Movie:
Boundin’

Pixar, 2003

Ray Tracing |l

Rick Skarbez, Instructor
COMP 575
November 1, 2007

Announcements

® Assignment 3 (texture mapping and ray
tracing) is out, due Thursday by the end
of class

® Also due on Thursday is your project
proposal

® Make sure you meet with me if you haven't
already

® Programming Assignment 4 (Ray
tracer) is out today, due Tuesday 11/20
by 11:59pm

Assignment 3

® Homework 3 is due next time
® Texture mapping
® Ray generation
® Ray-object intersection

® Refraction

® Any questions?

Programming
Assignment 4

® Build a ray tracer
® Components:
® Handle file output
® You will be storing your images to disk
® Generate ray casted images

® Generate ray traced images

Ray Caster Overview

Linked List of Objects Linked List of Materialg

Test For

Malerial #1

Moo ol a2
Generates
For Each

Pixel
Linked List of Lights

) '”“mé“ya‘ed Anibient

\ Material 2
\’Qxel Color Closest Object P * Surface Material

Paint #2

h.----'"“

Ray Tracer Overview

Linked List of Objects Linked List of Materials
Test For

Maeid #|

Generates

For Each
Pixel

Matenal 42

' ! ¢)
Qxel Color Closest Object P Surface Material —
~

L

What | will give you

® FSF image format specification
® FSF Viewer

® Matrix / Vector / Ray classes

® _ray file format specification

® Some sample .ray files

® All available on the website

.FSF File Format

® You will be outputting your result images
in this format

® 32-byte (RGBA) uncompressed ASCII
format

® This was developed by Eric Bennett for
COMP 575 last year

® Info is online on his website:
http://www.ericpbennett.com/COMP575/FSF.
htm

.FSF File Format

32-bit Unsigned Integers
Value: 575
Value: Width
Value: Height
Value: Number of Frames (1 implies a still image)

IRepeat for each image {
Repeat for each scanline {
Repeat for each pixel (left to right) {

8-bit Unsigned Chars
Value: Red
Value: Green
Value: Blue
Value: Alpha (0 is transparent, 255 is opaque)

.RAY File Format

® Adapted from the scene descriptions
used by Prof. Leonard McMillan and
Eric Bennett

® A plain text file specifying the scene

® Each line is a command

Example Scene

eye 00 5
lookat 0 0 0 test2.ray
up 010

fov 60

background .5 0 0.5

material 01 0 .3 . 700000
'sphere

light 1 1 1 ambient
light..0.6..0.6.0.6.point. 333 500X300

Expected Raycasting
ults

test1.ray test3.ray

test2.ray

Example Scene

reflect.ray

&

You may not get a
perfect match, but it
should look very simila

Expected Raytracing

reflect.ray

Last Time

® Discussed how to implement
® Shadows
® Reflection

® Refraction

Ray-Tracing
Algorithm

® for each pixel / subpixel

shoot a ray into the scene

find nearest object the ray intersects

if surface is (nonreflecting OR light)
color the pixel

else
calculate new ray direction
recurse

Recursive Ray

XZ Shadow,’ Shadoyy.
(Shade

-Shade

v

Ray Tracing Ray Traced Shadows

Ray Casting

Implementing
Shadows (" H%je it is not

Shadow
Ray

Here the point _
is shadowed &

=

® To be thorough, we need to check the
distance on the intersection
® The object is only in shadow if the t value for
the intersection is less than the t value of the

light

Spot Lights

® Similar to point lights, but intensity of
emitted light varies by direction
® Need to make sure that the shadow ray is
inside the cone

p—
P e
——
coneangle

spotlight
=

A 1

Implementing
Shadows

® All we do is generate a new ray, starting
at the point and directed along the light

vector

® Test it just like any other ray
® If an intersection occurs, then the point may

be shadowed

Directional Lights

® Point light sources at te (or near

infinite) distance
® How does this affect our shadow rays?

