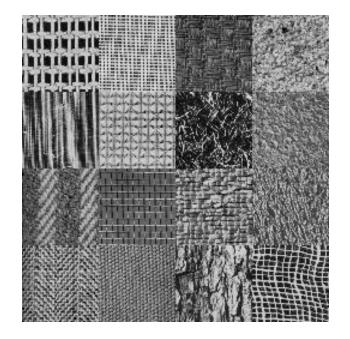
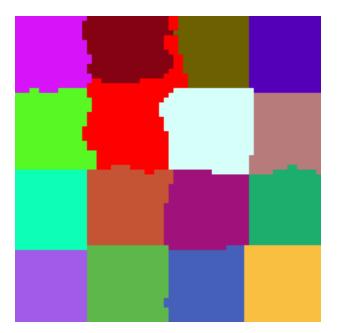
Efficient Graph based Image Segmentation

by P. Felzenszwalb & D. Huttenlocher- In IJCV 2004





Courtesy Uni Bonn

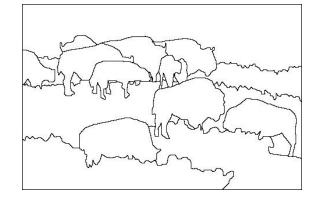
-Sahil Narang & Kishore Rathinavel

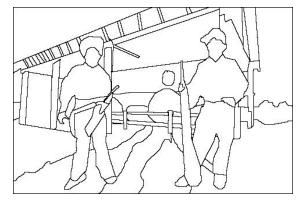
Goal

• Separate images into "coherent" objects.

image

human segmentation





Berkeley Segmentation Database

Goal

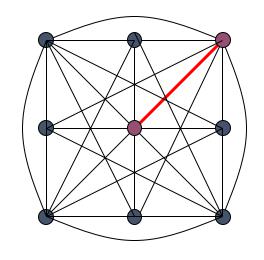
- Separate image into coherent "objects"
 - Top-down or bottom-up process?
 - Supervised or unsupervised?
- Group together similar-looking pixels for efficiency of further processing
 - Related to image compression
 - Measure of success is often application-dependent

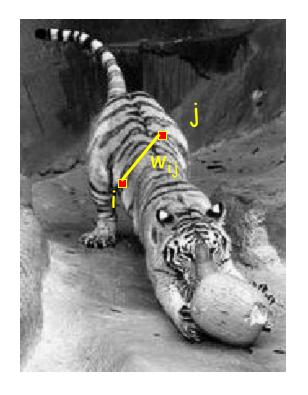
Algorithmic Requirements



- 1. Capture perceptually important groupings that reflect global aspects of the image
- 2. Be highly efficient, run time linear in the number of pixels

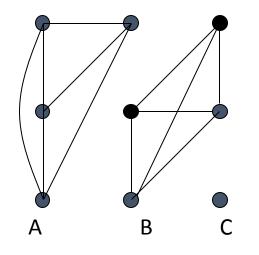
Images as graphs

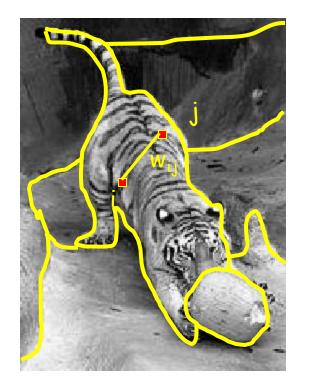




- Node for every pixel
- Edge between every pair of pixels (or every pair of "sufficiently close" pixels)
- Each edge is weighted by the *dis*similarity of the two nodes

Segmentation via graph partitioning



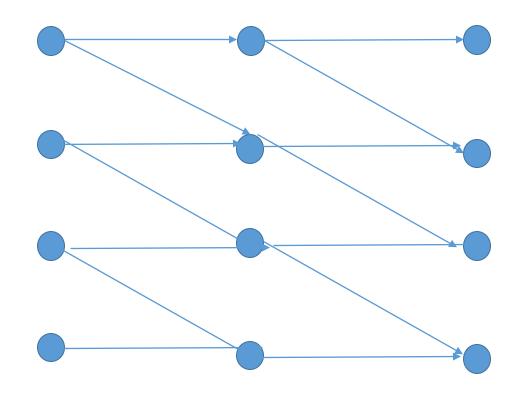


- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that high weights
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Key Idea:

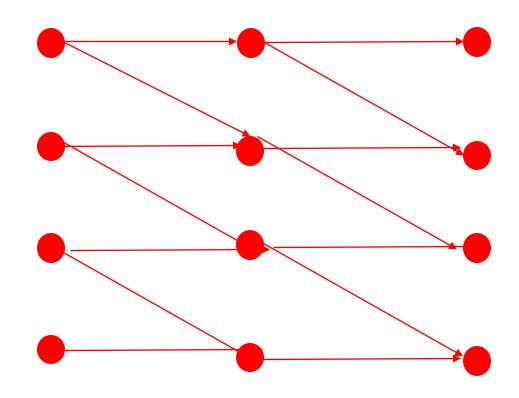
There exists a boundary between C1 and C2 iff the inter component differences

is larger than the intra-component differences



```
Int(G)=6
Int(R)=9
                                                                       5
Mint=min(Int(G) + \tau(G), Int(R) + \tau(R))
                                                    3
     = \min(6 + 60/6, 9 + 60/6) = 16
                                                                        11
Diff(G,R)= min(21,15)=15
                                                     2
                                                                       9
where \tau(G) = k/|G|
                                                                            15
                                                         21
                                                                        6
                                                      1
                                                       3
                                                                          4
```

• Diff(G,R) > Mint(G,R) ? False



Segmentation Algorithm

Input: G = (V;E), with n vertices and m edges

Output: Segmentation of V into components $S = (C_1, ..., C_r)$

Algorithm

- 1. Sort E into π = (o₁,...,o_m), by non-decreasing edge weight
- 2. Start with a segmentation S^0 , where each vertex v_i is in its own component.
- 3. Repeat for q = 1,...,m.
 - Construct S^q from S^{q-1} as follows:
 - Let v_i and v_j denote the vertices connected by the q-th edge in the ordering, i.e., $o_q = (v_i; v_j)$.
 - If v_i and v_j are in disjoint components of S^{q-1} and w(o_q) is small compared to the internal difference of both those components, then merge the two components otherwise do nothing.
- 4. Return S=S^m

Implementation

- Disjoint Set forests with union by rank and path compression
- Run Time
 - Sorting edges: O(mlogm)
 - Steps 2-4: $O(m\alpha(m))$ where α is the inverse Ackerman's function
 - At most 3 disjoint set ops per edge
- (Not) Implemented
 - Channel based segmentation for color images
 - Nearest Neighbor graphs

Parameters

• σ

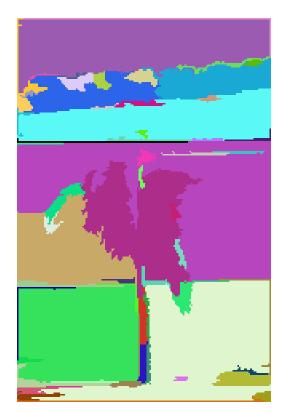
- Gaussian Smoothing: Preprocessing to reduce noise
- Can cause "bleeding" the algorithm has difficulty separating background from the object if the boundaries are too smooth
- Set to 0.8

• k

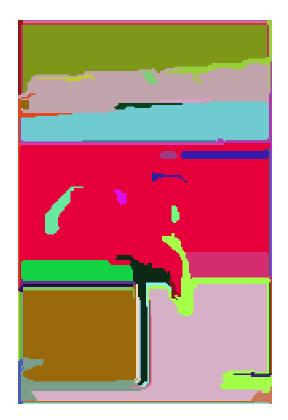
- Sets scale of observation
- Set to 300
- minSize
 - Post processing step to merge small components
 - Set to 20

