
1

Now Playing:

Digital Love

Daft Punk

from Discovery
Released March 13, 2001

Graphics Grab Bag

Rick Skarbez, Instructor

COMP 575

November 27, 2007

Announcements
• You need to arrange to talk to me

before December 1 for your project
update

• I am going to attempt to reserve a
room/time on December 11 for project
presentations

• The final deadline for project
submissions will be the evening of
December 12

• The final exam is Friday, December 14
at 4:00pm in this room (SN 011)

The Pursuit of
Photorealism• What if you wanted to render a real

place?

• Say, the Cathedral

of Notre Dame

in Paris

Example drawn from Debevec’s SIGGRAPH 99 Course

The Pursuit of
Photorealism

• You could:

• Acquire accurate measurements of the

building

• Use these measurements to construct a

geometric model

• Apply the appropriate material properties to

every surface

• Use some advanced global illumination

technique to simulate light bouncing around

the cathedral

The Pursuit of
Photorealism

• Alternatively, you could:

• Take a picture of the cathedral from the

desired viewpoint

• This would be much easier

• Also, it would look better

• Pictures are by definition photorealistic

2

What is IBR?

• It can mean any number of things

• As a short definition, we can say that it is

any technique that uses images (of some

kind), either directly rendering with them or

using them to create models

IBR vs. Traditional
CG

Use computer

vision techniques

Build a 3D model

from images

1 or More

Photos

Interpret

As Little Work

As Possible

Warp

No Need To

Shade

1 or More

Photos

Output

Image

Intermediate

Representatio
n

IBR Pipeline

Render

Photorealism

Is Slow and Difficult

Output

Image
3D Points

Traditional Pipeline

Image-Based
Modeling

The Math Behind
Photographs

• Can think of a photograph as a
“catalog” of the colors of the rays that
pass through a single point in space

• i.e. a pinhole, or a camera lens

• We can parametrize any ray
as [Φ, θ, x, y, z]

• The ray through point (x,y,z)

in direction (Φ, θ)

The Plenoptic
Function

• Describes the light received

• At any position,

• From any direction,

• At any time

Adelson & Bergen,

“The Plenoptic Function and Elements of Early Vision”

The Plenoptic
Function

• Simplifications:

• Ignore changes over time

• Use 3-component color instead of

wavelength

• Left with a 5D function:

• P(Φ, θ, x, y, z)

• 3D position

• 2D orientattion

Panoramas
• A panorama stores a 2D plenoptic

function

• Always a single center of projection

• Can be stitched (that is, put together from

multiple smaller images) or taken by a single

camera with complicated lensing

3

Panoramas as Virtual
Environments

• Pros:

• Easy to make

• Cons:

• No sense of 3D

• Fixed viewpoint

• Hard to navigate

The 4D Plenoptic
Function:

Light Fields and
Lumigraphs• Can take advantage of empty space

around the camera to reduce the
plenoptic function to 4D

• Build up a database
of ray values

• How and why?

Why 4D from Empty
Space?

• If we assume that the camera is in
empty space (i.e. all objects in the
scene are distant)

• We no longer have to worry about

occlusions

• A ray has the same color at every point

along the ray

Can put the

“camera” here
Or here...Or here

Light Fields

• “Box of photons”

• Captured either by a
moving camera or
an array of cameras

• 6x6 5x5 images
shown

• 16x16 512x512 in
the original paper

• 256 MB / image

Levoy & Hanrahan, Light Field Rendering (SIGGRAPH 96)
also Gortler et al., The Lumigraph (SIGGRAPH 96)

Lumigraph Mapping
Light Field

Characteristics
• Pros:

• Very attractive

• Can be used to capture video

• Cons:

• Huge memory footprint

• Difficult sampling issues

• Only one plane in focus

• Difficult to capture

4

No Geometry

• Note that neither of these techniques
make any assumptions at all about
geometry

• Just show images

• Another technique in this vein is
Concentric Mosaics, from Shum & He
(SIGGRAPH 99)

Facade

• Use a small number of images to
generate a “blocks” model

• Establish edge correspondences

• Reconstruct by minimizing error

• Do view-dependent texture mapping

Debevec, SIGGRAPH 96

Images with Edges
Marked

Model

Novel View IBR Review
• Attempts to use real photographs to

generate high-quality images without
manual modeling

• Can include:

• Automatically building geometry from

images

• Rendering a dynamic scene with no

geometry

• Something in between

• Any questions?

5

Today

• Grab bag

• Filtering and image processing

• Computer graphics in video games

• Particle effects

Image Processing
• In short, “Image Processing” is just any

process that operates on a single
image, producing a modified new image

• Think about a program like Photoshop

• Sharpen, blur, sepia tone, red-eye removal,

etc.