® Any intersection with a positive t is valid
(generates a shadow)

e
from ==
e ——
R — L
conedellangle
Th——

Spot Lights

S
< Vector Similarity: S« L
L
angleMax
E Noint Being Shaded

® Can test your shadow ray against the
extents of your spotlight
® If|S - L|<=|S - angleMax|, go
ahead

Area Lights

® The most difficult case
® No longer just one shadow ray

® Really, infinitely many shadow rays
® Can address by shooting many shadow rays
for each light

® This is a sampling/reconstructi
problem

® We'll come back to it later

Ray Reflection
e

[R.= —E +2N(E-N)]
® Define a ray with

® P =intersection point
® V = reflection vector

® Reflection of the eye
vector, to be clear

How to Integrate

.o This?
This was our shading equation before:

Ambient Diffuse
® = (1 - 1)Z[la(Ra, La) + la(n, 1JR, Lo, a,
b’ c, d) Lights

~
pecular
o add'dFothdfrerin"s&y P+ G Color)
® Where r is how reflective the surface is
¢ [0,1]

® And refColor is the color from the reflection
ray

Refraction

® Refraction works just like reflection
® When a ray hits a surface

® Shade as normal

® Figure out if you need to cast a refraction
ray

® If so, calculate the new ray

® Shade it as normal, and add it as yet
another term to our shading equation

Refraction Rays

® Need to store the index of refraction
and a transparency coefficient or each
material

® If the object is transparent, generate a new
ray using Snell’s law

® Continue just as in reflection

oy | oy

m

N1 Sin a1 = N2 sin az

Review Over

® Any questions?

Today

® Cover “the rest” of our ray tracer
® Talk about instantiation of multiple objects
® Address some potential problems
® Talk about data structures

® Talk about optimizations

Instantiation

® We know how to handle canonical
versions of objects

® Say, a unit sphere centered at the origin
® Oraninfinite plane aty = 0
® How do we handle multiple objects?
® Or objects with different sizes/shapes?

® These are all part of instantiation

The Power of
Instantiation

MASSIVE Crowd
Simulator

Carlton Draught’s
“Big Ad”

George Patterson & Partners, 2005

Transforming Objects

® We talked extensively about transforms
earlier in the class

® Translation
® Rotation
® Scaling

® We're going to be using them here, but
now we have to build the matrices
ourselves

® Let's review

Translation in 3D

® We will represent translation with a
matrix of the following form:

10 0 ¢

M=

o OO
DO =
o = O
— e

t is the x-offset
u is the y-offset
v is the z-offset

Scaling in 3D

® We will represent scaling with a matrix
of the following form:

M=

co o
ocowe
o2 oo
—o oo

a is the scale factor in the x-direction
B is the scale factor in the y-direction
y is the scale factor in the z-direction

Rotation in 3D

[cosa —sina 0 0O
Rotation About| |M = SH&“ C"Sa ‘1) 8
The Z-Axis) 0 01
1 0 0 0]
Rotation About Mo | O cosa —sina 0
The X-Axis | 0 sina cosa O
Lo 0 0 1]
. [cosa 0 sine 0]
Rotation About w;“ . 5“6“ 0
The Y-Axis M=1_ sine 0 cosa 0O
| 0 0 o0 1|

-Rotation.aboyt.any
about ara%i'FSﬁqugﬁ})rinciple

axes?

® Need to move the axis we want to
rotate about to one of the principle
axes (say, the z axis)

® First, apply a rotation about x, to
move the axis into the yz-plane (R.)

® Then, apply a rotation about y, to
move the axis onto the z-axis (Ry)

® Then apply your desired rotation,
followed bv the inverses of the other

Rotation about any
axis in 3D

Riotal = Rx! Ry_1 RzRny

ROAUOlN 400Ul ally
point and any axis in
3D

® To rotate about a non-origin point,
extend in the same way as in 2D

® First, translate to the origin (Txyz")

® Then apply your rotation (in the most
general case, Rx'Ry'RzRyRy

® Then translate back (Txyz)

Riotal = Txyz Rx_”:{y_1 RzRny Txyz_1

One More Thing...

What is the difference in the images
generated by the two scenes below?

A\s it turns out, there isn’t ani'

Remember This?

® We talked about how applying a
transformation to the world is the same
as applying the inverse transformation

to the camera
® Why might this be useful?

Transforming Rays

® Instead of transforming objects, we will
apply the inverse transforms to our rays

® Why?
® We can write really really fast code
to intersect rays only with canonical

objects without worrying about
size, shape, location, etc.

