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from Everybody Digs Bill Evans
Released December 15, 1958

Movie:
Lifted

Pixar, 2007

Beyond Raytracing:
Radiosity

Rick Skarbez, Instructor

COMP 575

November 13, 2007

Announcements

• Programming Assignment 4 (Ray 
tracer) is out, due Tuesday 11/20 by 
11:59pm

• Any questions?

Final Project Notes

• You are required to submit a written 
proposal document for your project

• Even if you met with me in person

• If you have not done this, please do so 

immediately

Final Project Notes

• When should the project be due?

• Can be as late as, say, Wednesday Dec. 12

• Note that this is in the middle of finals

• Should we do class/public 
presentations?
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Final Project Notes
• I would like to have a project 

“checkpoint”

• You meet with me to show what you have 

so far / discuss any problems / plan your 

attack

• This would be part of the project grade

• I’d like to do this at a time where you still 

have time to make changes if necessary

• I suggest November 30

Last Time

• Started talking about advanced ray 
tracing techniques

• Acceleration data structures

• To improve performance

• Distributed ray tracing techniques

• To achieve some neat visual effects

Must go faster...
• So what we’ve done so far works

• We can render any scene just fine

• At least, any scene that doesn’t use 

additional effects

• But it’s really, really slow:

• Loop

• For each pixel

• For each object

• For each light

• Reflection/refraction/shadows make it even 
worse

Accelerating Ray 
Tracing

• Reducing and/or simplifying intersection 
tests is the biggest “bang for your buck”
in terms of performance

• Computing ray intersections is slow

• 2 main ways

• Use bounding volumes

• Use a spatial data structure

Bounding Volumes
• Here’s the idea:

• Some shapes are harder to intersect with than 

others

• Consider a box vs. a complex polygonal model

• So, for every object, find the smallest simple 

object that encloses it

• Test for intersection against the simple object

• If there is one, only then do you test the original 

object

Bounding Volumes
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Spatial Data 
Structures

• The idea is that we only need to test if a 
ray hits an object if the ray passes 
through the region of space that the 
object is in

• If a ray is going left, and the object is on the 

right, there is no need to test for intersection

Regular Grids

Adaptive Grids BSP Trees

• Can create a BSP tree for your scene

• Then only have to test against objects 
that are on the “right” side of a split 
plane

Acceleration Review 
Over

• Any questions?

Distributed Ray 
Tracing

• We started talking about this last time

• Cook argues that classical ray tracing (i.e.
everything we’ve done so far) only 
represents sharp phenomena

• Unrealistic sharp shadows,

infinite depth of focus, etc.

• How can we do better?
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Distributed Ray 
Tracing

• So what are some of the effects we can 
expect this way?

• Antialiasing

• Distribute rays across each pixel

• Glossy reflections

• Distribute multiple reflection rays instead 

of just one

Cook et al., 1984

Stochastic Ray 
Tracing

• So what are some of the effects we can 
expect this way? (cont’d)

• Soft shadows

• Distribute multiple rays to an area light 

source

• Depth of field

• Distribute rays across a lens

• Motion blur

• Distribute rays over time

Glossy Reflections

• Shooting a single reflection ray 
simulates perfect reflection

• i.e. a mirror

• Many real surfaces are 
reflective, but not 
mirror-like

• i.e. many metals

• This is called gloss

Glossy Reflections
• To get glossy reflections, don’t just 

shoot one ray

• Shoot multiple rays, and perturb them 

slightly

• This simulates taking the integral over a 

solid angle

Mirror Glossy

Glossy Reflection 
Examples

Translucency

• Translucency is sort of the dual of 
glossy reflection

• Instead of distributing rays around the 

reflection ray, distribute them around the 

refracted ray

Transparent Translucent
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Translucency 
Examples

Soft Shadows

• In most graphics applications (and in 
our ray tracer so far), we’ve assumed 
point light sources

• In the real world, lights 

have area

• This leads to soft 

shadows in the real 

world, which we can’t 

yet simulate in our ray 

tracer

Soft ShadowsHard Shadows

Soft Shadows
• To get soft shadows, don’t just shoot one 

ray

• Shoot multiple rays distributed across the 

surface of the light

• Sum their contributions to find the amount of 

shadow

Soft Shadow 
Examples

Depth of Field

• Our ray tracer up to this point simulates 
a pinhole camera

• Real world cameras have lenses,

differing aperture sizes, 

differing exposure times, etc.