Smoothing Effect

Original Image



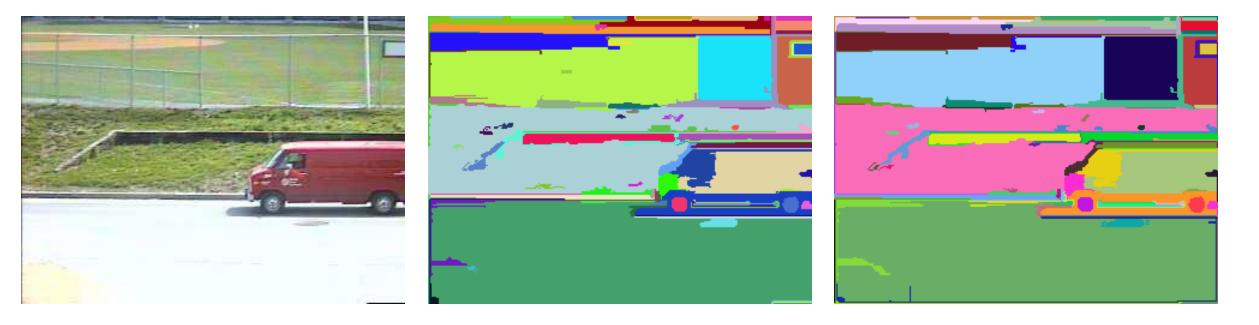
σ=0.5



σ=1.5

Original Image

Author's implementation



Original Image

Author's implementation

Original Image

Author's implementation

Original Image

Author's implementation

S.No	Scene	Dimensions	No. of Pixels	Time (sec)
1	Base case	81 x 110	8910	3.064557
2	mypeppers	192 x 125	24000	12.861267
3	Beach	240,159	38160	27.739771
4	Indoor	240 x 320	76800	125.466307
5	Street	240 x 320	76800	128.762103
6	Baseball	294 , 432	127008	481.096896

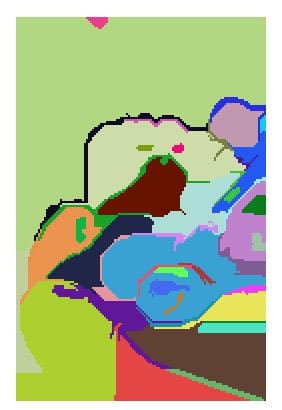
Conclusion

- Segmentation algorithm makes simple greedy decisions, yet obeys global properties
- Efficient: O(nlogn)
- Limited by use of minimum edge wt as evidence of boundary
- This assumption helps avoid making it NP-Hard
- Parameter dependent

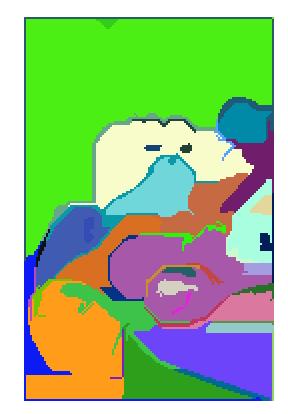
Questions??

Supplemental Slides

Original Image



Author's implementation



- Key Idea:
 - There exists a boundary between C1 and C2 iff the inter component differences is larger than the intra-component differences
- Internal Difference of a Component

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

• Difference between Components

$$Dif(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2, (v_i, v_j) \in E} w((v_i, v_j))$$

• Pairwise Comparison Predicate

$$D(C_1, C_2) = \begin{cases} \text{true} & \text{if } Dif(C_1, C_2) > MInt(C_1, C_2) \\ \text{false} & \text{otherwise} \end{cases}$$

Threshold parameter

• Minimum Internal Difference of two Components

 $MInt(C_1, C_2) = \min(Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2)).$

- Threshold dictates the degree to which the inter component difference must be greater that the intra component difference
- Threshold based on size

 $\tau(C) = k/|C|$

- K sets the scale of observation
- Can be used for shape based segmentation