® We have a standard process

® Transform rays
® Intersect with canonical unit objects

Inverse Transforms

For all of our transforms, changing their direction
generates the inverse matrix

[Translate(z,y,z)| ' = Translate(—z, —y, —z)
111
)

SR
T 'y z

[Scale(z,y,2)] " = Scale(

[Rotute(8)] ! = Rotute(—6)

This conveniently saves us the trouble (and cost)
of implementing matrix inversion

Inverting Composed
Transforms

® Remember that one of the benefits of
using matrices for transforms was that
we could compose many transforms
into one matrix
® Can we easily get the inverse of this
composed matrix?

Inverting Composed
Transforms

® Answer: Yes!

® Lucky for us,
(ABC) ' =c'BA]

® Note that the order of transforms gets
reversed

® Now the operator that gets applied first is the
leftmost

Transforming Rays

® So, now we know how to invert our
transforms

® And we know that we can use these to
transform the camera

® But how do these affect our rays?
® Remember: Aray is a point and a vector
® The point is affected by translation
® The ray is affected by rotation

® Both are affected by scaling

Transforming Rays

® The point of origin is a point, so it gets
transformed as a homogeneous point

® The direction is a vector, so it gets
transformed as a vector

Ray equivalent to the transform
M being applied to the world:

ft) =S +tV rt) = M1S + tM1V

Untransformed ray:

UDJECT TMTETSECIONS
with Transformed

® Once the ray <) srmed,just
intersect it with you¥ canonical objects
as normal

® The resulting t value can be plugged
into the original untransformed ray to
find the point of intersection in world
space

Caution: Do not normalize the vector in the ray
after transformation r’, or else values of t will ndt
be comparable to each other

YOU Aidrt t redlly tirik
it would be that

® That gets uﬁ‘ra&y ray to the eye

® But that isn't the only thing we need for
shading

® What about the normal vector?

® Normals do not remain “normal” after
transformation MN

KN

Finding the New
Normal Vector

® For just a minute, let’s pretend that we're
doing it the old way
® Transforming the world, not the ray
® Before the transform
® N T =0 (N: normal vector, T: tangent vector)
® After the transform
® T = MT (tangent vectors remain tangent)
*N:-T=0
® So, whatis N'?

Finding the New
Normal Vector

® Let's denote the unknown transform as G
® N=GN andT'=MT,andN' - T'=0
= GN - MT =0
= (GN)'MT =0
= NTGTMT = 0
® With the original normal, N'T = 0
= GM = Identity
G =M'G=(M")T

Finding the New
Normal Vector

® So, in the end, the new normal vector is
given by
[] NY = (M-1)TN
® Since we already know how to compute
the inverse of the transform matrix

® All that is left to do is transpose it!

rutdartyg e Al TOycitlict.

Applying Ray
® For eacﬂk)&ﬁ\ﬁf@fm@n

® Apply the inverse of any object transforms to
the ray

® Intersect the resulting ray with the canonical
object

® |f there is a valid intersection

® Plug t into the original ray equation to get the
location of the intersection in world space

® Get the correct normal as shown on the last
slide

So why do things this
way?

® Only need to store a single model of an
object

® For each instance of it, maintain
® Material properties
® Object transform

® Can precompute inverse and inverse
transpose for improved performance

Potential Problem:
Re-Intersection

® This could be a tricky problem

® Consider this situation:
® We intersect a ray with a mirrored sphere
® We find the reflection ray
® We intersect that ray with all objects

® |t, by definition, intersects the sphere at
the exact same point!

Re-Intersection
[llustration

i

A ray tracer without any re-intersection handling

Why does this
® Short answbrgﬁgrgr@amp;icision issues

® Sequences of floating point multiplies
(accumulated in our transforms) result in small
inaccuracies

® It is essentially random whether a ray from
any given point will work correctly (because
the point is at t=0 or just behind it) or fail
(because the point is at t>0)

® Note that this is a problem for shadow
rays too

Solutions

® Solution #1

® Simply do not allow intersections for values of t
<€

® Where ¢ is a very small number, like .0001

® Solution #2

® When a new ray is generated, offset it's origin
point by € in the direction of the surface normal

10

Next Time

® Covering whatever raytracer
implementation details we didn’t get

through today

® Discussing some advanced raytracer
functionality
® Acceleration data structures

® Monte Carlo sampling for various effects

11

