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Goal

• Separate images into “coherent” objects.
image human segmentation

Berkeley Segmentation Database



Goal

• Separate image into coherent “objects”
• Top-down or bottom-up process?

• Supervised or unsupervised?

• Group together similar-looking pixels for efficiency of further 
processing
• Related to image compression

• Measure of success is often application-dependent



Algorithmic Requirements

1. Capture perceptually important groupings that reflect global aspects of the 
image

2. Be highly efficient, run time linear in the number of pixels



Images as graphs

• Node for every pixel
• Edge between every pair of pixels (or every pair of “sufficiently close” 

pixels)
• Each edge is weighted by the dissimilarity of the two nodes
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Segmentation via graph partitioning

• Break Graph into Segments
• Delete links that cross between segments
• Easiest to break links that high weights

• similar pixels should be in the same segments
• dissimilar pixels should be in different segments
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Pairwise Region Comparison Predicate
Key Idea: 

There exists a boundary between C1 and C2 iff the inter component differences
is larger than the intra-component differences



Pairwise Region Comparison Predicate
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Int(G)=6
Int(R)=9 
Mint=min(Int(G) + τ(G), Int(R) + τ(R) )

= min(6 + 60/6, 9 +60/6)=16
Diff(G,R)= min(21,15)=15

where τ(G) = k/|G|



Pairwise Region Comparison Predicate

• Diff(G,R) > Mint(G,R) ? False



Segmentation Algorithm

Input:  G = (V;E), with n vertices and m edges

Output: Segmentation of V into components S = (C1,…,Cr)

Algorithm

1. Sort E into π= (o1,….,om), by non-decreasing edge weight

2. Start with a segmentation S0, where each vertex vi is in its own component.

3. Repeat for q = 1,….,m.
• Construct Sq from Sq-1 as follows: 
• Let vi and vj denote the vertices connected by the q-th edge in the ordering, i.e., oq

= (vi; vj). 
• If vi and vj are in disjoint components of Sq-1 and w(oq) is small compared to the 

internal difference of both those components, then merge the two components 
otherwise do nothing.

4. Return S=Sm



Implementation

• Disjoint Set forests with union by rank and path compression

• Run Time
• Sorting edges: O(mlogm)

• Steps 2-4: O(mα(m)) where α is the inverse Ackerman’s function

• At most 3 disjoint set ops per edge

• (Not) Implemented
• Channel based segmentation for color images

• Nearest Neighbor graphs



Parameters

• σ
• Gaussian Smoothing: Preprocessing to reduce noise
• Can cause “bleeding” – the algorithm has difficulty separating background 

from the object if the boundaries are too smooth
• Set to 0.8

• k
• Sets scale of observation
• Set to 300

• minSize
• Post processing step to merge small components
• Set to 20



Smoothing Effect

Original Image σ=0.5 σ=1.5



Results

Original Image Author’s implementation Our implementation
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Results

S.No Scene Dimensions No. of Pixels Time (sec)

1 Base case 81 x 110 8910 3.064557

2 mypeppers 192 x 125 24000 12.861267

3 Beach 240 , 159 38160 27.739771

4 Indoor 240 x 320 76800 125.466307

5 Street 240 x 320 76800 128.762103

6 Baseball 294 , 432 127008 481.096896



Conclusion

• Segmentation algorithm makes simple greedy decisions, yet obeys 
global properties

• Efficient: O(nlogn)

• Limited by use of minimum edge wt as evidence of boundary

• This assumption helps avoid making it NP-Hard

• Parameter dependent



Questions??
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Pairwise Region Comparison Predicate

• Key Idea: 
• There exists a boundary between C1 and C2 iff the inter component 

differences is larger than the intra-component differences

• Internal Difference of a Component

• Difference between Components

• Pairwise Comparison Predicate



Threshold parameter

• Minimum Internal Difference of two Components

• Threshold dictates the degree to which the inter component difference must 
be greater that the intra component difference

• Threshold based on size

• K sets the scale of observation

• Can be used for shape based segmentation


