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Now Playing:

Pilot

The Notwist

from Neon Golden
Released February 25, 2003

Movie:
Boundin’

Pixar, 2003

Ray Tracing II

Rick Skarbez, Instructor

COMP 575

November 1, 2007

Announcements
• Assignment 3 (texture mapping and ray 

tracing) is out, due Thursday by the end 
of class

• Also due on Thursday is your project 
proposal

• Make sure you meet with me if you haven’t 

already

• Programming Assignment 4 (Ray 
tracer) is out today, due Tuesday 11/20 
by 11:59pm

Assignment 3

• Homework 3 is due next time

• Texture mapping

• Ray generation

• Ray-object intersection

• Refraction

• Any questions?

Programming 
Assignment 4

• Build a ray tracer

• Components:

• Handle file output

• You will be storing your images to disk

• Generate ray casted images

• Generate ray traced images
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What I will give you

• FSF image format specification

• FSF Viewer

• Matrix / Vector / Ray classes

• .ray file format specification

• Some sample .ray files

• All available on the website

.FSF File Format
• You will be outputting your result images 

in this format

• 32-byte (RGBA) uncompressed ASCII 
format

• This was developed by Eric Bennett for 
COMP 575 last year

• Info is online on his website:

http://www.ericpbennett.com/COMP575/FSF.

htm

.FSF File Format
32-bit Unsigned Integers

Value: 575

Value: Width

Value: Height

Value: Number of Frames (1 implies a still image)

Repeat for each image {

Repeat for each scanline {

Repeat for each pixel (left to right) {

8-bit Unsigned Chars

Value: Red

Value: Green

Value: Blue

Value: Alpha (0 is transparent, 255 is opaque)

}

}

}

.RAY File Format

• Adapted from the scene descriptions 
used by Prof. Leonard McMillan and 
Eric Bennett

• A plain text file specifying the scene

• Each line is a command
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Example Scene

eye 0 0 5

lookat 0 0 0

up 0 1 0

fov 60

background .5 0 0.5

material 0 1 0 .3 .7 0 0 0 0 0

sphere

light 1 1 1 ambient

light 0.6 0.6 0.6 point 3 3 3

test2.ray

500x300

Expected Raycasting 
Results

test1.ray

test2.ray

test3.ray

Example Scene

You may not get a 
perfect match, but it

should look very similar

eye -2 1.5 10

lookat 0 0 0

up 0 1 0

fov 45

background 0.078 0.361 0.753

material 1 0 0 0.3 .7 .5 100 .5 0 0

reset

scale .5 .5 .5

translate -2 -.5 0

sphere

material 0 1.0 0 0.3 .7 .5 100 .5 0 0

reset

scale .75 .75 .75

translate -.25 -.25 0

sphere

material 0 0 1.0 0.3 .7 .5 100 .5 0 0

reset

scale 1.25 1.25 1.25

translate 2 .25 0

sphere

material 1 1 1 0.1 .3 .3 100 .8 0 0

reset

scale 2 2 2

translate -1.5 1.25 -3

sphere

material .6 .6 .6 0.3 .7 1.0 50 .5 0 0

reset

translate  0 -1 0

plane

light 1 1 1 ambient

light 1.0 1.0 1.0 point 5 9 10

reflect.ray

Expected Raytracing 
Results

reflect.ray

Last Time

• Discussed how to implement

• Shadows

• Reflection

• Refraction

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing 
Algorithm
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Recursive Ray 
Casting

Ray Casting

Shade

Ray Traced Shadows

Shade

Ray Tracing

Shade

Shadow Shadow

Implementing 
Shadows

• All we do is generate a new ray, starting 
at the point and directed along the light 
vector

• Test it just like any other ray

• If an intersection occurs, then the point may 

be shadowed

Shadow 

Ray

Implementing 
Shadows

• To be thorough, we need to check the 
distance on the intersection

• The object is only in shadow if the t value for 

the intersection is less than the t value of the 

light

Shadow 

Ray

Here the point 

is shadowed

Here it is not • Point light sources at an infinite (or near 
infinite) distance

• How does this affect our shadow rays?

