
1

Now Playing:

Pilot

The Notwist

from Neon Golden
Released February 25, 2003

Movie:
Boundin’

Pixar, 2003

Ray Tracing II

Rick Skarbez, Instructor

COMP 575

November 1, 2007

Announcements
• Assignment 3 (texture mapping and ray

tracing) is out, due Thursday by the end
of class

• Also due on Thursday is your project
proposal

• Make sure you meet with me if you haven’t

already

• Programming Assignment 4 (Ray
tracer) is out today, due Tuesday 11/20
by 11:59pm

Assignment 3

• Homework 3 is due next time

• Texture mapping

• Ray generation

• Ray-object intersection

• Refraction

• Any questions?

Programming
Assignment 4

• Build a ray tracer

• Components:

• Handle file output

• You will be storing your images to disk

• Generate ray casted images

• Generate ray traced images

2

Ray Caster Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App
Camera
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color

Ray Tracer Overview

For Each
Pixel

Camera Ray

Generates

Linked List of Objects

Sphere

Plane

Etc.

App Camera
Matrix

Test For
Closest

Sphere

Closest Object

Linked List of Materials

Material #1

Material #2

Linked List of Lights

Ambient #1

Point #1

Point #2

Shade()

Material #2
Shade()

Surface Material

Illuminated
By

Pixel Color

Cast More
Rays

Transform
Ray

What I will give you

• FSF image format specification

• FSF Viewer

• Matrix / Vector / Ray classes

• .ray file format specification

• Some sample .ray files

• All available on the website

.FSF File Format
• You will be outputting your result images

in this format

• 32-byte (RGBA) uncompressed ASCII
format

• This was developed by Eric Bennett for
COMP 575 last year

• Info is online on his website:

http://www.ericpbennett.com/COMP575/FSF.

htm

.FSF File Format
32-bit Unsigned Integers

Value: 575

Value: Width

Value: Height

Value: Number of Frames (1 implies a still image)

Repeat for each image {

Repeat for each scanline {

Repeat for each pixel (left to right) {

8-bit Unsigned Chars

Value: Red

Value: Green

Value: Blue

Value: Alpha (0 is transparent, 255 is opaque)

}

}

}

.RAY File Format

• Adapted from the scene descriptions
used by Prof. Leonard McMillan and
Eric Bennett

• A plain text file specifying the scene

• Each line is a command

3

Example Scene

eye 0 0 5

lookat 0 0 0

up 0 1 0

fov 60

background .5 0 0.5

material 0 1 0 .3 .7 0 0 0 0 0

sphere

light 1 1 1 ambient

light 0.6 0.6 0.6 point 3 3 3

test2.ray

500x300

Expected Raycasting
Results

test1.ray

test2.ray

test3.ray

Example Scene

You may not get a
perfect match, but it

should look very similar

eye -2 1.5 10

lookat 0 0 0

up 0 1 0

fov 45

background 0.078 0.361 0.753

material 1 0 0 0.3 .7 .5 100 .5 0 0

reset

scale .5 .5 .5

translate -2 -.5 0

sphere

material 0 1.0 0 0.3 .7 .5 100 .5 0 0

reset

scale .75 .75 .75

translate -.25 -.25 0

sphere

material 0 0 1.0 0.3 .7 .5 100 .5 0 0

reset

scale 1.25 1.25 1.25

translate 2 .25 0

sphere

material 1 1 1 0.1 .3 .3 100 .8 0 0

reset

scale 2 2 2

translate -1.5 1.25 -3

sphere

material .6 .6 .6 0.3 .7 1.0 50 .5 0 0

reset

translate 0 -1 0

plane

light 1 1 1 ambient

light 1.0 1.0 1.0 point 5 9 10

reflect.ray

Expected Raytracing
Results

reflect.ray

Last Time

• Discussed how to implement

• Shadows

• Reflection

• Refraction

• for each pixel / subpixel
shoot a ray into the scene
find nearest object the ray intersects
if surface is (nonreflecting OR light)

color the pixel
else

calculate new ray direction
recurse

Ray-Tracing
Algorithm

4

Recursive Ray
Casting

Ray Casting

Shade

Ray Traced Shadows

Shade

Ray Tracing

Shade

Shadow Shadow

Implementing
Shadows

• All we do is generate a new ray, starting
at the point and directed along the light
vector

• Test it just like any other ray

• If an intersection occurs, then the point may

be shadowed

Shadow

Ray

Implementing
Shadows

• To be thorough, we need to check the
distance on the intersection

• The object is only in shadow if the t value for

the intersection is less than the t value of the

light

Shadow

Ray

Here the point

is shadowed

Here it is not • Point light sources at an infinite (or near
infinite) distance

• How does this affect our shadow rays?

