
1

Now Playing:

Oleo

The Bill Evans Trio

from Everybody Digs Bill Evans
Released December 15, 1958

Movie:
Lifted

Pixar, 2007

Beyond Raytracing:
Radiosity

Rick Skarbez, Instructor

COMP 575

November 13, 2007

Announcements

• Programming Assignment 4 (Ray
tracer) is out, due Tuesday 11/20 by
11:59pm

• Any questions?

Final Project Notes

• You are required to submit a written
proposal document for your project

• Even if you met with me in person

• If you have not done this, please do so

immediately

Final Project Notes

• When should the project be due?

• Can be as late as, say, Wednesday Dec. 12

• Note that this is in the middle of finals

• Should we do class/public
presentations?

2

Final Project Notes
• I would like to have a project

“checkpoint”

• You meet with me to show what you have

so far / discuss any problems / plan your

attack

• This would be part of the project grade

• I’d like to do this at a time where you still

have time to make changes if necessary

• I suggest November 30

Last Time

• Started talking about advanced ray
tracing techniques

• Acceleration data structures

• To improve performance

• Distributed ray tracing techniques

• To achieve some neat visual effects

Must go faster...
• So what we’ve done so far works

• We can render any scene just fine

• At least, any scene that doesn’t use

additional effects

• But it’s really, really slow:

• Loop

• For each pixel

• For each object

• For each light

• Reflection/refraction/shadows make it even
worse

Accelerating Ray
Tracing

• Reducing and/or simplifying intersection
tests is the biggest “bang for your buck”
in terms of performance

• Computing ray intersections is slow

• 2 main ways

• Use bounding volumes

• Use a spatial data structure

Bounding Volumes
• Here’s the idea:

• Some shapes are harder to intersect with than

others

• Consider a box vs. a complex polygonal model

• So, for every object, find the smallest simple

object that encloses it

• Test for intersection against the simple object

• If there is one, only then do you test the original

object

Bounding Volumes

3

Spatial Data
Structures

• The idea is that we only need to test if a
ray hits an object if the ray passes
through the region of space that the
object is in

• If a ray is going left, and the object is on the

right, there is no need to test for intersection

Regular Grids

Adaptive Grids BSP Trees

• Can create a BSP tree for your scene

• Then only have to test against objects
that are on the “right” side of a split
plane

Acceleration Review
Over

• Any questions?

Distributed Ray
Tracing

• We started talking about this last time

• Cook argues that classical ray tracing (i.e.
everything we’ve done so far) only
represents sharp phenomena

• Unrealistic sharp shadows,

infinite depth of focus, etc.

• How can we do better?

4

Distributed Ray
Tracing

• So what are some of the effects we can
expect this way?

• Antialiasing

• Distribute rays across each pixel

• Glossy reflections

• Distribute multiple reflection rays instead

of just one

Cook et al., 1984

Stochastic Ray
Tracing

• So what are some of the effects we can
expect this way? (cont’d)

• Soft shadows

• Distribute multiple rays to an area light

source

• Depth of field

• Distribute rays across a lens

• Motion blur

• Distribute rays over time

Glossy Reflections

• Shooting a single reflection ray
simulates perfect reflection

• i.e. a mirror

• Many real surfaces are
reflective, but not
mirror-like

• i.e. many metals

• This is called gloss

Glossy Reflections
• To get glossy reflections, don’t just

shoot one ray

• Shoot multiple rays, and perturb them

slightly

• This simulates taking the integral over a

solid angle

Mirror Glossy

Glossy Reflection
Examples

Translucency

• Translucency is sort of the dual of
glossy reflection

• Instead of distributing rays around the

reflection ray, distribute them around the

refracted ray

Transparent Translucent

5

Translucency
Examples

Soft Shadows

• In most graphics applications (and in
our ray tracer so far), we’ve assumed
point light sources

• In the real world, lights

have area

• This leads to soft

shadows in the real

world, which we can’t

yet simulate in our ray

tracer

Soft ShadowsHard Shadows

Soft Shadows
• To get soft shadows, don’t just shoot one

ray

• Shoot multiple rays distributed across the

surface of the light

• Sum their contributions to find the amount of

shadow

Soft Shadow
Examples

Depth of Field

• Our ray tracer up to this point simulates
a pinhole camera

• Real world cameras have lenses,

differing aperture sizes,

differing exposure times, etc.