• Any intersection with a positive t is valid 

(generates a shadow)

Directional Lights

• Similar to point lights, but intensity of 
emitted light varies by direction

• Need to make sure that the shadow ray is 

inside the cone

Spot Lights Spot Lights

Vector Similarity: S • L

Point Being Shaded
L

• Can test your shadow ray against the 
extents of your spotlight

• If |S • L| <= |S • angleMax|, go 
ahead

angleMax

S

L
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• The most difficult case

• No longer just one shadow ray

• Really, infinitely many shadow rays

• Can address by shooting many shadow rays 

for each light

• This is a sampling/reconstruction

problem

• We’ll come back to it later

Area Lights Ray Reflection
N

R E

L

• Define a ray with

• P = intersection point

• V = reflection vector

• Reflection of the eye 

vector, to be clear

How to Integrate 
This?

• I = (1 - r)Σ[Ia(Ra, La) + Id(n, l, Rd, Ld, a, 

b, c, d) 

+ Is(r, v, Rs, Ls, n, a, b, c,d)] 

• This was our shading equation before:

Ambient

Specular

Diffuse

Lights

• Add another term, say r * (refColor)

• Where r is how reflective the surface is

• [0, 1]

• And refColor is the color from the reflection 

ray

Refraction
• Refraction works just like reflection

• When a ray hits a surface

• Shade as normal

• Figure out if you need to cast a refraction 

ray

• If so, calculate the new ray

• Shade it as normal, and add it as yet 

another term to our shading equation

Refraction Rays
• Need to store the index of refraction 

and a transparency coefficient or each 
material

• If the object is transparent, generate a new 

ray using Snell’s law

• Continue just as in reflection

n1 sin α1 = n2 sin α2 

Review Over

• Any questions?
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Today

• Cover “the rest” of our ray tracer

• Talk about instantiation of multiple objects

• Address some potential problems

• Talk about data structures

• Talk about optimizations

Instantiation

• We know how to handle canonical 
versions of objects

• Say, a unit sphere centered at the origin

• Or an infinite plane at y = 0

• How do we handle multiple objects?

• Or objects with different sizes/shapes?

• These are all part of instantiation

The Power of 
Instantiation

MASSIVE Crowd
Simulator

Bonus Movie:
Carlton Draught’s 

“Big Ad”

George Patterson & Partners, 2005

Transforming Objects
• We talked extensively about transforms 

earlier in the class

• Translation

• Rotation

• Scaling

• We’re going to be using them here, but 
now we have to build the matrices 
ourselves

• Let’s review

Translation in 3D

• We will represent translation with a 
matrix of the following form:

t is the x-offset
u is the y-offset
v is the z-offset
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Scaling in 3D

• We will represent scaling with a matrix 
of the following form:

α is the scale factor in the x-direction

β is the scale factor in the y-direction
γ is the scale factor in the z-direction

Rotation in 3D

Rotation About

The Z-Axis

Rotation About
The X-Axis

Rotation About
The Y-Axis

Rotation about any 
axis in 3D

• How can we extend this to rotation 
about any axis, not just the principle 
axes?

• Need to move the axis we want to 
rotate about to one of the principle 
axes (say, the z axis)

• First, apply a rotation about x, to 
move the axis into the yz-plane (Rx)

• Then, apply a rotation about y, to 
move the axis onto the z-axis (Ry)

• Then apply your desired rotation, 
followed by the inverses of the other 

Rotation about any 
axis in 3D

Rtotal = Rx
-1Ry

-1RzRyRx

Rotation about any 
point and any axis in 

3D
• To rotate about a non-origin point, 

extend in the same way as in 2D

• First, translate to the origin (Txyz
-1)

• Then apply your rotation (in the most 
general case, Rx

-1Ry
-1RzRyRx)

• Then translate back (Txyz)

Rtotal = Txyz Rx
-1Ry

-1RzRyRx Txyz
-1

One More Thing... 
What is the difference in the images 
generated by the two scenes below? 

(3,0,0)

(0,0,-5)

(0,0,0)

(-3,0,-5)

As it turns out, there isn’t any
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Remember This?

• We talked about how applying a 
transformation to the world is the same 
as applying the inverse transformation 
to the camera

• Why might this be useful?

Transforming Rays

• Instead of transforming objects, we will 
apply the inverse transforms to our rays

• Why?

• We can write really really fast code 

to intersect rays only with canonical 

objects without worrying about 

size, shape, location, etc.