Image

In

Image

Process #1

Image

Process #2
Image Out

Filtering
• Filtering is any mathematical process

that acts on some frequency
components of a signal, and not others

Images with high frequency content

Filtering and Image
Processing• Many image processing tasks are filters

applied to the image signal

• Blurring preserves low frequencies and

dampens high ones

• Sharpening does the opposite

• NOTE: Because of Photoshop
terminology, virtually any image
processing function can be called a
“filter”, even when it is not a filter in the
mathematical sense

Example:
1D Moving Average

Example:
3 Point Moving

Average

6

Example:
3 Point Moving

Average
6 9 12 3 15 3 6y[x] =

coefficients
=

1/3 1/3 1/3

multiplied by

and sums to

subtotals = 3 4 1

equals

- -z[x] = ? - - - -8

Example:
3 Point Moving

Average
6 9 12 3 15 3 6

- - 8

y[x] =

z[x] =

coefficients
=

1/3 1/3 1/3

multiplied by

and sums to

subtotals = 4 1 5

equals

10 - - -

Example:
3 Point Moving

Average
6 9 12 3 15 3 6

- - 8 10 - - -

y[x] =

z[x] =

coefficients
=

1/3 1/3 1/3

multiplied by

and sums to

subtotals = 1 5 1

equals

7

Example:
3 Point Moving

Average
Kernel = 1/3 1/3 1/3

0 1 2 3 4-1-2-3-4

1/3

h[x]

“Box Filter”

h[x] = 0 0 1/3 1/3 1/3 0 0

h[0]h[-1]h[-2]h[-3] h[1] h[2] h[3]

......

(a.k.a. the Impulse

Response Function)

Filtering and
Convolution• Many filters are implemented as the

convolution of two functions

• Convolution is, basically, an integral
that measures the overlap of two
functions as one is shifted over another

• http://mathworld.wolfram.com/Convolution.ht

ml

• In practice, it means that the new value
of a pixel depends not only on that
pixel, but also its neighbors

Convolution
• The convolution operation is typically

denoted as ‘*’

• h is called either the kernel or the
impulse response function

7

Why “Impulse
Response Function”?

0 1 2 3 4-1-2-3-4

1/3

h[x]

Kernel

0 1 2 3 4-1-2-3-4

1/3

f[x] ∗ h[x]

Result

The kernel

models how the
system

responds to an
impulse input

... and any
signal is really

just a set of
impulses of

differing
magnitudes at

different times

0 1 2 3 4-1-2-3-4

Impulse

Applying a 2D Filter
1 4 3 2

8 3 9 8

17 3 6 11

5 7 12 7

0 -1 0

-1 5 -1

0 -1 0

- - - -

- ? - -

- - - -

- - - -

∗ =

1 4 3

8 3 9

17 3 6

0 -1 0

-1 5 -1

0 -1 0

Element

by

Element
Multiply

by

0 -4 0

-8 15 -9

0 -3 0

=

Which Sums

to

-9

-9

The Gaussian The Gaussian

• x is the sample location, µ is the center of
the Gaussian, and σ is its standard
deviation (width)

• This is the “gold standard” of blur kernels

• Box filter, “tent” filter, etc. are much simpler, but

introduce artifacts

“Tent” filter

Gaussian Blur
Example

21x21 Kernel

σ=15.0

9x9 Kernel

σ=3.0

7x7 Kernel

σ=1.0

Low-Pass Filtering

• Blurring is an example of a low-pass
filter

• Low frequency features are preserved

(passed on), while high frequency detail is

reduced

• So if blurring gives us low frequency
detail, how can we get high frequency
detail?

8

High-Pass Filtering

Gaussian
Blur

Subtract

Input Image

High
Frequencies

Low Frequencies

Offset by 128

“Unsharp Masking”

Gaussian
Blur

Subtract

Input Image

High
Frequencies

Low Frequencies

Scale by

k

Add

Result
k > 1.0

Low Frequencies

Amplified High

Frequencies

Filtering Review

• Filtering is an umbrella term for many
different image processing techniques

• In many cases, applying a filter to an
image involves applying a convolution
with another function, commonly a
Gaussian

• Some examples of image filters include
sharpening and blur filters

Computer Graphics
and Video Games

• At this point, you already have all the
basic knowledge you need for video
game programming

• At least as far as basic graphics are

concerned

• We used OpenGL, many games these
days will use DirectX

• If you can do one, you can do the other

What You Don’t
Know:

Shaders• Current, graphically advanced games
will make extensive use of shaders

• These will generally be incorporated with

OpenGL or DirectX code

• GLSL is the high-level, OpenGL-based

shader

• HLSL is the high-level, DirectX-based

shader

• Cg is a lower-level shader, usable with both

APIs

What You Don’t
Know:

Shaders• Current, graphically advanced games
will make extensive use of shaders

• These will generally be incorporated with

OpenGL or DirectX code

• GLSL is the high-level, OpenGL-based

shader

• HLSL is the high-level, DirectX-based

shader

• Cg is a lower-level shader, usable with both

APIs

9

Shader Tutorials: Cg

• Kilgard, “Cg in 2 Pages”