• We’re going to focus (no pun

intended) on depth of field

Depth of Field

• To get depth of field, generate multiple
rays for each pixel

• Distribute them across the surface of the lens

Perfect Focus Depth of Focus

6

Depth of Field
Examples

Motion Blur

• Motion blur in the real world happens
when objects are moving while the
camera shutter is open

• Effectively, the same point on the object is

seen along multiple rays from

the camera

Motion Blur
• To get motion blur, you need to distribute

your rays over time

• As an object moves, it will get hit by different

camera rays

• Moving objects get averaged with the

environment

• What happens to stationary objects?

• Additional rays can still be used for

antialiasing, depth of field effects, etc.

Motion Blur
Examples

Distributed Ray
Tracing Review• We introduced the concept of

distributed ray tracing

• NOTE: Don’t confuse this with the way the

word “distributed” is commonly used in CS

• Showed some examples of how it can
be used to generate more realistic
images

• Basic idea: Replace a single ray with
many

Done with (Standard)
Raytracing• So that’s all we have to say about

standard (one-way) ray tracing

• Basic technique: Shoot rays from the
eye, trace them back to the lights

• Gives us shadows, reflection, refraction

• Distributed ray tracing gives us even
more

• Gloss, translucency, soft shadows, lens

effects

7

So, what else is

there?

Classifying Light
Transport Paths

• Paul Heckbert proposed a way of
classifying light transport paths

• And thereby stating which cases a renderer

can (or can’t) handle

Heckbert, SIGGRAPH 90

Heckbert’s Notation

• L : a light

• E: the eye

• S: a specular surface

• D: a diffuse surface

• G: a glossy surface

• Not always included

• An example: the path from a light, to a
diffuse surface, to the eye can be
written LDE

An Aside: Regular
Expressions

• Some useful notation:

• For a symbol k

• k+ : k appears 1 or more times

• k* : k appears 0 or more times

• k? : k appears 0 or more times

• k | k’ : either k or k’ appears

Better Example
Classifying
Renderers

• Optimal:

• L(D|S)*E

• Handles any number of diffuse or specular

bounces between the light and the eye

• Can we actually accomplish this?

8

Classifying
Renderers

• Classical ray tracing

• L(D)?(S)*E

• Can handle one diffuse surface

• Takes its color directly from the light

• Can handle arbitrarily many specular

bounces

The Rendering
Equation

• Remember this?

Jim Kajiya, 1986

• The rendering equation describes the
observed color of light from any point

• Actually solving it would give you every possible

lighting effect

• Let’s review

The Rendering
Equation

• In short, the light out from a point in a
specific direction depends on:

• The light it emits in that direction

• The light incident on that point from every
direction, affected by

• How reflective the material is for that pair
of directions

• How close the incoming direction is to the
surface normal

Jim Kajiya, 1986

The Rendering
Equation

• As we’ve discussed before, it is far too
complicated to compute the full solution
to the rendering equation

• Ray tracing simplifies by only considering

light incident on a point from

• Light sources

• Points made visible by reflection /

refraction

• There are other simplifications that can be

made, though

Radiosity• Radiosity is an alternative lighting
solution

• It is nearly the opposite of raytracing, in

terms of what effects each method is good

at

• Radiosity yields “global illumination”, that

is to say, diffuse-diffuse interactions

• But not reflection or refraction

• Radiosity for lighting grew out of a
similar technique used for simulating
heat transfer