• Any intersection with a positive t is valid

(generates a shadow)

Directional Lights

• Similar to point lights, but intensity of
emitted light varies by direction

• Need to make sure that the shadow ray is

inside the cone

Spot Lights Spot Lights

Vector Similarity: S • L

Point Being Shaded
L

• Can test your shadow ray against the
extents of your spotlight

• If |S • L| <= |S • angleMax|, go
ahead

angleMax

S

L

5

• The most difficult case

• No longer just one shadow ray

• Really, infinitely many shadow rays

• Can address by shooting many shadow rays

for each light

• This is a sampling/reconstruction

problem

• We’ll come back to it later

Area Lights Ray Reflection
N

R E

L

• Define a ray with

• P = intersection point

• V = reflection vector

• Reflection of the eye

vector, to be clear

How to Integrate
This?

• I = (1 - r)Σ[Ia(Ra, La) + Id(n, l, Rd, Ld, a,

b, c, d)

+ Is(r, v, Rs, Ls, n, a, b, c,d)]

• This was our shading equation before:

Ambient

Specular

Diffuse

Lights

• Add another term, say r * (refColor)

• Where r is how reflective the surface is

• [0, 1]

• And refColor is the color from the reflection

ray

Refraction
• Refraction works just like reflection

• When a ray hits a surface

• Shade as normal

• Figure out if you need to cast a refraction

ray

• If so, calculate the new ray

• Shade it as normal, and add it as yet

another term to our shading equation

Refraction Rays
• Need to store the index of refraction

and a transparency coefficient or each
material

• If the object is transparent, generate a new

ray using Snell’s law

• Continue just as in reflection

n1 sin α1 = n2 sin α2

Review Over

• Any questions?

6

Today

• Cover “the rest” of our ray tracer

• Talk about instantiation of multiple objects

• Address some potential problems

• Talk about data structures

• Talk about optimizations

Instantiation

• We know how to handle canonical
versions of objects

• Say, a unit sphere centered at the origin

• Or an infinite plane at y = 0

• How do we handle multiple objects?

• Or objects with different sizes/shapes?

• These are all part of instantiation

The Power of
Instantiation

MASSIVE Crowd
Simulator

Bonus Movie:
Carlton Draught’s

“Big Ad”

George Patterson & Partners, 2005

Transforming Objects
• We talked extensively about transforms

earlier in the class

• Translation

• Rotation

• Scaling

• We’re going to be using them here, but
now we have to build the matrices
ourselves

• Let’s review

Translation in 3D

• We will represent translation with a
matrix of the following form:

t is the x-offset
u is the y-offset
v is the z-offset

7

Scaling in 3D

• We will represent scaling with a matrix
of the following form:

α is the scale factor in the x-direction

β is the scale factor in the y-direction
γ is the scale factor in the z-direction

Rotation in 3D

Rotation About

The Z-Axis

Rotation About
The X-Axis

Rotation About
The Y-Axis

Rotation about any
axis in 3D

• How can we extend this to rotation
about any axis, not just the principle
axes?

• Need to move the axis we want to
rotate about to one of the principle
axes (say, the z axis)

• First, apply a rotation about x, to
move the axis into the yz-plane (Rx)

• Then, apply a rotation about y, to
move the axis onto the z-axis (Ry)

• Then apply your desired rotation,
followed by the inverses of the other

Rotation about any
axis in 3D

Rtotal = Rx
-1Ry

-1RzRyRx

Rotation about any
point and any axis in

3D
• To rotate about a non-origin point,

extend in the same way as in 2D

• First, translate to the origin (Txyz
-1)

• Then apply your rotation (in the most
general case, Rx

-1Ry
-1RzRyRx)

• Then translate back (Txyz)

Rtotal = Txyz Rx
-1Ry

-1RzRyRx Txyz
-1

One More Thing...
What is the difference in the images
generated by the two scenes below?

(3,0,0)

(0,0,-5)

(0,0,0)

(-3,0,-5)

As it turns out, there isn’t any

8

Remember This?