• We’re going to focus (no pun 

intended) on depth of field 

Depth of Field

• To get depth of field, generate multiple 
rays for each pixel

• Distribute them across the surface of the lens

Perfect Focus Depth of Focus
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Depth of Field 
Examples

Motion Blur

• Motion blur in the real world happens 
when objects are moving while the 
camera shutter is open

• Effectively, the same point on the object is 

seen along multiple rays from

the camera

Motion Blur
• To get motion blur, you need to distribute 

your rays over time

• As an object moves, it will get hit by different 

camera rays

• Moving objects get averaged with the 

environment

• What happens to stationary objects?

• Additional rays can still be used for 

antialiasing, depth of field effects, etc.

Motion Blur 
Examples

Distributed Ray 
Tracing Review• We introduced the concept of 

distributed ray tracing

• NOTE: Don’t confuse this with the way the 

word “distributed” is commonly used in CS

• Showed some examples of how it can 
be used to generate more realistic 
images

• Basic idea: Replace a single ray with 
many

Done with (Standard) 
Raytracing• So that’s all we have to say about 

standard (one-way) ray tracing

• Basic technique: Shoot rays from the 
eye, trace them back to the lights

• Gives us shadows, reflection, refraction

• Distributed ray tracing gives us even 
more

• Gloss, translucency, soft shadows, lens 

effects
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So, what else is 

there?

Classifying Light 
Transport Paths

• Paul Heckbert proposed a way of 
classifying light transport paths

• And thereby stating which cases a renderer 

can (or can’t) handle

Heckbert, SIGGRAPH 90

Heckbert’s Notation

• L : a light

• E: the eye

• S: a specular surface

• D: a diffuse surface

• G: a glossy surface

• Not always included

• An example: the path from a light, to a 
diffuse surface, to the eye can be 
written LDE

An Aside: Regular 
Expressions

• Some useful notation:

• For a symbol k

• k+ :  k appears 1 or more times

• k* :  k appears 0 or more times

• k? :  k appears 0 or more times

• k | k’ :  either k or k’ appears

Better Example
Classifying 
Renderers

• Optimal:

• L(D|S)*E

• Handles any number of diffuse or specular 

bounces between the light and the eye

• Can we actually accomplish this?
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Classifying 
Renderers

• Classical ray tracing

• L(D)?(S)*E

• Can handle one diffuse surface

• Takes its color directly from the light

• Can handle arbitrarily many specular 

bounces

The Rendering 
Equation

• Remember this?

Jim Kajiya, 1986

• The rendering equation describes the 
observed color of light from any point

• Actually solving it would give you every possible 

lighting effect

• Let’s review

The Rendering 
Equation

• In short, the light out from a point in a 
specific direction depends on:

• The light it emits in that direction

• The light incident on that point from every 
direction, affected by

• How reflective the material is for that pair 
of directions

• How close the incoming direction is to the 
surface normal

Jim Kajiya, 1986

The Rendering 
Equation

• As we’ve discussed before, it is far too 
complicated to compute the full solution 
to the rendering equation

• Ray tracing simplifies by only considering 

light incident on a point from 

• Light sources

• Points made visible by reflection / 

refraction

• There are other simplifications that can be 

made, though

Radiosity• Radiosity is an alternative lighting 
solution

• It is nearly the opposite of raytracing, in 

terms of what effects each method is good 

at

• Radiosity yields “global illumination”, that 

is to say, diffuse-diffuse interactions

• But not reflection or refraction

• Radiosity for lighting grew out of a 
similar technique used for simulating 
heat transfer