• We have a standard process

• Transform rays

• Intersect with canonical unit objects

(0,0,0)

Inverse Transforms

For all of our transforms, changing their direction

generates the inverse matrix

This conveniently saves us the trouble (and cost) 

of implementing matrix inversion

Inverting Composed 
Transforms

• Remember that one of the benefits of 
using matrices for transforms was that 
we could compose many transforms 
into one matrix

• Can we easily get the inverse of this 

composed matrix?

Inverting Composed 
Transforms

• Answer: Yes!

• Lucky for us, 

• Note that the order of transforms gets 
reversed

• Now the operator that gets applied first is the 

leftmost

Transforming Rays
• So, now we know how to invert our 

transforms

• And we know that we can use these to 

transform the camera

• But how do these affect our rays?

• Remember:  A ray is a point and a vector

• The point is affected by translation

• The ray is affected by rotation

• Both are affected by scaling
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Transforming Rays

• The point of origin is a point, so it gets 
transformed as a homogeneous point

• The direction is a vector, so it gets 
transformed as a vector

Untransformed ray:
Ray equivalent to the transform

M being applied to the world:

r(t) = S + tV r’(t) = M-1S + tM-1V

Object Intersections 
with Transformed 

Rays• Once the ray is transformed, just 
intersect it with your canonical objects 
as normal

• The resulting t value can be plugged 
into the original untransformed ray to 
find the point of intersection in world 
space 

Caution: Do not normalize the vector in the ray

after transformation r’, or else values of t will not
be comparable to each other

You didn’t really think 
it would be that 

easy...• That gets us the new ray to the eye

• But that isn’t the only thing we need for 

shading

• What about the normal vector?

• Normals do not remain “normal” after 
transformation

Finding the New 
Normal Vector

• For just a minute, let’s pretend that we’re 
doing it the old way

• Transforming the world, not the ray

• Before the transform

• N • T = 0 (N: normal vector, T: tangent vector)

• After the transform

• T’ = MT (tangent vectors remain tangent)

• N’ • T’ = 0

• So, what is N’?

Finding the New 
Normal Vector

• Let’s denote the unknown transform as G

• N’ = GN and T’ = MT, and N’ • T’ = 0

➡ GN • MT = 0

➡ (GN)TMT = 0

➡ NTGTMT = 0

• With the original normal, NTT = 0

➡ GTM = Identity

➡ GT = M-1 ⇒ G = (M-1)T

Finding the New 
Normal Vector

• So, in the end, the new normal vector is 
given by

• N’ = (M-1)TN

• Since we already know how to compute 
the inverse of the transform matrix

• All that is left to do is transpose it!
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Putting it All Together:
Applying Ray 
Transforms• For each ray-object intersection

• Apply the inverse of any object transforms to 

the ray

• Intersect the resulting ray with the canonical 

object

• If there is a valid intersection

• Plug t into the original ray equation to get the 

location of the intersection in world space

• Get the correct normal as shown on the last 

slide

So why do things this 
way?

• Only need to store a single model of an 
object

• For each instance of it, maintain

• Material properties

• Object transform

• Can precompute inverse and inverse 

transpose for improved performance

Potential Problem:
Re-Intersection

• This could be a tricky problem

• Consider this situation:

• We intersect a ray with a mirrored sphere

• We find the reflection ray

• We intersect that ray with all objects

• It, by definition, intersects the sphere at 

the exact same point!

Re-Intersection 
Illustration

A ray tracer without any re-intersection handling

Why does this 
happen?• Short answer: numerical precision issues

• Sequences of floating point multiplies 

(accumulated in our transforms) result in small 

inaccuracies

• It is essentially random whether a ray from 

any given point will work correctly (because 

the point is at t=0 or just behind it) or fail 

(because the point is at t>0)

• Note that this is a problem for shadow 
rays too

Solutions

• Solution #1

• Simply do not allow intersections for values of t 

< ε

• Where ε is a very small number, like .0001

• Solution #2

• When a new ray is generated, offset it’s origin 

point by ε in the direction of the surface normal
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Next Time

• Covering whatever raytracer 
implementation details we didn’t get 
through today

• Discussing some advanced raytracer 
functionality

• Acceleration data structures

• Monte Carlo sampling for various effects