• http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf

• NeHe Cg Tutorial

• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47

Shader Tutorials:
GLSL

• GLSL Reference Sheet

• http://www.mew.cx/glsl_quickref.pdf

• Lighthouse3D GLSL Tutorial

• http://www.lighthouse3d.com/opengl/glsl/

• NeHe GLSL Tutorial

• http://nehe.gamedev.net/data/articles/article.asp?article=21

Shader Tutorials:
HLSL

• Riemer’s HLSL Intro & Tutorial

• http://www.riemers.net/eng/Tutorials/DirectX/Csharp/series3.php

• Pieter Germishuys HLSL Tutorial

• http://www.pieterg.com/Tutorials/hlsl1.php

Shader Books

GLSLCg HLSL

What You Don’t
Know:

Graphics Middleware• Many games are not developed directly in
OpenGL/DirectX (at least not entirely)

• They often use middleware engines such
as Emergent’s Gamebryo or Criterion’s
Renderware (now owned by EA; no longer
sold), or the open source Ogre3D

• http://www.emergent.net/index.php/homepage/products-and-

services/gamebryo

• http://www.ogre3d.org/

Middleware
• Nothing I can really teach you about this

• If you need use this in your work, then you

have the preparation you need to learn it

• If you want to know how it
gets made, then I
recommend Eberly’s 3D
Game Engine Design

10

What You Don’t
Know:

Physics• Modern games generally seek accurate
(or at least semi-accurate) physics
behavior

• Almost nobody builds this from scratch

• There are middleware solutions; Ageia’s

PhysX and Havok are the most common

• PhysX: http://www.ageia.com/physx/

• Havok: http://www.havok.com/

Physics Tutorial

• If you want to learn more about physics
simulation, a good place to start would
be Chris Hecker’s tutorial on rigid body
dynamics

• http://chrishecker.com/Rigid_Body_Dynamics

What You Don’t
Know:

Game Design• Even if you know everything about how
to make a pretty game, that doesn’t
mean anything about how to make a
good game

• Of course, this goes far, far beyond the scope

of this course

• I can tell you some books you could read
if this is something you’re interested in,
though

Game Design Books

What You Don’t
Know:

Modeling
• Well, I don’t know it either

• Modeling is art

• That said, you will likely use tools like
3D Studio Max, Maya, or Blender for
modeling

Game and Simulation
Houses in the

Triangle• Epic

• Gamebryo

• Red Storm

• EA

• Many more:

• Triangle IGDA:

http://www.igda.org/nctriangle/

11

Game Development
Discussion

• Any questions?

Particle Systems

• Particle systems are a set of techniques
for modeling “fuzzy” effects

• Fire

• Clouds

• Smoke

• Water

• Falling leaves

• “Magic”

• etc.

Bill Reeves, SIGGRAPH 83Particle Systems - A Technique for Modeling a Class of Fuzzy

Objects

Particle Systems

• The term “particle system” was first
used by Reeves to describe the method
he used for the “Genesis effect”
sequence in Star Trek II (1982)

Particle Systems
• Particle systems are different from normal

object representations in several ways:

1. An object is not represented by surface

primitives, but by a “cloud” of particles

2. The system is not static; new particles are

created and old ones are destroyed

3. The result is generally non-deterministic;

stochastic processes are used to modify

appearance

The Emitter

• The source of a particle system is
called the emitter

• The emitter consists of

• A location in 3D space, from which new

particles spawn

• All the initial particle behavior parameters

• Velocity, spawning rate, lifetime, color,

etc.

Particle Properties

• In Reeves’ original design, the particles
had the following properties

• Position

• Velocity

• Color

• Lifetime

• Age

• Shape

• Size

• Transparency

12

Basic Method

• At each time step (say, each frame):

1. Generate new particles

2. Assign attributes to the new particles

3. Destroy any particles past their lifetimes

4. Transform and move all particles depending

on their attributes; change particle attributes

5. Render the particles

Randomness
• Generally, don’t want all particles to

have the same start point / velocity / etc.

• Add a random factor

• Instead of emitting from a single point, emit

from a random point in a sphere around the

eimitter

• Instead of emitting with a constant velocity,

emit with some average velocity +/- a

random amount

• etc.

Rendering Particles

• There are several options:

• Generate them early (i.e. before geometry

processing), and just render as polygons

• Generate them late, and just treat them like

“lights”

• Not lights in the sense that they illuminate

other objects

• But in the sense that you can simply add

their contributions to the color of the pixel

Really Cool
Extension:
Flocking

• In 1987, Craig Reynolds developed a
way to extend particle systems to
“boids” (bird-objects or bird-oids)

• These are basically particles, but with

attached geometry, and some basic

“intelligence”

Craig Reynolds, SIGGRAPH 87

Flocks, Herds, and Schools: A Distributed Behavioral Model

Flocking

Separation:

Steer to avoid crowing local flockmates

Alignment:

Steer to the average heading of local

flockmates

Cohesion:

Steer to the average position of local

flockmates

Flocking
• That’s pretty much all there is to it; add

these 3 forces to the particle attributes

http://odyssey3d.stores.yahoo.net/comanclascli2.html

13

Next Time

• Course / final exam review