• We talked about how applying a
transformation to the world is the same
as applying the inverse transformation
to the camera

• Why might this be useful?

Transforming Rays

• Instead of transforming objects, we will
apply the inverse transforms to our rays

• Why?

• We can write really really fast code

to intersect rays only with canonical

objects without worrying about

size, shape, location, etc.

• We have a standard process

• Transform rays

• Intersect with canonical unit objects

(0,0,0)

Inverse Transforms

For all of our transforms, changing their direction

generates the inverse matrix

This conveniently saves us the trouble (and cost)

of implementing matrix inversion

Inverting Composed
Transforms

• Remember that one of the benefits of
using matrices for transforms was that
we could compose many transforms
into one matrix

• Can we easily get the inverse of this

composed matrix?

Inverting Composed
Transforms

• Answer: Yes!

• Lucky for us,

• Note that the order of transforms gets
reversed

• Now the operator that gets applied first is the

leftmost

Transforming Rays
• So, now we know how to invert our

transforms

• And we know that we can use these to

transform the camera

• But how do these affect our rays?

• Remember: A ray is a point and a vector

• The point is affected by translation

• The ray is affected by rotation

• Both are affected by scaling

9

Transforming Rays

• The point of origin is a point, so it gets
transformed as a homogeneous point

• The direction is a vector, so it gets
transformed as a vector

Untransformed ray:
Ray equivalent to the transform

M being applied to the world:

r(t) = S + tV r’(t) = M-1S + tM-1V

Object Intersections
with Transformed

Rays• Once the ray is transformed, just
intersect it with your canonical objects
as normal

• The resulting t value can be plugged
into the original untransformed ray to
find the point of intersection in world
space

Caution: Do not normalize the vector in the ray

after transformation r’, or else values of t will not
be comparable to each other

You didn’t really think
it would be that

easy...• That gets us the new ray to the eye

• But that isn’t the only thing we need for

shading

• What about the normal vector?

• Normals do not remain “normal” after
transformation

Finding the New
Normal Vector

• For just a minute, let’s pretend that we’re
doing it the old way

• Transforming the world, not the ray

• Before the transform

• N • T = 0 (N: normal vector, T: tangent vector)

• After the transform

• T’ = MT (tangent vectors remain tangent)

• N’ • T’ = 0

• So, what is N’?

Finding the New
Normal Vector

• Let’s denote the unknown transform as G

• N’ = GN and T’ = MT, and N’ • T’ = 0

➡ GN • MT = 0

➡ (GN)TMT = 0

➡ NTGTMT = 0

• With the original normal, NTT = 0

➡ GTM = Identity

➡ GT = M-1 ⇒ G = (M-1)T

Finding the New
Normal Vector

• So, in the end, the new normal vector is
given by

• N’ = (M-1)TN

• Since we already know how to compute
the inverse of the transform matrix

• All that is left to do is transpose it!

10

Putting it All Together:
Applying Ray
Transforms• For each ray-object intersection

• Apply the inverse of any object transforms to

the ray

• Intersect the resulting ray with the canonical

object

• If there is a valid intersection

• Plug t into the original ray equation to get the

location of the intersection in world space

• Get the correct normal as shown on the last

slide

So why do things this
way?

• Only need to store a single model of an
object

• For each instance of it, maintain

• Material properties

• Object transform

• Can precompute inverse and inverse

transpose for improved performance

Potential Problem:
Re-Intersection

• This could be a tricky problem

• Consider this situation:

• We intersect a ray with a mirrored sphere

• We find the reflection ray

• We intersect that ray with all objects

• It, by definition, intersects the sphere at

the exact same point!

Re-Intersection
Illustration

A ray tracer without any re-intersection handling

Why does this
happen?• Short answer: numerical precision issues

• Sequences of floating point multiplies

(accumulated in our transforms) result in small

inaccuracies

• It is essentially random whether a ray from

any given point will work correctly (because

the point is at t=0 or just behind it) or fail

(because the point is at t>0)

• Note that this is a problem for shadow
rays too

Solutions

• Solution #1

• Simply do not allow intersections for values of t

< ε

• Where ε is a very small number, like .0001

• Solution #2

• When a new ray is generated, offset it’s origin

point by ε in the direction of the surface normal

11

Next Time

• Covering whatever raytracer
implementation details we didn’t get
through today

• Discussing some advanced raytracer
functionality

• Acceleration data structures

• Monte Carlo sampling for various effects

