&

Movie:
For The Birds

Pixar, 2000

Ray Tracing 1

Rick Skarbez, Instructor
COMP 575
November 1, 2007

Announcements

® Programming Assignment 3
(Rasterization) is due THIS Saturday,
November 3 by 11:59pm

® If you do hand in by tonight, +10 bonus
points

® Assignment 3 (texture mapping and ray
tracing) is out, due next Thursday by
the end of class

® Remember that you need to talk to me
about your final project

Programming 2
Recap

® Spherical Coordinates
® Demo on board
® Per-Vertex Normals

® Demo on board

Programming 3 Info
® Test data for part 1 (Lines) is available
® As C/C++ array, or just as a text file
® In both cases, each line has 7 parameters
® (x1,y1, X2, y2, R, G, B)

® This data set anticipates a 512x512
window

® To read the array (li
like the following co

Programming 3 Info

® For parts 2 and 3, the program should
respond to user input

® Can do this several ways
® Accept coordinates as command line input
® Prompt for user input while running

® Allow user to click and choose points (like
polygon creation in assignment 1

Programming 3 Info

® For part 3 (line clipping), should display
a window bigger than the clip window

® e

Viewport Clip against this

Assignment 3
Overview

Last Time

® Extended our “camera” to be much
more general

® Arbitrary position / orientation / focal length

® Briefly discussed the software
architecture of a raycaster

® Took a short course feedback survey

® Thanks very much to everyone who
participated!

Today

® Discussing how to implement shadows
and reflections in a raytracer

Ray-Tracing
Algorithm

® for each pixel / subpixel

shoot a ray into the scene

find nearest object the ray intersects

if surface is (nonreflecting OR light)
color the pixel

else
calculate new ray direction
recurse

Building a Frustum
D |

® So, we have:

® 9, hRes, vRes,
eye, center, Up

® Want to use these to compute
Du, Dv, VO

® These three vectors define the image pla

The “Right” Vector

® Need a vector that points in the “Dy
direction”

Note that LookAt and Up
® Anyideas? should be unit vectors

® Cross the look vector and the up vector
® Du=LookAt x Up

+y

+X Up
LookAt

Du
+Z

The “Down” Vector

® So how to we find a vector

perpendicular to two,other vecfors, o, .,

Ole UTdi T KOORAL AU UIJ
are both unit vectors, then
Dy and Dy are also unit

® Cross product
® D, = LookAt x D,

\ 4.
VECIOrsS

+y

+X

+Z

. Finding Vo

v Dy
}

-D, vIZes

+y

+Z

\‘Eye

Complete Frustum
Gven Poinis: Specification

Vector: eye, center
center - eye
Given FOV Up | ookAt = — oo - OYe_
Andle: ¢] [|center - eye||
ng'e- vRes, hRes
Given !NOT
DimensoicAt x Up Normalizel |FocalLength = hRese
D, = LookAt x Dy D, and D.! tan 5
Vp = FocalLength(Look) — hI;es (Du) — vI;es (Dv)

V:[Du Dv Vp]

e,

Raycaster System
Overview

Linked List of Objects Linked List of Materials
Test For
Closest

Milerd 2|

Material #2

Generates

For Each
Pixel Shade()

Linked List of Lights

llluminated Ambiont 4

\ Maeral i
N

Qxel Color Closest Object & 'Surface Material
-,

Point#1

Point #2

o o o

Shadows Shadows

® What causes shadows?

® An object lies between the shadowed
surface and the light source

® That is, the second object blocks
photons/rays from reaching the first object

Standard Scene Scene With Shadows

Shadows Shadows

‘ ® So finding shadows is easy if all rays
are starting at the light sources

® If the ray does not get to a surface, that
surface is in shadow

® But, remember, we're tracing rays
backward

® Starting at the camera

No shadow on bunny ® This complicates matters a bit

Bunny is in darkness

Shadows

w®

w And so we begin ray
® Assume we did our rai/castlng, and

found that the ray intersected the plane traC| ng .
® Now we want to shade the point
® Which includes determining if it is in shadow

® We can test this with a ray from the
point to the light

Recursive Ray

ngng

XZ Shadow,’ Shadoyy.
(Shade

v

<

-Shade

Recursive Ray
® Same idea alg@&\j«ngctions

® To solve one function/ray, do some simple work
to generate inputs for a new function/ray

® Recurse ‘il you're done

® And just like recursive functions, it means
we have to be very careful programmers

® A small error in calculation or memory
management can lead to catastrophe

® That said, now we can do some really cool
stuff

Ray Casting Ray Tracing Ray Traced Shadows

Implementlng
Shadows
‘

Ray

® All we do is generate a new ray, starting
at the point and directed along the light
vector
® Test it just like any other ray

® If an intersection occurs, then the point may
be shadowed

Implementing
Shadows @

- Here itis not

Here the point _
is shadowed &

Shadow
Ray

® To be thorough, we need to check the
distance on the intersection
® The object is only in shadow if the t value for
the intersection is less than the t value of the
light

Shadows Summary

® Can check if a point is in shadow by
drawing a ray from that point to a light

® If that ray hits an object, the point is in shadow
® This is our first baby step into real ray

tracing

® Shadows are EASY

® Already know the point and vector of the new
ray

® Can use the existing intersection code

Lights and Shadows

® Remember our different kinds of lights?
* Point lights (i.e light bulbs) \\ 1/,

~
® Directional lights (i.e. the Sun) — O

® Spot lights / > % /| \\

® Area lights \ J \
NS \\
s ¢

How do these cause problems for us
when doing shadows?