Classifying 
Renderers

• Radiosity

• LD*E

• Can handle arbitrarily many diffuse-diffuse 

interactions

• No reflections

• Note that this makes the radiosity solution 

for a scene view independent
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Radiosity 
Assumptions

• Essentially, radiosity treats all surfaces 
in a scene as emitters (or potential 
emitters)

• All surfaces are opaque

• All surfaces are diffuse

• Objects are in a vacuum (a pretty fair 

assumption)

Radiosity Benefits
• Our first real “global illumination”

solution

• Now we can handle diffuse-diffuse 

interactions

• Don’t have to do “ambient light” hacks 

anymore

• Solved in object space

• Totally view independent

• Can precompute radiosity and “bake it in” to 

a texture

• Instead of considering incoming light at 
a point over all possible angles

• Think about it in terms of the light that is 

outgoing from other surfaces

• Here, ωo = -ωi

• V(x’, x) is the visibility term

• 0 or 1, depending on whether

point x is visible from x’

How Radiosity 
Simplifies the 

Rendering Equation

X

X’

• This observation allows us to rewrite 
the rendering equation (without the 
emitter component) as

• The next step is to make the integral 
over surfaces, instead of angles

How Radiosity 
Simplifies the 

Rendering Equation

Converting Angles to 
Areas

• The solid angle subtended by a distant 
patch is related to its size and its 
distance

• We can rewrite this

• Remember Lambert’s cosine law?

• There is a similar effect here

X

X’

• So now we can rewrite the rendering 
equation as

• Note that                         is a constant 
dependent only on the geometry

How Radiosity 
Simplifies the 

Rendering Equation
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The Geometry Term

• For simplicity, we define

• Note the symmetry (G = G’)

• Now we can rewrite the rendering 
equation again

One More 
Simplification...

• Remember that we said that radiosity 
assumes only diffuse surfaces

• This means that the reflected color is not 

dependent on the relationship between 

incoming and outgoing angles

• That is, fr(x, ωi, ωo) is a constant

• Define ρ(x) = fr(x, ωi, ωo)

The Diffuse 
Assumption

• Note that angles are now irrelevant

• We’ve succeeded in rewriting things only in 

terms of surfaces

• Can do one more rewrite: expressing in 
terms of radiosities

Convert to 
Radiosities

• Define B = 

• That is, B is the total outgoing light from a 

point

• Then L = B / π, and we can rewrite 
again as

Final Radiosity 
Equation

• For convenience, move the (1 / π) term 
into G

• Bring back the emissive term, and we 
have

• Now we have radiosity at each point 
expressed only in terms of radiosity at 
each other point

And now for some 
hand-waving...• The derivation from here on out is pretty 

intense

• The math is helpful if you’re trying to 

implement, but a bit too rigorous to just give 

you a general idea

• I won’t cover it here

• If you want a more detailed discussion, see 

Prof. Lastra’s slides from COMP 870 last 

year

• http://www.cs.unc.edu/~lastra/Courses/COMP870_F2006/Slide

s/07-Radiosity_1.ppt
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Radiosity Method
1. Subdivide the model into elements.

2. Select locations (nodes) on elements at 
which to solve for radiosity.

3. Select basis functions to approximate 
radiosity across the element, based on 
values at nodes.  Most common is to 
assume constant value of radiosity across 
the element, so a single node is placed in 
the middle.

4. Select finite error metric. This will result in 
a set of linear equations.

Radiosity Method
1. Compute coefficients of linear system. 

These are based on the geometric 

relationships between elements, called the 
form factors. 

2. Solve the system of linear equations.

3. Reconstruct the radiosity function.  Used to 
just assign radiosity values to vertices.  

Now textures common.

4. Render – often Gouraud interpolation of 

radiosity values at vertices.

In Short

• Build a really big linear system

• Radiosity for each patch is one variable

• Solve the whole gosh-darn thing

Progressive Radiosity

Progressive Radiosity Some Results
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Some Results Some Results

Some Results Some Results

Next Time

• Doing it all

• Techniques that can produce the benefits of 

both raytracing and radiosity

• Bi-directional ray tracing

• Photon mapping