Classifying
Renderers

• Radiosity

• LD*E

• Can handle arbitrarily many diffuse-diffuse

interactions

• No reflections

• Note that this makes the radiosity solution

for a scene view independent

9

Radiosity
Assumptions

• Essentially, radiosity treats all surfaces
in a scene as emitters (or potential
emitters)

• All surfaces are opaque

• All surfaces are diffuse

• Objects are in a vacuum (a pretty fair

assumption)

Radiosity Benefits
• Our first real “global illumination”

solution

• Now we can handle diffuse-diffuse

interactions

• Don’t have to do “ambient light” hacks

anymore

• Solved in object space

• Totally view independent

• Can precompute radiosity and “bake it in” to

a texture

• Instead of considering incoming light at
a point over all possible angles

• Think about it in terms of the light that is

outgoing from other surfaces

• Here, ωo = -ωi

• V(x’, x) is the visibility term

• 0 or 1, depending on whether

point x is visible from x’

How Radiosity
Simplifies the

Rendering Equation

X

X’

• This observation allows us to rewrite
the rendering equation (without the
emitter component) as

• The next step is to make the integral
over surfaces, instead of angles

How Radiosity
Simplifies the

Rendering Equation

Converting Angles to
Areas

• The solid angle subtended by a distant
patch is related to its size and its
distance

• We can rewrite this

• Remember Lambert’s cosine law?

• There is a similar effect here

X

X’

• So now we can rewrite the rendering
equation as

• Note that is a constant
dependent only on the geometry

How Radiosity
Simplifies the

Rendering Equation

10

The Geometry Term

• For simplicity, we define

• Note the symmetry (G = G’)

• Now we can rewrite the rendering
equation again

One More
Simplification...

• Remember that we said that radiosity
assumes only diffuse surfaces

• This means that the reflected color is not

dependent on the relationship between

incoming and outgoing angles

• That is, fr(x, ωi, ωo) is a constant

• Define ρ(x) = fr(x, ωi, ωo)

The Diffuse
Assumption

• Note that angles are now irrelevant

• We’ve succeeded in rewriting things only in

terms of surfaces

• Can do one more rewrite: expressing in
terms of radiosities

Convert to
Radiosities

• Define B =

• That is, B is the total outgoing light from a

point

• Then L = B / π, and we can rewrite
again as

Final Radiosity
Equation

• For convenience, move the (1 / π) term
into G

• Bring back the emissive term, and we
have

• Now we have radiosity at each point
expressed only in terms of radiosity at
each other point

And now for some
hand-waving...• The derivation from here on out is pretty

intense

• The math is helpful if you’re trying to

implement, but a bit too rigorous to just give

you a general idea

• I won’t cover it here

• If you want a more detailed discussion, see

Prof. Lastra’s slides from COMP 870 last

year

• http://www.cs.unc.edu/~lastra/Courses/COMP870_F2006/Slide

s/07-Radiosity_1.ppt

11

Radiosity Method
1. Subdivide the model into elements.

2. Select locations (nodes) on elements at
which to solve for radiosity.

3. Select basis functions to approximate
radiosity across the element, based on
values at nodes. Most common is to
assume constant value of radiosity across
the element, so a single node is placed in
the middle.

4. Select finite error metric. This will result in
a set of linear equations.

Radiosity Method
1. Compute coefficients of linear system.

These are based on the geometric

relationships between elements, called the
form factors.

2. Solve the system of linear equations.

3. Reconstruct the radiosity function. Used to
just assign radiosity values to vertices.

Now textures common.

4. Render – often Gouraud interpolation of

radiosity values at vertices.

In Short

• Build a really big linear system

• Radiosity for each patch is one variable

• Solve the whole gosh-darn thing

Progressive Radiosity

Progressive Radiosity Some Results

12

Some Results Some Results

Some Results Some Results

Next Time

• Doing it all

• Techniques that can produce the benefits of

both raytracing and radiosity

• Bi-directional ray tracing

• Photon mapping