Directional Lights

® Point light sources at te (or near
infinite) distance

® How does this affect our shadow rays?

® Any intersection with a positive t is valid
(generates a shadow)

Spot Lights

® Similar to point lights, but intensity of
emitted light varies by direction

® Need to make sure that the shadow ray is
inside the cone

—
e
spotiight ,;’)/

r‘// coneangle A
from 10
Tt —
——— —_—

R — L
conedellaangle
Th——

Spot Lights

S
< Vector Similarity: S« L
L
angleMax
E Noint Being Shaded

® Can test your shadow ray against the
extents of your spotlight
® If |S+ L| <=|S * angleMax|, go
ahead

Area Lights
® The most difficult case

® No longer just one shadow ray

® Really, infinitely many shadow rays

® Can address by shooting many shadow rays
for each light

® This is a sampling/reconstructi
problem

® We'll come back to it later

Lights and Shadows
® Can still §e%reqm<§vrr¥y technique

with all the kinds of lights we consider
® Need to do a little bit more work for
some

® Directional lights: intersections at any
distance

® Spot lights: make sure ray is inside cone

® Area lights: need to shoot a whole mess of
rays

Reflection

® Now we’re going to learn how to do
reflections in our ray tracer
® This is one of the classic benefits of ray
tracing
® Why do you think all these images have
mirrored spheres in them?

® Most every other rendering technique has to
use hacks for this

Reflection and
Specularity

® Reflection and specularity are really
close

R S
® We'll use the reflection vector we

computed for our specularity calculation
as the new ray direction

Reflection Vector

V2R

Diffuse Specular

Ray Reflection

+ N

R =-E+2N(E-N)|
® Define a ray with

® P = intersection point
® V = reflection vector

® Reflection of the eye
vector, to be clear

How to Integrate

® This was our ;L- ing equatlon before:
Ambient Diffuse
® 1= (1 -)[1a(Ra, La) + lo(n, 1JRs, Lo, &,
b, ¢, d) Lo |
o ndddfothadinsdy P
® Where r is how reflective the surface is
¢ [0, 1]

® And refColor is the color from the reflection
ray

Shading + Reflection

® So now we have

®1=(1-nZ[la (Ra, La) + la(n, I, Ry, Lq, a,
b’ G d) Lights

+ Is(r, V, RS, LS; n, a, b! C!d)] +
r(refColor)

Shading the
Reflection Ray

® So how do we determine the value of
refColor?

® Just treat it exactly like a camera ray
® See if it intersects anything

® If so, shade as normal and, if
necessary, reflect again

® If not, return the background color

Recursion

[

Ray Tracing

Reflection

No Recursion (But With Shadows)

Reflection

1 Recursion

Reflection

2 Recursions

Reflection

3 Recursions

Reflection

4 Recursions

Reflection

5 Recursions

Stopping the
Madness

Does anyone see the problem here?

® This could go on forever
® Think of 2 mirrors reflecting each other

® This would result in stack overflow and
terribleness

® Need some way to stop it

NN

Stopping the
® Solution: Mgggt]h m%tson the

recursion
® Initialize each camera ray to have a depth of 0

® Every “child” ray has depth = (parent’s depth
+1)
® Do not allow any new rays to be created
with depth > maxDepth

® Also, there’s obviously no need to cast
new rays if the reflection coefficient is 0

Reflection Summary

® Reflection adds a great deal of realism
to rendered scenes

® We discussed:
® Generating reflection rays

® Similar to specularity
calculation

® Shading with reflection

® Just add another term

® Preventing infinite recursion

Refraction

® Refraction works just like reflection
® When a ray hits a surface
® Shade as normal

® Figure out if you need to cast a refraction
ray

® If so, calculate the new ray

® Shade it as normal, and add it as yet
another term to our shading equation

Refraction Rays

® Need to store the index of refraction
and a transparency coefficient or each
material

® If the object is transparent, generate a new
ray using Snell’s law

® Continue just as in reflection
oo/,

m

N1 Sin a1 = N2 sin az

Refraction Example

Next Time

® Filling in some of the gaps for how to
build a real ray tracer

¢ Instantiation of multiple objects

® Some acceleration tricks and
optimizations

® Identifying and fixing some tricky bits

10

